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Abstract. We studied a quasilinear parabolic variational inequality of Lewy-Stampacchia
type governed by a pseudomonotone operator of Leray-Lions type in a joint work with O.
Guibé, A. Mokrane and G. Vallet [6]. We propose here some tools and techniques used
to deal with the difficulties, which appear in the study of the problem.
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§1. Introduction

We are interessted in a nonlinear parabolic problem with contraint and homogeneous Dirich-
let boundary conditions. More precisely, we prove the existence of a solution satisfying the
following Lewy-Stampacchia’s inequality

0 ≤ ∂tu − div[a(·, ·, u,∇u)] − f ≤ g− = ( f − ∂tψ + div[a(·, ·, ψ,∇ψ)])−,

associated with the following problem∫ T

0
〈∂tu, v − u〉dt +

∫
Q

a(t, x, u,∇u)∇(v − u)dxdt ≥
∫ T

0
〈 f , v − u〉dt, u0(0) = u0

where u 7→ −div[a(t, x, u,∇u)] is a pseudomomotone operator under the constraint u ≥ ψ. We
propose to present tools to show the existence of a solution for the above mentioned problem.

After the first results of H. Lewy and G. Stampacchia [8] concerning inequalities in the
context of superharmonic problems, many authors have been interested in the so-called Lewy-
Stampacchia’s inequality associated with obstacle problems. Without exhaustiveness, let us
cite the papers of A. Mokrane and F. Murat [10] for pseudo-monotone elliptic problems, A.
Mokrane and G.Vallet [11] in the context of Sobolev spaces with variable exponents. The
literature on Lewy-Stampacchia’s inequality is mainly aimed at elliptic problems, or close to
elliptic problems and fewer papers are concerned with other type of problems. Let us cite
J. F. Rodrigues [12] for hyperbolic problems, F. Donati [4] for parabolic problems with a
monotone operator or L. Mastroeni and M. Matzeu [9] in the case of a double obstacle.

The aim of O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet [6] was to extend F. Do-
nati’s work [4] to pseudo-monotone parabolic problems with a Leray-Lions operator. The
authors proposed a result with very general assumptions on the Carathéodory function a, by
using a method of penalization of the constraint associated with a suitable perturbation of the
operator. As proposed e.g. by [7, p.102], this perturbation is one of the main new point of
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the proof. Indeed, without it, one is usually only concerned by Lewy-Stampacchia’s inequal-
ity in the elliptic case, and one needs to assume, as in [10], some additional, now useless,
holder-continuity assumptions with respect to u and ∇u. Thus, this perturbation allows us
on the one hand to prove Lewy-Stampacchia’s inequality in the pseudomonotone parabolic
case, and on the other hand to reduce significantly the list of assumptions. Let us mention
also that, with this method, one is able to revisit Lewy-Stampacchia’s inequality proposed
in [10, 11] by assuming only basic assumptions. The second essential result is an extension
of the formula of time-integration by parts of Mignot-Bamberger[2] & Alt-Luckhaus[1] to
non-classical situations. Some information are also given too about the time-continuity of an
element u when u and ∂tu are not in spaces in duality relation. We propose in this paper to
present tools and techniques used by the authors to deal with the difficulties in the study of
some terms in [6].

First of all, we need to precise the functional setting and the assumptions on the data.
Denote by D ⊂ Rd, d ≥ 1 a Lipshitz bounded domain, T > 0, Q = D×]0,T [and p, p′ ∈
]1,+∞[ such that 1

p + 1
p′ = 1. V = W1,p

0 (D) if p ≥ 2 and V = W1,p
0 (D) ∩ L2(D) with the

graph-norm else. Then, V ′ = W−1,p′ (D) if p ≥ 2 and V ′ = W−1,p′ (D) + L2(D) else and the
Lions-Guelfand triple V ↪→

d
H ↪→

d
V ′ holds.

