Sixteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 7–9th 2022

Analysis of a modified Euler scheme for SPDEs

Charles-Edouard Bréhier,

SUMMARY

A novel integrator to approximate solutions of parabolic semilinear stochastic evolution equations driven by space-time white noise

$$dX(t) = -\Lambda X(t)dt + F(X(t))dt + dW(t)$$

is presented. The proposed modified Euler scheme, introduced in [1], is written as

$$X_{n+1}^{\tau} = \mathcal{A}_{\tau} \left(X_n^{\tau} + \tau F(X_n^{\tau}) \right) + \mathcal{A}_{\tau} \sqrt{\frac{\tau}{2}} \Gamma_{n,1} + \mathcal{B}_{\tau} \sqrt{\frac{\tau}{2}} \Gamma_{n,2},$$

where $\tau = T/N$, $\mathcal{A}_{\tau} = (I + \tau \Lambda)^{-1} \Gamma_{n,1}$, $\Gamma_{n,2}$ denote independent cylindrical Gaussian random variables, and the linear operator \mathcal{B}_{τ} satisfies the condition $\mathcal{B}_{\tau} \mathcal{B}_{\tau}^{\star} = (I + \tau \Lambda)^{-1}$.

The objective of the talk is to present the main improvements when the modified Euler scheme is used instead of the standard method (given by $\mathcal{B}_{\tau} = \mathcal{A}_{\tau}$).

- The spatial regularity is preserved at all times, for any value of the time-step size τ .
- When F = 0, the Gaussian invariant distribution ν of the Ornstein–Uhlenbeck process $(X(t))_{t>0}$ is preserved by the numerical scheme, for any value of the time-step size τ .
- If F = -DV and if an appropriate ergodicity condition is satisfied, one can approximate the invariant Gibbs distribution given by

$$d\mu_{\star}(x) = Z^{-1} \exp(-2V(x)) d\nu(x)$$

of the process in the total variation distance: for any τ , the scheme admits a unique invariant distribution μ_{∞}^{τ} , and for all $\kappa \in (0, \frac{1}{2})$, there exists $C_{\kappa} \in (0, \infty)$ such that

$$d_{\mathrm{TV}}(\mu_{\infty}^{\tau},\mu_{\star}) \leq C_{\kappa} \tau^{\frac{1}{2}-\kappa}.$$

Keywords: stochastic partial differential equations, numerical approximation, invariant distribution

AMS Classification: 65C30,60H35,60H15

References

[1] C.-E. BRÉHIER. Analysis of a modified Euler scheme for parabolic semilinear stochastic PDEs. Arxiv preprint, 2022.

¹Laboratoire de Mathématiques et de leurs Applications de Pau Université de Pau et des Pays de l'Adour email: brehier@math.univ-lyon1.fr