Sixteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 7–9th 2022

Finite element analysis for a problem with the Ventcel boundary condition

Fabien Caubet¹, Joyce Ghantous¹, Charles Pierre¹

SUMMARY

Let Ω be an open-bounded and connected domain of \mathbb{R}^n (n=2,3) with $\Gamma = \partial \Omega$ as its compact smooth boundary. We define a finite element method for numerically approximating the solution of the following system:

$$\begin{cases} -\Delta u + \kappa u &= f \quad \text{in } \Omega, \\ -\beta \Delta_{\Gamma} u + \partial_{n} u + \alpha u &= g \quad \text{on } \Gamma, \end{cases}$$

where n is the outer unit normal vector on Γ , $f \in L^2(\Omega)$ and $g \in L^2(\Gamma)$, $\kappa \ge 0$, $\alpha > 0$ and $\beta > 0$ are constants. We discretize the domain Ω and we wish to compare the error between the solution of the exact problem $u \in \mathcal{H} = H^1(\Omega) \cap H^1(\Gamma)$ which we equipped with the norm $\|v\|_{\mathcal{H}} = \sqrt{\|v\|_{H^1(\Omega)}^2 + \|v\|_{H^1(\Gamma)}^2}$ and the solution of the discrete formulation u_h defined on the approximated domain Ω_h . However each function is defined on a different domain, to overcome this problem we will estimate the error between the exact solution and the solution of the lifted problem using the transformation defined in [4], [3] and [2]. Denote u_h^ℓ the lift of u_h on Ω , then our main result is the following error estimate where we use a \mathcal{P}^k finite element space $(k \ge 1)$:

$$||u - u_h^{\ell}||_{\mathcal{H}} = O(h^k + h^{r+1}),$$

where r is the geometrical degree of approximation of Ω and h is the biggest diameter of a cell of the mesh. Finally we perform numerical simulations which validate this result.

Keywords: Laplace-Beltrami operator, Finite element method, lifted functions, error analysis, geometric error, eigenvalue and eigenvectors approximation.

AMS Classification: 74S05, 65N15, 65N30.

References

- ALAN DEMLOW. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces. SIAM Journal on Numerical Analysis 47, no. 2 (January 2009): 80527.
- [2] FRANCOIS DUBOIS Discrete vector potential representation of a divergence-free vector field in three-dimensional domains: numerical analysis of a model problem. SIAM J. Numer. Anal., 27,(1990) 11031141.
- [3] CHARLES M. ELLIOTT, AND THOMAS RANNER. Finite Element Analysis for a Coupled Bulk-Surface Partial Differential Equation. IMA Journal of Numerical Analysis 33, no. 2 (April 1, 2013): 377402.
- [4] JEAN-CLAUDE NEDELEC Curved finite element methods for the solution of singular integral equations on surfaces in R³, Comp. Meth. Appl. Mech. Engrg., 8 (1976), pp. 61-80.

¹Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, UMR 5142, Pau, France