W(0,T ) = {u ∈ Lp(0,T,V), ∂tu ∈ Lp′ (0,T,V ′)} and K(ψ) := {u ∈ W(0,T ), u ≥ ψ}.
Assume in the sequel the following:

H1 :

A : W1,p(D)→ W−1,p′ (D) v 7→ A(v) = − div
[
a(t, x, v,∇v)

]
,

where

H1,1 a : (t, x, u, ξ) ∈ Q × R × Rd 7→ a(t, x, u, ξ) ∈ Rd is a Carathéodory function on
Q × Rd+1,

H1,2 ∀(t, x) ∈ Q a.e., u ∈ R, ∀ξ, η ∈ Rd,

ξ , η⇒ [a(t, x, u, ξ) − a(t, x, u, η)].(ξ − η) > 0.

H1,3 ∃ᾱ > 0, β̄ > 0 and γ̄ ≥ 0, functions h̄ ∈ L1(Q), k̄ ∈ Lp(Q) and two exponents
q, r < p such that, for a.e. (t, x) ∈ Q, ∀u ∈ R,∀ξ ∈ Rd,

a(t, x, u, ξ).ξ ≥ᾱ|ξ|p −
[
γ̄|u|q + |h̄(t, x)|

]
,

|a(t, x, u, ξ)| ≤β̄
[
|k̄(t, x)| + |u|r/p + |ξ|

]p−1
.

H2 : ψ ∈ Lp(0,T,W1,p(D)) ∩ Lp(0,T, L2(D)); that ∂tψ belongs to Lp′ (0,T,V ′) and ψ ≤ 0
on ∂D.

H3 : the right hand side f , which is assumed to be such that g = f − ∂tψ − A(ψ) = g+ − g−

belongs to the order dual Lp(0,T,V)∗ = (Lp′ (0,T,V ′))+ − (Lp′ (0,T,V ′))+, i.e. g+, g− ∈
(Lp′ (0,T,V ′))+ the non-negative elements of Lp′ (0,T,V ′).

H4 : u0 ∈ L2(D) satisfies the constraint, i.e. u0 ≥ ψ(0).

Let us now recall the main result in [6].
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Theorem 1. Under the above assumptions (H1)-(H4), there exists at least u ∈ K(ψ) with
u(t = 0) = u0 and such that, for any v ∈ Lp(0,T,V), v ≥ ψ∫ T

0
〈∂tu, v − u〉dt +

∫
Q

a(t, x, u,∇u)∇(v − u)dxdt ≥
∫ T

0
〈 f , v − u〉dt.

Moreover, the following Lewy-Stampacchia’s inequality holds

0 ≤ ∂tu − div[a(·, ·, u,∇u)] − f ≤ g− = ( f − ∂tψ + div[a(·, ·, ψ,∇ψ)])−.

§2. Strong continuity in L2(D)

Let us denote by V(D) (V0(D) resp.) the following space W1,p(D) ∩ L2(D) (W1,p
0 (D) ∩ L2(D)

resp.) and V ′(D) = W−1,p′ (D) + L2(D). We have the following result.

Lemma 2. If u ∈ Lp(0,T ; V(D)) and ∂tu ∈ Lp′ (0,T ; V ′(D)) then u ∈ C([0,T ], L2(D)).

Remark 1. This result is not the usual one since u and ∂tu are not in spaces being in duality
relation and few words are needed concerning the time-derivative. Note that both V(D) and
V0(D) are dense subspaces of the chosen pivot space L2(D) so that it can be identify to a sub-
space of V ′(D) or (V(D))′. Therefore, u, as an element of Lp(0,T ; V(D)) ↪→ LP(0,T ; L2(D)),
has a time derivative in the sense of D′(0,T ; L2(D)) ↪→ D′(0,T ; V ′(D)) and it is assumed to
belong to Lp′ (0,T ; V ′(D)).
Remark 2. Note that Lemma 2 ensures that the obstacle ψ ∈ C([0,T ], L2(D)) and therefore
u0 ≥ ψ(0) has a sense as elements of L2(D).

Sketch of the proof. This result is based on a classical method: first in Rd , then in the half-
space Rd

+ and finally in D thanks to an atlas of charts.
For D = RN , we have W1,p

0 (RN) = W1,p(RN), therefore we can identify V ′(RN) with the
dual of V(RN). By considering the triple V(RN) ↪→

d
L2(RN) ↪→

d
V ′(RN), thanks to [14] (Prop.

