Least action solution and least action nodal solution for Schrödinger equation on metric graphs

Colette De Coster ${ }^{1}$,

SUMMARY

In this talk, we consider the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+|u|^{p-2} u=\lambda u, \quad \text { on the edges of } \mathcal{G} \tag{1}\\
u \text { continuous and } \sum_{e \succ \mathrm{~V}} \frac{d u}{d x_{e}}(\mathrm{v})=0, \text { at the vertex of } \mathcal{G}
\end{array}\right.
$$

set on a metric graph \mathcal{G}.
The solutions of this problem are the critical points of the action functional

$$
J_{\lambda}(u):=\frac{1}{2}\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}+\frac{\lambda}{2}\|u\|_{L^{2}(\mathcal{G})}^{2}-\frac{1}{p}\|u\|_{L^{p}(\mathcal{G})}^{p},
$$

defined on $H^{1}(\mathcal{G})$.
Two important levels of J_{λ} are given by

$$
c_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)
$$

where

$$
\mathcal{N}_{\lambda}(\mathcal{G}):=\left\{u \in H^{1}(\mathcal{G}) \mid u \neq 0, \mathrm{~d} J_{\lambda}(u)[u]=0\right\}
$$

and

$$
\sigma_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u),
$$

where $\mathcal{S}_{\lambda}(\mathcal{G})$ is the set of $H^{1}(\mathcal{G})$ solutions of the problem (1).
In case $c_{\lambda}(\mathcal{G})$ is attained, it is well known that the corresponding minimum is a solution of (1). In the first part of this talk we will consider the case where $c_{\lambda}(\mathcal{G})$ is not attained. We can wonder what are the relations between $c_{\lambda}(\mathcal{G})$ and $\sigma_{\lambda}(\mathcal{G})$? Are they equal ? Can we have $c_{\lambda}(\mathcal{G})$ not attained and $\sigma_{\lambda}(\mathcal{G})$ attained ?

In the second part of the talk, according to the time left, we will consider the problem of existence of sign-changing solutions of (1).

This is based on joint works with Simone Dovetta (Politecnico di Torino), Damien Galant (UMons - UPHF), Enrico Serra (Politecnico di Torino) and Christophe Troestler (UMons).

[^0]
[^0]: ${ }^{1}$ Universit Polytechnique Hauts de France email: colette.decoster@uphf.fr

