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SPARSE POLYNOMIAL SURROGATES FOR
UNCERTAINTY QUANTIFICATION IN
COMPUTATIONAL FLUID DYNAMICS

Éric Savin

Abstract. This paper is concerned with the construction of polynomial surrogates of
complex models typically arising in computational fluid dynamics for the purpose of
propagating uncertainties pertaining to geometrical and/or operational parameters. Poly-
nomial chaos expansions are considered and different techniques for the intrusive and non
intrusive reconstruction of the polynomial expansion coefficients are outlined. A sparsity-
based reconstruction approach is more particularly emphasized since it benefits from the
"sparsity-of-effects" trend commonly observed on global quantities of interest such as the
aerodynamic coefficients of a profile.
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§1. Introduction

The polynomial chaos or Wiener-Hermite expansion consists in the decomposition of a second-
order random variable in a series of multivariate Hermite polynomials in a countable sequence
of independent Gaussian random variables [3, 22]. Specifically, truncations of such an ex-
pansion are considered as approximations of random vectors, tensors or fields for the purpose
of quantifying uncertainties in complex models. They have been intensively used in recent
years in computational methods for solving ordinary or partial differential equations with
poorly known, indeed random data or parameterized by Gaussian random parameters. As
the solutions of these equations are stochastic processes indexed by spatial and/or time co-
ordinates, which are typically second-order random fields from physical considerations (they
have finite energy), polynomial chaos expansions are used to approximate them along the
stochastic dimension. Mean-square convergence is guaranteed by the Cameron-Martin the-
orem [3] and is optimal (i.e. exponential) for Gaussian probability measures. For random
fields parameterized by non Gaussian, arbitrary random variables the numerical study in [24]
has shown that the convergence rates of Hermite polynomial chaos are not optimal. This
observation has prompted the development of generalized polynomial chaos expansions in-
volving other families of polynomials which are orthogonal with respect to the probability
measures of the random parameters [9, 24]. Optimal convergence rates can be achieved once
this substitution has been done.

The earlier approach of using polynomial chaos to numerically solve differential equa-
tions proposed truncated expansions as trial functions in a Galerkin formulation, resulting



276 Éric Savin

in the spectral stochastic finite element method, or stochastic Galerkin method [20] sub-
sequently developed in [10, 13]. More precisely, the chaos expansions of the sought so-
lutions are substituted in the model equations, which in turn yield evolution equations for
their expansion coefficients from Galerkin projections using the orthogonal polynomials as
test functions. The stochastic Galerkin method is intrusive in that it may require significant
alterations of the existing deterministic codes utilized for solving the differential equations
of interest. Generally it also yields coupled equations for the expansion coefficients. This
situation has prompted the development of non intrusive approaches, which require only
repetitive executions of existing deterministic codes. Stochastic collocation and regression
methods [2, 14, 23] have become widely popular in computational fluid dynamics (CFD),
for the applicability and precision of these uncertainty quantification techniques is not af-
fected by the complexity and high nonlinearity of the existing flow solvers so long as they
achieve a reasonable accuracy. Complex aerodynamic analysis and design of aircraft make
use of such high-fidelity CFD tools for shape optimization for example, whereby some ro-
bustness is achieved by considering uncertain operational, environmental, or manufacturing
parameters represented by random variables.

Both the intrusive and non intrusive approaches yield polynomial representations of the
solution processes, known as surrogate models or response surfaces in the space of random
parameters. They approximate the original stochastic processes solving the differential equa-
tions of interest accurately (in the mean-square sense), while being many orders faster to
evaluate. One can thus consider these surrogates to compute the probability measures, mo-
ments, and/or sensitivities of the solutions or output quantities of interest related to them
such as integrals, supremum norms, etc. The robust and most popular way to quantify un-
certainties is Monte-Carlo estimation, but it may become intractable for complex models in
which a simulation for one single value of the parameters may take several hours or days
and a large number of model outputs have to be evaluated. Polynomial chaos is essentially a
spectral representation in the random space, which typically exhibits fast convergence when
the expended processes depend smoothly on the random parameters. Exponentially fast con-
vergence can even be achieved under certain circumstances [24]. This rest of the paper is
organized as follows. In section 2 we formulate our problem and introduce the probabilistic
framework, focusing on the polynomial chaos expansion methodology. The actual methods
for computing the polynomial chaos expansion coefficients are outlined in section 3. Here
we also briefly review how these polynomial surrogates are used for uncertainty quantifica-
tion. In the last section 4 we discuss the different approaches for their implementation in
computational fluid dynamics with applications in aerodynamics and aeroelasticity, where
complex configurations have been considered in recent works. We more particularly stress
the "sparsity-of-effects" trend observed there that favors regression techniques benefitting
from the sparsity of the output quantities of interest, such as compressed sensing.