1.2 p. 106), one has u ∈ C([0,T ], L2(RN)).
If D = RN

+/resp.− = {(x′, xd) ∈ Rd; xd > 0 (resp. xd < 0}, the method is based on a
suitable extension of u to Rd. Following a recommendation of F. Murat, we consider the
following extension, used e.g in [5]

ũ(t, x′, xd) =

{
u(t, x′, xd); xd > 0
−3u(t, x′,−xd) + 4u(t, x′,−2xd); xd < 0.

Note that ũ ∈ Lp(0,T ; V(Rd)) and, thanks to a change of variables, that for any ϕ ∈ C∞c (]0,T [×Rd)
one gets∫ T

0

∫
Rd

ũ(t, x)∂tϕ(t, x) dx dt =

∫ T

0

∫
Rd
−

(−3u(t, x′,−xd) + 4u(t, x′,−2xd))∂tϕ(t, x′, xd) dx dt

+

∫ T

0

∫
Rd

+

u(t, x)∂tϕ(t, x) dx dt.
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Then ∫ T

0

∫
Rd

ũ(t, x)∂tϕ(t, x) dx dt

=

∫ T

0

∫
Rd

+

(∂t(ϕ(t, x′, xd) − 3ϕ(t, x′,−xd) + 2ϕ(t, x′,−
xd

2
))u(t, x, xd) dx dt.

Remark that ψ(t, x) = ϕ(t, x′, xd) − 3ϕ(t, x′,−xd) + 2ϕ(t, x′,−
xd

2
) = 0 i f xd = 0 and

∂tψ(t, x) = 0 if xd = 0, which implies ψ ∈ W1,∞(0,T ; V0(Rd
+)).

Note that ‖ψ‖Lp(0,T ;V0(Rd
+)) ≤ 8‖ϕ‖Lp(0,T ;V(Rd)). Therefore,

|

∫ T

0
〈∂tũ, ϕ〉dt| = |

∫ T

0

∫
Rd

+

u∂tψ dx dt| ≤ ‖∂tu‖Lp′ (0,T ;V ′(Rd
+))‖ψ‖Lp(0,T ;V0(Rd

+)) ≤ C‖ϕ‖Lp(0,T ;V(Rd))

Thus ∂tũ ∈ Lp′ (0,T ; V ′(Rd)).Then, one concludes that ũ ∈ C([0,T ], L2(Rd)) i.e u ∈ C([0,T ], L2(Rd
+)).

Finally, the result holds in the general case by considering an atlas of charts as proposed e.g
in [5]. �

§3. Penalization and perturbation of the operator

Denote by q̃ = min(p, 2) and let us define the function Θ

Θ : R→ R, x 7→ −[x−]q̃−1,

and the perturbed operator

ã(t, x, u, ξ) : Q × R × Rd → Rd (x, t, u, ξ) 7→ ã(t, x, u, ξ) = a(t, x,max(u, ψ(t, x)), ξ). (3.1)

Remark 3. We wish to draw the reader’s attention to the fact that with the proposed pertur-
bation: ã(t, x, u, ξ) = a(t, x,max(u, ψ), ξ), the idea is to make formally the operator monotone
and not pseudomonotone any more on the free-set where the constraint is violated.

We defineA : Lp(0,T ; V)→ Lp′ (0,T ; V ′) such that [A(u)](t) := Ã(u(t)) = − div[ã(t, x, u,∇u)]
and note that, the above assumption H1 still holds.
For any positive ε, a cosmetic modification of [13, Section 8.4 ] yields the following result.
Theorem 3. There exists uε ∈ W(0,T ) such that uε(t = 0) = u0 and

∂tuε − div
[
ã(t, x, uε ,∇uε)

]
+

1
ε

Θ(uε − ψ) = f . (3.2)

§4. From regular to general case

To prove the main result. On the one hand, we need some estimate for the penalization term.
For that we impose an additional regularity on some data to get the desired estimate which
permits to prove that the solution satisfies the constraint. On the other hand, we need some
additional regularity to use an integration by part formula given in Section 5 to prove Lewy-
Stampacchia’s inequality. Then, we obtain the general case thanks the following density
lemma.
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Lemma 4. The positive cone of Lp(0,T ; V) ∩ L2(Q) is dense in the positive cone of V′, the
dual set ofV = Lp(0,T,V).

