Sixteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 7–9th 2022

Fast-slow analysis of dynamical systems and its applications to the study of biological models

Jorge Alberto Jover Galtier¹, Ana Mayora Cebollero¹, Rubén Vigara¹, Sergio Serrano¹, Roberto Barrio¹,

SUMMARY

In the field of dynamical systems, it is common to face problems for which the time scales of their variables are vastly different. These problems are usually tackled by separating the evolutions and characteristics of fast and slow variables. The analysis of the resulting situations helps greatly in the characterisation of dynamics.

In this talk, the basic elements of fast-slow analysis of dynamical systems will be presented, such as singular perturbation theory, critical manifolds and Fenichel's theory. As an application of these tools, the fast-slow analysis of relevant models in the study of biological processes will be presented.

Keywords: Fast-slow analysis, singular perturbation theory, biological models

AMS Classification: 34C60, 70K70, 92B05

References

- [1] M. WECHSELBERGER. Geometric singular perturbation theory beyond the standard form. Springer, 2020.
- [2] R. BARRIO, M. A. MARTÍNEZ, L. PÉREZ AND E. PUEYO. Bifurcations and slow-fast analysis in a cardiac cell model for investigation of early afterdepolarizations. *Mathematics* 8, 880, 2020.
- [3] R. BARRIO, S. IBÁÑEZ AND L. PÉREZ. Homoclinic organization in the HindmarshRose model: A three parameter study. *Chaos* 30, 053132, 2020.

¹Departmento de Matemática Aplicada, IUMA Universidad de Zaragoza email: jorgejover@unizar.es