§2. Problem setup

2.1. Model equations
Let D ⊂ R3 be a fixed domain with a boundary ∂D and x ∈ D the physical coordinates. Let
(Ω,A,P) be a probability space where Ω is the abstract set of elementary events, A is a σ-
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algebra of subsets of Ω, and P is a probability measure onA. Our aim is to approximate the
random field u(x;ξξξ) : D×Γ→ Rm satisfying the parameterized partial differential equations:

L(x, ξξξ; u) = 0 in D ,

B(x, ξξξ; u) = 0 on ∂D ,
(2.1)

where L is a linear or non linear differential operator and B is a boundary operator. Here
ξξξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξd(ω)) : Ω→ Γ ⊆ Rd is a vector of d random parameters defined on
(Ω,A,P) with probability distribution PΞΞΞ, of which components ξ1, ξ2, . . . , ξd are mutually
independent random variables with values in subsets of R, Γ1,Γ2, . . .Γd respectively. We
consider without loss of generality that the random field u has scalar values, i.e. m = 1. In
practice one may also be interested in quantities:

y = F(u(·;ξξξ)) , (2.2)

that are functions of the solution u of the boundary value problem (2.1), in addition to the
solution itself. In CFD for instance, u may be the pressure field satisfying the compressible
Navier-Stokes equations about a fixed profile, and y may be the aerodynamic forces (e.g.
drag, lift) exerted by the flow on that profile. In this latter case, the differential operator L
may also depend on time t, and the boundary value problem (2.1) needs be supplemented with
initial conditions. We do not consider that more general situation in the following discussion,
for its main features basically extend to time-dependent problems.

2.2. Probabilistic framework
The vector of random parameters ξξξ is representative of variable geometrical characteristics,
boundary conditions, loads, physical or mechanical properties, or combinations of them. It
can be discrete, continuous, or a combination of both. In the continuous case, it is understood
that its probability distribution PΞΞΞ admits a probability density function ξξξ 7→ WΞΞΞ(ξξξ) with
values in R+ = [0,+∞[ such that PΞΞΞ(B) =

∫
B WΞΞΞ(ξξξ)dξξξ for any subset B of Rd. In addition,

PΞΞΞ(dξξξ) = P1(dξ1)×P2(dξ2)×· · ·×Pd(dξd) owing to the assumption of mutual independence.
In the present setting, it is further assumed that the random parameters are exponentially
integrable, that is there exists β > 0 such that:

E{eβ‖ξξξ‖} =

∫
Rd

eβ‖ξξξ‖PΞΞΞ(dξξξ) < +∞ , (2.3)

where ‖ξξξ‖ = (
∑d

n=1 ξ
2
n)

1
2 is the usual Euclidean norm in Rd, and E{·} is mathematical expecta-

tion. Together with mutual independence, it ensures that each random variable ξn possesses
finite moments of all orders, that is E{|ξn|

k} =
∫
R
|ξ|k Pn(dξ) < +∞ for all k ∈ N. This uniquely

defines a sequence of univariate orthonormal polynomials {ψ(n)
j } j∈N associated with the prob-

ability measure Pn for all 1 ≤ n ≤ d, and a sequence of multivariate orthonormal polynomials
{ψj}j∈Nd associated with the probability measure PΞΞΞ given by:

ψj(ξξξ) =

d∏
n=1

ψ(n)
jn

(ξn) , j = ( j1, j2, . . . , jd) ∈ Nd , (2.4)
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such that {ψj(ξξξ)}j∈Nd constitutes an orthonormal sequence of random variables in the space
L2(Ω,σ(ξξξ),P) of second-order random variables defined on the probability space endowed
with the σ-algebra σ(ξξξ) generated by the random parameters ξξξ; see [9, Theorem 3.6]. Alter-
natively, the polynomial set {ψj}j∈Nd constitutes an orthonormal basis of the functional space
L2(Rd, σB(Rd),PΞΞΞ(dξξξ)) of square-integrable functions with respect to PΞΞΞ, where σB(Rd) is
the Borel σ-algebra on Rd.