Note that by truncation argument, the same result holds for the positive cone of Lp(0,T ; V)∩
Lp′ (Q) when p < 2. This result is given in [4, Lemma p.593]. We propose in [6] a sketch of
a proof following the idea of [10].

§5. Mignot-Bamberger / Alt -Luckhaus integration by part formula

Note that µε := ∂tuε − div[ã(·, ·, uε,∇uε)] − f = 1
ε
[(uε − ψ)−]q̃−1 ≥ 0, so that the limit

µ := ∂tu− div[ã(·, ·, u,∇u)]− f is a non-negative Radon measure which is also an element of
Lp′ (0,T ; V ′).

Using an idea from A. Mokrane and F. Murat [10], denote by zε := g− − 1
ε
[(uε − ψ)−]q̃−1,

we have

∂tuε + A(uε) + zε = g+ + ∂tψ + A(ψ) i.e. ∂t(uε − ψ) + A(uε) − A(ψ) + zε = g+.

Observing that
∂tuε + A(uε) − f = −zε + g−.

as in [10] in the elliptic case and under more restrictive assumptions on the operator a, prov-
ing that z−ε converges to 0 in an appropriate space leads to the Lewy-Stampacchia’s inequality.
Due to the time variable and the weak assumption on a we have to face to additional difficul-
ties. For technical reasons, we will assume only that, on top of g− ∈ Lp′ (Q) ∩ Lp(0,T ; V),
g− ≥ 0, that ∂tg

− ∈ Lq̃′ (Q). Roughly speaking it allows one to use a test function depending
on g− and together with Lemma 5 to perform an integration by part formula and then the
convergence analysis of z−ε .
Lemma 5. Consider u ∈ Lp(0,T,W1,p(D)) ∩ Lp(0,T, L2(D)) such that ∂tu ∈ Lp′ (0,T,V ′).
Let Ψ : Q × R → R be a function such that (t, x) 7→ Ψ(t, x, λ) is measurable, λ 7→
Ψ(t, x, λ) is non-decreasing (càdlàg1, or càglàd2) and denote by Λ : Q × R → R, (t, x, λ) 7→∫ λ

a Ψ(t, x, τ)dτ where a is any arbitrary real number. Assume moreover that |Ψ(t = 0)| ≤
h + |λ|α and that ∂tΨ exists with |Ψ(λ = 0)| + |∂tΨ| ≤ h where h ∈ L2(Q) and α ∈ [0, 1]. If
Ψ(t, x, u) ∈ Lp(0,T,V), then, for any β ∈ W1,∞(0,T ) and any 0 ≤ s < t ≤ T,∫ t

s
< ∂tu,Ψ(σ, x, u) > βdσ =

∫
D

Λ(t, x, u(t))β(t)dx −
∫

D
Λ(s, x, u(s))β(s)dx

−

∫ t

s

∫
D

Λ(σ, x, u)β′dxdσ −
∫ t

s

∫
D
∂tΛ(σ, x, u)βdxdσ.

Proof. We propose here to present the proof introduced in [6].Thanks to the assumptions, Ψ

is a measurable function on Q × R and Λ is a Carathéodory function on Q × R. Moreover,

|Ψ(t, x, λ)| ≤|Ψ(t = 0)| +
∫ t

0
|∂tΨ(s, x, λ)|ds ≤ (T + 1).h(t, x) + |λ|α,

|Λ(t, x, λ)| ≤|λ − a|
[
(T + 1).h(t, x) + |λ|α

]
≤ C(T, a)

[
|λ|2 + h2(t, x) + h(t, x) + 1

]
1right continuous with left limit
2left continuous with right limit
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so that Λ,Ψ ∈ L2
loc(R, L2(Q)) and the Nemitskii operator associated with Λ is continuous

from L2(Q) to L1(Q). Concerning the time-derivation of Λ, for any ϕ ∈ D(Q × R), Fubini’s
theorem yields

−

∫
Q×R

Λ(t, x, λ)∂tϕ(t, x, λ)dtdxdλ = −

∫
Q×R

∫ λ

a
Ψ(t, x, τ)dτ∂tϕ(t, x, λ)dtdxdλ

=

∫
Q×R

∫ λ

a
∂tΨ(t, x, τ)dτϕ(t, x, λ)dtdxdλ.

