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Abstract. In this paper, we introduce the terminology of matroids into the study of
Zariski-pairs related to rational elliptic surfaces, aiming to simplify the presentation and
arguments involved. As an application, we provide new examples of Zariski N-ples of
relatively low degree. Namely we show that a Zariski 102-ple of degree 18 exists.
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§1. Introduction

In this paper, we study the embedded topology of plane curves. We are interested in the
following situation. Let C1,C2 ⊂ P

2 be plane curves. Then (P2,C1) and (P2,C2) form a
Zariski-pair if the following conditions are satisfied

1. There exist tubular neighborhoods T (Ci) of Ci (i = 1, 2) such that the pairs (T (C1),C1)
and (T (C2),C2) are homeomorphic as pairs.

2. The pairs (P2,C1) and (P2,C2) are not homeomorphic as pairs.

The notion of a Zariski-pair was first defined in [1] by E. Artal–Bartolo and has been an
object of interest to many mathematicians. The key in studying Zariski pairs is finding a
suitable method to distinguish the curves. Many invariants have been used, such as the fun-
damental groups of the complements π1(P2 \ Ci), the Alexander polynomials ∆Ci (t) and the
existence/non-existence of certain Galois covers branched along Ci (see [2] for a survey on
these topics). More recently, newer types of invariants such as “linking invariants" and “split-
ting invariants" have been developed in studying reducible plane curves ([3, 7, 12]). How-
ever, as the number of irreducible components of Ci increases, these invariants become more
increasingly complex, and it becomes hard to grasp the situation clearly. Hence, we are espe-
cially interested in formulating a method in order to present the differences in the curves and
the classification comprehensively.

An attempt at this was done in [5],[4] where the second author together with colleagues
considered invariants of subsets of the set of irreducible components. This approach proved
to be effective and was able to produce new examples of Zariski pairs. However the examples
produced were relatively simple, maybe too simple, to appreciate the usefulness of the ap-
proach fully. In this paper, we introduce the terminology of matroids into our setting in order
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to make the results more accessible to a wider audience and also to present more complex
examples to demonstrate the usefulness of considering subarrangements more fully.

We introduce some notation to explain the kind of arrangements that we will study. Let
Q be a smooth quartic curve and zo ∈ Q be a general point of Q. It is known that a rational
elliptic surface S Q,z0 can be associated to Q and zo as follows (see [14, 5] for details): Let
f̃Q : S̃ Q → P

2 be the double cover of P2 branched along Q, and let µ : S Q → S̃ Q be the
canonical resolution of singularities. Also, let Λzo be the pencil of lines through zo. Then the
inverse image Λzo of Λzo in S Q gives rise to a pencil of curves with genus 1. Next, the base
points of Λzo can be resolved by two consecutive blow-ups, whose composition is denoted by
νzo : S Q,zo → S Q. The morphism φzo : S Q,zo → P

1 induced by Λzo gives a genus 1 fibration,
and the exceptional divisor of the second blow-up in µzo gives a section denote by O. Hence,
we have an elliptic surface φzo : S Q,zo → P

1 associated to Q and zo. Note that the covering
transformation of Ŝ Q induces an involution on S Q,zo which we will denote by σ.

Ŝ Q
µ

←−−−−−− S Q
νzo

←−−−−−− S Q,zo

f̂Q

y y f Q

yφzo

P2 ←−−−−−−
q

P2 P1

We denote the set of sections of φzo by MW(S Q,zo ). The sections will be identified with
their images and considered as curves on S Q,zo . It is known that MW(S Q,zo ) can be endowed
with an abelian group structure with a pairing 〈, 〉 : MW(S Q,zo )→ Q called the height pairing
(see [10]). When considering the height pairing, MW(S Q,zo ) is called the Mordell-Weil lattice
of S Q,zo .

Let f = f̂Q ◦ µ ◦ νzo . For a section s ∈ MW(S Q,zo ), let Cs = f (s), the image of s under f .
The curve Cs is a rational curve in P2 whose local intersection numbers with Q become even.
Such curves are called contact curves of Q. Note that f (s) = f (−s) where −s is the negative
of s with respect to the group structure of MW(S Q,zo ). The curves C that we will study are
reducible curves of the form

C = Q + Cs1 + · · · + Csr

for some choice of s1, . . . , sr ∈ MW(S Q,zo ). The additional data related to MW(S Q,zo ) allows
us to distinguish the curves.

Assume for simplicity that MW(S Q,zo ) is torsion free. Let Ei = {si
1, . . . , s

i
r} ⊂ MW(S Q,zo )

(i = 1, 2) be subsets of MW(S Q,zo ) such that Csi
j
, Csi

k
for j , k. We will consider the

matroid structure on E1, E2 induced by the linear dependence relations in MW(S Q,zo ) ⊗ Q.
Let Ci = Q + Csi

1
+ · · · + Csi

r
(i = 1, 2).

Theorem 1. Under the above settings, if MW(S Q,zo ) is torsion free and E1, E2 have distinct
matroid structures, then there exist no homeomorphisms h : P2 → P2 with h(C1) = C2 and
h(Q) = Q.

Moreover, if h(C1) = C2 implies h(Q) = Q necessarily and the combinatorics of C1,C2
are the same, then (P2,C1) and (P2,C2) form a Zariski-pair.

Theorem 1 allows us to distinguish Zariski pairs and Zariski N-ples by simply calculating
the matroid structures of the subsets of MW(S Q,zo ). However, to actually construct Zariski
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pairs, we need to choose the subsets {si
1, . . . , s

i
r} so that they have the same combinatorics,

which is a somewhat delicate matter. Fortunately, we were able to use classical results on
smooth quartics and bitangent lines, which can be found in [6], to overcome this difficulty.