Consequently, any random variable u in L2(Ω,σ(ξξξ),P) can be expanded in a series of
multivariate orthonormal polynomials in the random parameters ξξξ as:

u =
∑
j∈Nd

ujψj(ξξξ) , uj = E{uψj(ξξξ)} =

∫
Rd

uψj(ξξξ)PΞΞΞ(dξξξ) . (2.5)

This is the so-called generalized polynomial chaos expansion. Likewise, the random field
x 7→ u(x;ξξξ) satisfying (2.1) has finite energy from physical considerations, so it belongs to
L2(Rd, σB(Rd),PΞΞΞ(dξξξ)) and can be expanded as:

u(x;ξξξ) =
∑
j∈Nd

uj(x)ψj(ξξξ) , uj(x) = E{u(x;ξξξ)ψj(ξξξ)} =

∫
Rd

u(x;ξξξ)ψj(ξξξ)PΞΞΞ(dξξξ) . (2.6)

In practical numerical applications the foregoing expansions are truncated up to a total order
p such that |j| = j1 + j2 + · · · + jd ≤ p. Denoting by Pp[·] the orthogonal projection onto
the space of d-variate polynomials of total degree p in ξ1, ξ2, . . . , ξd, say V p

d , we seek for an
approximate solution Pp[u] of (2.1) in V p

d as:

u(x;ξξξ) ' Pp[u](x;ξξξ) =
∑
|j|≤p

uj(x)ψj(ξξξ) =

P−1∑
j=0

u j(x)ψ j(ξξξ) , P =

(
p + d

d

)
, (2.7)

by reordering the P multi-indices j such that |j| ≤ p. From [9, Theorem 2.2], the sequence
Pp[u] converges to u in the mean-square sense in L2(Ω,σ(ξξξ),P) as p → +∞ provided that
the condition (2.3) is fulfilled.

Now the deterministic functional coefficients x 7→ u j(x) in the truncated series remain
unknown since the random field u is unknown. Collocational or weighted versions of (2.1)
together with the above approximation are considered in order to determine them.

§3. Construction of the polynomial chaos expansion

The different methods considered for computing the polynomial expansion coefficients are
quoted as intrusive or non intrusive in the mechanical engineering literature. The stochastic
Galerkin method is intrusive in that it may require significant alterations of the existing deter-
ministic codes utilized for solving numerically the boundary value problem (2.1). Generally it
also yields coupled equations for the expansion coefficients of its solution. Hence new codes
need be developed to handle the larger and coupled systems of equations arising from the
Galerkin formulation. The stochastic collocation and regression methods are non intrusive in
that they require only repetitive executions of the existing deterministic codes for carefully
selected parameter sets. They are the preferred methodologies in CFD, for their applicability
is not affected by the complexity and high nonlinearity of the existing flow solvers.
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3.1. Stochastic Galerkin method
Similarly to the weak formulation of deterministic problems, on can form the weak form of
(2.1) and seek an approximate solution up ∈ V p

d such that:

E{L(x, ξξξ; up)v(ξξξ)} = 0 ∀v(ξξξ) ∈ V p
d , x ∈ D ,

E{B(x, ξξξ; up)v(ξξξ)} = 0 ∀v(ξξξ) ∈ V p
d , x ∈ ∂D .

(3.1)

The resulting system becomes a deterministic one in the physical domain D for the func-
tional coefficients u j(x), and may be solved by standard discretization techniques e.g. finite
elements, finite volumes, finite differences, boundary elements, etc.; see [13] and references
therein for an extensive presentation of this method.

3.2. Stochastic collocation method
Alternatively, one may seek an approximate solution formed by interpolation between solu-
tions of (2.1) for Q particular choices of the random parameters ξξξ, namely the sampling set
{ξξξl}1≤l≤Q of so-called nodes, such that:

L(x, ξξξl; u(x;ξξξl)) = 0 ∀l = 1, 2, . . . ,Q , x ∈ D ,

B(x, ξξξl; u(x;ξξξl)) = 0 ∀l = 1, 2, . . . ,Q , x ∈ ∂D .
(3.2)

Then the approximate solution IQ[u] to (2.1) reads as the Lagrange interpolation [14, 23]:

u(x;ξξξ) ' IQ[u](x;ξξξ) =

Q∑
l=1

u(x;ξξξl)Ll(ξξξ) , (3.3)

where {Ll}1≤l≤Q is the set of d-variate Lagrange polynomials based on the nodes {ξξξl}1≤l≤Q

chosen so that uniqueness of the interpolation is ensured.