As a consequence,

∂tΛ(t, x, λ) =

∫ λ

a
∂tΨ(t, x, τ)dτ,

∣∣∣∣∂tΛ(t, x, λ)
∣∣∣∣ ≤ |λ − a|h(t, x) ≤ |λ|2 + h2(t, x)/4 + |a|h(t, x)

so that the Nemitskii operator associated with ∂tΛ is continuous from L2(Q) to L1(Q).

Thanks to the assumptions, u ∈ C([0,T ], L2(D)) and one extends u to ū in R by ū(t) = u0
if t < 0 and ū(t) = u(T ) si t > T . Therefore, if I1 := (−1,T + 1), ū ∈ Lp(I1,W1,p(D)) ∩
L∞(I1, L2(D)) ∩C(Ī1, L2(D)) such that ∂tū ∈ Lp′ (I1,V ′) with ∂tū = 0 when t < 0 or t > T .
Similarly to u, denote by Ψ̄ the extension to I1 of Ψ in the same way and by Λ̄ the corre-
sponding integral as introduced in the Lemma.

For any fixed 0 < h << 1, let us denote by

vh : t 7→
ū(t + h) − ū(t)

h
, wh : t 7→

ū(t) − ū(t − h)
h

.

Consider β ∈ D(I1) and h, small enought so that suppβ + [−h, h] ⊂ I1. Then,∫
I1

vh(t)β(t)dt =
1
h

∫
I1

[ū(t + h) − ū(t)]β(t)dt

=
1
h

∫
I1

ū(t)β(t − h)dt −
1
h

∫
I1

ū(t)β(t)dt =
1
h

∫
I1

ū(t)[β(t − h) − β(t)]dt

−→ −

∫ T+1

−1
ū(t)β′(t)dt = −

∫ T

0
u(t)β′(t)dt + u(T )β(T ) − u0β(0) in L2(D);

similarly,∫
I1

wh(t)β(t)dt =
1
h

∫
I1

[ū(t) − ū(t − h)]β(t)dt

=
1
h

∫
I1

ū(t)β(t)dt −
1
h

∫
I1

ū(t)β(t + h)dt =
1
h

∫
I1

ū(t)[β(t) − β(t + h)]dt

−→ −

∫ T+1

−1
ū(t)β′(t)dt = −

∫ T

0
u(t)β′(t)dt + u(T )β(T ) − u0β(0) in L2(D),

so that vh and wh converge to ∂tū inD′[I1, L2(D)], thus inD′[I1,V ′]; and to ∂tu inD′[0,T, L2(D)]
and D′[0,T,V ′]. Moreover, by [3, Corollary A.2 p.145], the properties of Bochner integral
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and since ∂tū = 0 outside (0,T ),∫
I1

‖vh(t)‖p
′

V ′dt =

∫
I1

1
hp′ ‖

∫ t+h

t
∂tū(s)ds‖p

′

V ′dt ≤
∫

I1

1
h

∫ t+h

t
‖∂tū(s)‖p

′

V ′dsdt

≤
1
h

∫
I1

∫ t+h

−1
‖∂tū(s)‖p

′

V ′dsdt −
1
h

∫
I1

∫ t

−1
‖∂tū(s)‖p

′

V ′dsdt =

∫ T

0
‖∂tu(s)‖p

′

V ′ds.

Since vh already converges in the sense of Distributions, as a consequence of the above
estimate, one may conclude that vh converges weakly to ∂tū in Lp′ [I1,V ′] and to ∂tu in
Lp′ [0,T,V ′]. Similarly, wh converges weakly to ∂tū in Lp′ [I1,V ′] and to ∂tu in Lp′ [0,T,V ′].

For any β ∈ D(I1), one has that Ψ(·, ū)β ∈ Lp(I1,V), since L2(D) is identified with its dual,
one gets that∫

I1×D
vhΨ̄(·, u(t))β dx dt =

∫
I1

< vh, Ψ̄(·, ū(t)) > βdt →
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt,∫
I1×D

whΨ̄(·, ū(t))β dx dt =

∫
I1

< wh, Ψ̄(·, ū(t)) > βdt →
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt.

Let us recall that a is a given real and Λ̄(t, x, λ) =
∫ λ

a Ψ̄(t, x, τ)dτ. Since Ψ̄ is a non-
decreasing function of its third variable, for any real numbers u and v, one has

(v − u)Ψ̄(t, x, u) ≤ Λ̄(t, x, v) − Λ̄(t, x, u) =

∫ v

u
Ψ̄(t, x, τ)dτ ≤ (v − u)Ψ̄(t, x, v).

Thus, assuming moreover that β is non-negative,

[ū(t + h, x) − ū(t, x)]Ψ̄(t, x, ū(t))β ≤ [Λ̄(t, x, ū(t + h)) − Λ̄(t, x, ū(t))]β
≤ [ū(t + h, x) − ū(t, x)]Ψ̄(t, x, ū(t + h))β,

[ū(t, x) − ū(t − h, x)]Ψ̄(t, x, ū(t − h))β ≤ [Λ̄(t, x, ū(t)) − Λ̄(t, x, ū(t − h))]β
≤ [ū(t, x) − ū(t − h, x)]Ψ̄(t, x, ū(t))β.

and, for h small enough to have supp β + [−h, h] ⊂ I1,∫
I1×D

vhβΨ̄(·, u(t)) dx dt ≤
∫

I1×D

Λ̄(·, ū(t + h)) − Λ̄(·, ū(t))
h

β dx dt

≤

∫
I1×D

vhβΨ̄(·, ū(t + h)) dx dt,∫
I1×D

whβΨ̄(·, ū(t − h)) dx dt ≤
∫

I1×D

Λ̄(·, ū(t)) − Λ̄(·, ū(t − h))
h

β dx dt

≤

∫
I1×D

whβΨ̄(·, ū(t)) dx dt,
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so that

lim inf
∫

I1×D

Λ̄(·, ū(t + h)) − Λ̄(·, ū(t))
h

β dx dt ≥
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt

=

∫ T

0
< ∂tu,Ψ(·, u) > βdt,

lim sup
∫

I1×D

Λ̄(·, ū(t)) − Λ̄(·, ū(t − h))
h

β dx dt ≤
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt

=

∫ T

0
< ∂tu,Ψ(·, u) > βdt.

Moreover,∫
I1×D

Λ̄(t, x, ū(t + h)) − Λ̄(t, x, ū(t))
h

β(t) dx dt

=
1
h

∫
I1×D

Λ̄(t − h, x, ū(t))β(t − h) dx dt −
1
h

∫
I1×D

Λ̄(t, x, ū(t))β(t) dx dt

=

∫
I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt +

∫
I1×D

β(t − h) − β(t)
h

Λ̄(t, x, ū(t)) dx dt

and∫
I1×D

Λ̄(t, x, ū(t)) − Λ̄(t, x, ū(t − h))
h

β(t) dx dt

=

∫
I1×D

Λ̄(t, x, ū(t)) − Λ̄(t + h, x, ū(t))
h

β(t + h) dx dt +

∫
I1×D

β(t) − β(t + h)
h

Λ̄(t, x, ū(t)) dx dt

one gets, by passing to the limit, and thanks to the time-extension procedure,

lim inf
∫

I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt

≥

∫ T

0
< ∂tu,Ψ(·, u) > βdt +

∫
I1×D

Λ̄(·, ū)β′dt

≥ lim sup
∫

I1×D

Λ̄(t, x, ū(t)) − Λ̄(t + h, x, ū(t))
h

β(t + h) dx dt

Note that∫
I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt

= −

∫
I1×D

1
h

∫ t

t−h
∂tΛ̄(s, x, ū(t))β(t − h)ds dx dt.
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Since, |∂tΛ̄(s, x, ū(t))β(t−h)| ≤ ‖β‖∞|ū(t, x)−a|h(s, x) is an integrable function, the properties
of the point of Lebesgue (steklov average) yields∫

I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt →−
∫

I1×D
∂tΛ̄(t, x, ū(t))β(t) dx dt

= −

∫
Q
∂tΛ(t, x, u(t))β(t) dx dt.