3.2.1. Link with polynomial chaos

Choosing the nodes within a quadrature rule ΘΘΘ(d,Q) = {ξξξl, wl}1≤l≤Q tailored such that
∑Q

l=1 w
l f (ξξξl)

is a good approximation of the d-dimensional integral
∫
Rd f (ξξξ)PΞΞΞ(dξξξ) = E{ f (ξξξ)} for suf-

ficiently smooth functions f , the collocation approach may be considered to compute an
approximate solution Pp

Q[u] defined by:

P
p
Q[u](x;ξξξ) =

P−1∑
j=0

 Q∑
l=1

wlu(x;ξξξl)ψ j(ξξξl)

ψ j(ξξξ) =

Q∑
l=1

u(x;ξξξl)

wl
P∑

j=0

ψ j(ξξξl)ψ j(ξξξ)


=

Q∑
l=1

u(x;ξξξl)L̃l(ξξξ)

(3.4)

in view of (2.7); that is, the quadrature set ΘΘΘ(d,Q) is used to evaluate the coefficients u j(x)
in (2.7). Provided that the quadrature rule ΘΘΘ(d,Q) integrates exactly all d-variate polyno-
mials of total order 2p and Ll ∈ V p

d , one has L̃l ≡ Ll owing to the orthonormalization of the
polynomials {ψ j}0≤ j≤P−1 which are such that E{ψ j(ξξξ)ψk(ξξξ)} = δ jk, the Kronecker symbol.
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3.2.2. Choices of nodal set

The key issue of stochastic collocation is the selection of appropriate sampling sets. A
straightforward choice is quadrature nodes and weights as in (3.4). Multi-dimensional quadra-
ture sets ΘΘΘ(d,Q) = {ξξξl, wl}1≤l≤Q, where ξξξl is the l-th node in Γ =

∏d
n=1 Γn and wl is the corre-

sponding weight, may be constructed from one-dimensional (univariate) quadrature sets by
full tensorization or sparse tensorization, following Smolyak’s algorithm [18].

Univariate Gauss quadratures Θ(1, q1) based on q1 integration points are tailored to inte-
grate a smooth function ξ 7→ f (ξ) on Γ1 ≡ [a, b] by:∫

Γ1

f (ξ)WΞ(ξ)dξ '
q1−r∑
l=1

wl f (ξl) +

r∑
m=1

wq1−r+m f (ξq1−r+m) , (3.5)

such that this rule turns to be exact for univariate polynomials up to the order 2q1 − 1 − r.
Here r is the number of fixed nodes of the rule, typically the bounds a, b. Depending on the
choice of r, different terminologies are used:
• r = 0 is the classical Gauss rule;

• r = 1 is the Gauss-Radau rule, choosing ξq1 = a or ξq1 = b for instance;

• r = 2 is the Gauss-Lobatto (GL) rule, choosing ξq1−1 = a and ξq1 = b for instance.
Multivariate quadratures may subsequently be obtained by full or sparse tensorization of these
one-dimensional rules. Firstly, a fully tensorized grid is obtained by the product rule:

ΘΘΘ(d,Q) =

d⊗
n=1

Θ(1, qn) , (3.6)

which contains Q =
∏d

n=1 qn grid points in Γ. Secondly, a sparse quadrature rule can be de-
rived thank to the Smolyak algorithm [18]. The so-called k-th level, d-dimensional Smolyak
sparse rule Θ̂ΘΘ(d, k) is obtained by the following linear combination of product formulas:

Θ̂ΘΘ(d, k) =
∑

k+1≤q1+···+qd≤k+d

Θ(1, q1) ⊗ · · · ⊗ Θ(1, qd) . (3.7)