Since the same holds for lim sup
∫

I1×D

Λ̄(t, x, ū(t)) − Λ̄(t + h, x, ū(t))
h

β(t + h) dx dt, and if β is

regular and non negative, one gets that, for all β ∈ D+([0,T ]),

∫ T

0
< ∂tu,Ψ(·, u) > βdt =

∫
D

Λ(T, x, u(T ))β(T )dx −
∫

D
Λ(0, x, u0)β(0)dx

−

∫
Q

Λ(·, u)β′dt −
∫

Q
∂tΛ(t, x, u(t))β(t) dx dt.

Since β is involved in linear integral terms, a classical argument of regularisation yields
the result for any non-negative elements of W1,∞(0,T ), then for any elements of W1,∞(0,T ).

Since T is arbitrary, the result holds for any t and s = 0, then for any t and s by subtracting
the integral from 0 to s to the one from 0 to t. �

A priori, following Lemma’s 5 notations, one should denote by Ψ(t, x, λ) = −(g− −
1
ε
[λ−]q̃−1)− and Λ(t, x, λ) =

∫ λ

0 Ψ(t, x, σ)dσ. For that, we need Ψ(t, x, u) to be a test-function.
Since x 7→ [x−]q̃−1 is not a priori a Lipschitz-continuous function (e.g. if p < 23), therefore,
for any positive k, we will denote by

ηk(x) = (q̃ − 1)
∫ x+

0 min(k, sq̃−2)ds, Ψk(t, x, λ) = −(g− − 1
ε
ηk(λ−))− and Λk(t, x, λ) =∫ λ

0 Ψk(t, x, σ)dσ. Note that Ψk(t, x, 0) = 0 and ∂tΨk(t, x, λ) = ∂tg
−1{g−− 1

ε ηk(λ−)<0} so that, since
Ψk(t, x, u) is a test-function, by Lemma 5, for any t,

−

∫ t

0

∫
D
∂tΛk(s, x, uε − ψ)dxds +

∫
D

Λk(t, x, uε(t) − ψ(t))dx −
∫

D
Λk(0, x, uε(0) − ψ(0))dx

−

∫ t

0
〈A(uε) − A(ψ), (g− −

1
ε
ηk[(uε − ψ)−])−〉ds −

∫
Q

zε(g− −
1
ε
ηk[(uε − ψ)−])−dxds

= −

∫ t

0
〈g+, (g− −

1
ε
ηk[(uε − ψ)−])−〉ds ≤ 0.

Remark 4. Note that the perturbation of the operator will play a main role in the study of the

3q̃ = min(2, p)
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principal term. Indeed, denote by E the set {g− − 1
ε
ηk[(uε − ψ)−] < 0}

−

∫ T

0
〈A(uε) − A(ψ), (g− −

1
ε
ηk[(uε − ψ)−])−〉dt

=

∫
Q

1E

[
ã(t, x, uε,∇uε) − ã(t, x, ψ,∇ψ)

]
∇[g− −

1
ε
ηk[(uε − ψ)−]] dx dt

=

∫
Q

1E

[
ã(t, x, ψ,∇uε) − ã(t, x, ψ,∇ψ)

]
∇[g− −

1
ε
ηk[(uε − ψ)−]] dx dt,

therefore,

−

∫ T

0
〈A(uε) − A(ψ), (g− −

1
ε
ηk[(uε − ψ)−])−〉dt

≥ −

∫
Q

∣∣∣∣ã(t, x, ψ,∇uε) − ã(t, x, ψ,∇ψ)
∣∣∣∣|∇g−|1{uε<ψ} dx dt.

We prove that the last term goes to zero and by analysing the other terms, we obtain Lewy-
Stampacchia inequality with regular data.

Finally, we present remark concerning the uniqueness of the solution.
Remark 5. Note that the pseudomonotone assumption of the operator doesn’t ensure the
uniqueness of the solution. Observe that under additional assumptions on the operator a,
namely a local Lipschitz continuity with respect to the third variable, standard arguments
allow one to prove the uniqueness of the solution obtained in Theorem 1.
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