Clearly, the above sparse grid is a subset of the full tensor product grids. It typically contains
Q ∼ (2d)k/k! nodes in Γ whenever d � 1 and k is fixed. By a direct extension of the argu-
ments divised in [15], it can be shown that provided the univariate quadrature rules Θ(1, q)
are exact for all univariate polynomials of order up to 2q − 1 (Gauss rules) or 2q − 3 (GL
rules), the foregoing rule is exact for all d-variate polynomials of total order up to 2k − 1 or
2k−3, respectively. In [17] it has been observed that sparse quadratures outperform tensorized
quadratures with non-nested underlying one-dimensional rules whenever d ≥ 4, though. If
Θ(1, qi) is now Clenshaw-Curtis univariate quadrature of i-th level for i > 1, such that:

ξl = − cos
(l − 1)π
qi − 1

, 1 ≤ l ≤ qi = 2i−1 + 1 ,

then Θ(1, qi) ⊂ Θ(1, qi+1), that is the univariate Clenshaw-Curtis rules Θ(1, qi) are nested.
Consequently the multivariate rules are nested as well, Θ̂ΘΘ(d, k) ⊂ Θ̂ΘΘ(d, k + 1). The total num-
ber of nodes is significantly reduced compared to non nested rules. Nested Clenshaw-Curtis
rules are however exact at least for all multivariate polynomials of total order k [1].
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3.3. Regression methods
In regression approaches, the P expansion coefficients in (2.7) are determined on the basis of
a set of observations {u(·;ξξξl}1≤l≤Q, obtained by computations or measurements, of the random
variable or field u for some particular choices of the random parameters ξξξ, again the sampling
set {ξξξl}1≤l≤Q. They consist in solving a weighted least-squares minimization problem:

U ' U? = arg min
V∈RP

1
2

(y −ΦΦΦV)T W (y −ΦΦΦV) , (3.8)

where y = (u(·;ξξξ1), u(·;ξξξ2), . . . , u(·;ξξξQ))T is the vector of observations, [ΦΦΦ]l j = ψ j(ξξξl) is the
so-called Q×P measurement matrix, W is a Q×Q weighting matrix, and U = (u0, u1, . . . , uP−1)T

is the sought vector of coefficients. This is the approach retained in e.g. [2], for which numer-
ous methods are available to solve this optimization problem whenever Q ≥ P. Alternatively,
one may consider the situation whereby Q < P and more particularly Q � P, that is, un-
derdetermined systems. This can be achieved thanks to some recent results pertaining to the
resolution of under-sampled linear systems promoting sparsity of the sought solution, known
as compressed sensing or compressive sampling [4, 8]. A review of the application of this
approach to generalized polynomial chaos expansions is proposed in [11]; see also [12, 17]
for applications in aerodynamics and aeroelasticity. The compressed sensing approach con-
sists in reformulating the least-squares minimization problem (3.8) as a convex minimization
problem with some sparsity constraint, namely:

U ' U? = arg min
V∈RP

{
‖V‖1 ; ‖y −ΦΦΦV‖2 ≤ ε

}
, (3.9)

for some tolerance 0 ≤ ε � 1 on the polynomial chaos truncation (2.7). Here the `m-norm
is ‖a‖m = (

∑P−1
j=0

∣∣∣a j

∣∣∣m)
1
m for m > 0, and ‖a‖0 = #{ j; a j , 0} otherwise. Sparsity means that

only a small fraction of the sought coefficients U are non negligible. The latter problem is
known as basis pursuit denoising [6]. It is uniquely solvable thanks to some ad hoc mixing
properties of the measurement matrix ΦΦΦ.

One of them is the restricted isometry property (RIP) or uniform uncertainty principle.
For each integer S ∈ N∗, the isometry constant δS of ΦΦΦ is defined as the smallest number
such that:

(1 − δS ) ‖US ‖
2
2 ≤ ‖ΦΦΦUS ‖

2
2 ≤ (1 + δS ) ‖US ‖

2
2

for all S -sparse vectors US ∈ {V ∈ RP; ‖V‖0 ≤ S }. Then ΦΦΦ is said to satisfy the RIP of
order S if, say, δS is not too close to 1. This property amounts to saying that all S -column
submatrices of ΦΦΦ are numerically well-conditioned, or S (or less) columns selected arbitrarily
in ΦΦΦ are nearly orthogonal. Consequently, they form a near isometry so that ΦΦΦ approximately
preserves the Euclidean norm of S -sparse vectors. The following theorem by Candès et
al. [4, 5] then states that (3.9) can be solved efficiently:

Theorem 1. Assume δ2S <
√

2 − 1. Then the solution U? to (3.9) satisfies:∥∥∥U? − U
∥∥∥

2 ≤ C0
‖US − U‖1
√

S
+ C1ε

for some C0,C1 > 0 depending only on δ2S . Here US is U with all but the S largest entries
set to zero.
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This result calls for several comments. First, the coefficients U are actually nearly sparse,
rather than strictly sparse, in the sense that only a small fraction of them contribute signifi-
cantly to the output statistics while the others are not strictly null. Opportunely, the foregoing
theorem deals with all signals and not only the S -sparse ones. In addition, it also allows
noiseless recovery if ε = 0. Second, it is deterministic and does not involve any probabil-
ity for a successful recovery. Lastly, the `1-minimization strategy is non adapted because
it identifies the sparsity pattern, that is the order (location) of the negligible coefficients in
the polynomial chaos basis, and the leading coefficients at the same time. The algorithm
can therefore efficiently capture the relevant information of a sparse vector without trying to
comprehend that vector [5]. This is clearly a much desirable feature for practical industrial
applications. Additionally, the RIP prompts the use of unstructured observation sets {ξξξl}1≤l≤Q,
typically selected randomly, for an efficient recovery by basis pursuit. Structured sets may
also be considered, though, as proposed in [21].

3.4. Application to uncertainty quantification
Once the polynomial expansion (2.7) has been derived, the first moments and/or cumulants
of the random field u can be computed with this expansion. Owing to the orthonormality of
the polynomials, the mean and variance for example are:

µ(x) = E{u(x;ξξξ)} = u0(x) , σ2(x) = E{(u(x;ξξξ) − µ(x))2} =

P−1∑
j=1

u2
j (x) .

Sensitivity indices may be computed alike [19]. They quantify the fraction of variance of
the solution u which can be related to the variation of each random parameter. Denoting by
Jn the set of indices corresponding to the polynomials depending only on the n-th variable
parameter ξn, the main-effect Sobol’ indices are given by:

Sn(x) =
VarE{u(x;ξξξ)|ξn}

Var u(x;ξξξ)
=

1
σ2(x)

∑
j∈Jn

u2
j (x) . (3.10)

More generally, if Jn1n2...ns is the set of indices corresponding to the polynomials depending
only on the parameters ξn1 , ξn2 , . . . ξns , the s-fold joint sensitivity indices are:

Sn1n2...ns (x) =
VarE{u(x;ξξξ)|ξn1 , ξn2 , . . . ξns }

Var u(x;ξξξ)
=

1
σ2(x)

∑
j∈Jn1n2 ...ns

u2
j (x) .

§4. Discussion

Because of the high complexity of fluid flow solvers, non intrusive uncertainty quantification
techniques have been primarily developed in aerodynamic and aeroelastic simulations. They
are used to compute the sensitivities of output quantities of interest that are required to eval-
uate the objective function of an optimization process, for example. Polynomial surrogate
models have commonly been considered in this respect. In most applications the polyno-
mial expansion coefficients are evaluated by Gauss quadratures (see section 3.2.2). However
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this approach becomes computationally very demanding for parametric spaces of high dimen-
sions, even if sparse rules are utilized: this is the so-called curse of dimensionality. Observing
that the output quantities of interest of complex systems depend only weekly on the multiple
cross-interactions between the variable inputs, one may argue that only low-order polynomi-
als significantly contribute to their surrogates. This feature favors reconstruction techniques
benefiting from such a sparse structure, as compressed sensing (see section 3.3). It should be
noted that the "sparsity-of-effects" principle invoked here has already been outlined in [16]. It
may be established rigorously for parameterized, possibly non linear elliptic-parabolic equa-
tions in the framework analyzed in [7]. The results obtained with aerodynamic and aeroelastic
simulations involving complex fluid flows solved by Reynolds-averaged Navier-Stokes equa-
tions (RANS) with turbulence transport closure models corroborate to a large extend this
expected trend. Such examples are described in [17] for the case of a two-dimensional rigid
profile with random Mach number, angle-of-attack, and thickness-to-chord ratio; and in [12]
for the case of a three-dimensional flexible wing-fuselage configuration with random Mach
number, lift force, and wing structural stiffness. Efficient non-adapted polynomial recon-
structions with sampling sets orders of magnitude smaller than the ones required by the usual
techniques are achieved. The (global) quantities of interest considered in these applications
are typically the drag force and pitching moment of the profiles, which integrate the (local)
pressure fields along them.
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