In the case where Q is a smooth quartic, it is known that MW(S Q,zo ) � E∗7. The E∗7
lattice has 28 pairs of minimal vectors ±l1, . . . ,±l28 of height 3

2 . Furthermore, Li = Cli = C−li
become bitangent lines of Q, and there is a bijection between the set of pairs ±li and the set of
bitangent lines Li. The combinatorics of these bitangent lines are known, as in the following
proposition which will be proved later in Section 4.2.

Proposition 2. For a general smooth quartic Q, its bitangent lines L1, . . . , L28 and a fixed
value r = 1, . . . , 28, the combinatorics of curves of the form

Q + Li1 + · · · + Lir

are the same for any {i1, . . . , ir} ⊂ {1, . . . , 28}. Namely, all Lik are true bitangents, i.e. they
are tangent to Q at two distinct points, and any three of Li1 , . . . , Lir are non-concurrent.

For curves C1, C2 of the form above, it is immediate that h(C1) = C2 implies h(Q) = Q
necessarily. Now, Proposition 2 together with Theorem 1 gives us the following theorem.

Theorem 3. Let Nr be the number of distinct matroid structures on subsets of the form
{li1 , . . . , lir }, where lik is a representative of the pair ±lik . Then there exists a Zariski Nr-ple of
curves having the combinatorics as in Proposition 2.

At present, we have not been able to calculate the exact value of Nr due to a lack of
computer skills of the authors. However, we have a lower bound as follows:

Proposition 4. For r = 1, . . . , 28, the value of Nr is greater than or equal to nr given in the
following table.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14
nr 1 1 1 2 2 4 6 11 19 37 52 80 95 102
r 15 16 17 18 19 20 21 22 23 24 25 26 27 28
nr 100 90 70 54 37 23 16 10 5 3 2 1 1 1

We remark that Zariski-pairs involving smooth quartics and its bitangent lines have al-
ready been studied by E. Artal-Bartolo and J. Vallès. They gave an example of a pair consist-
ing of a smooth quartic and three bitangent lines. The results were privately communicated
to the authors. Also, the second author together with H. Tokunaga and M. Yamamoto have
studied the case of four bitangent lines where a Zariski triple exists. Our approach using
matroids fails to detect these examples but we think that our work is still worthwhile as it
is easy to increase the number of bitangent lines involved and can be applied to non-smooth
quartic curves. It also introduces a new point of view that is possibly relatively easier for a
wider audience to access and hopefully will connect to other research areas.

The organization of this paper is as follows. In Section 2, we review the basic terminology
of matroids and results concerning elliptic surfaces and dihedral covers, which will give the
connection between the matroid structure of sections and the topology of the curves. In
Section 3, we will prove Theorem 1. In Section 4, we will discuss the case where Q is a
smooth quartic and prove Theorem 3 and also give the proof of Proposition 4.
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§2. Preliminaries

2.1. Matroids
As will be seen later, the (in)dependence of elements of MW(S Q,zo ) is deeply related to the
(non)existence of certain Galois covers of P2, hence it is important to understand the structure
of (in)dependence. Here, Matroid Theory provides a nice framework as it was precisely
designed to study generalizations of the notion of linear independence in vector spaces. In
this section we briefly review the basic terminology of matroids. We refer to [9] for more
details.

There are many different cryptomorphic definitions of Matroids. In our paper, we are
interested in the dependence of elements of MW(S Q,zo ), hence we adopt the definition based
on independent sets. Let E be a finite set and 2E be the set of subsets of E.

Definition 1. A matroid structure (or simply a matroid) on E is a pair (E,I), where I ⊂ 2E

satisfies

1. I , ∅. (nontriviality)

2. For any I1, I2 ⊂ E, if I1 ⊂ I2 and I2 ∈ I, then I1 ∈ I. (descending)

3. For every I1, I2 ∈ I, if |I1| < |I2|, then there exists x ∈ I2 − I1 such that I1 ∪ {x} ∈ I.
(augmentation)

Elements of I will be called independent sets and the other subsets will be said to be depen-
dent.

Example 1. Let V be a vector space, and E = {v1, . . . , vr} ⊂ V . Let I = {I ⊂ E |
I is linearly independent}. Then I clearly satisfies the conditions (1), (2), (3) in Definition
1. Hence (E,I) is a matroid structure on E.

Definition 2. Let (E,I) be a matroid. A subset C ⊂ E is called a circuit if C < I and all
proper subsets of C are independent sets. Moreover, C is a minimal dependent set.

Example 2. Let V = R3 and v1 =

 1
0
0

, v2 =

 0
1
0

, v3 =

 0
0
1

 and v4 =

 1
1
1

. Let

E = {v1, v2, v3, v3} and consider the matroid structure induced by linear independence. Then
E itself forms a circuit.

§3. Proof of Theorem 1

In this section, we use the criterion for the existence of dihedral covers given in Section 3.2 to
connect the data of matroids of subsets of MW(S Q,zo ) to the data of the embedded topology
of the curves in P2, and prove Theorem 1.

Let Ei = {si
1, . . . , s

i
r} ⊂ MW(S Q,zo ) (i = 1, 2) be subsets of MW(S Q,zo ) such that Csi

j
, Csi

k

for j , k. Consider the matroid structure (Ei,Ii) on Ei (i = 1, 2) induced by the linear
dependence relation in MW(S Q,zo ) ⊗ Q. Let Ci = Q + Csi

1
+ · · · + Csi

r
(i = 1, 2).

Proposition 5. If there exists a homeomorphism h : P2 → P2 such that h(C1) = C2 and
h(Q) = Q, then (E1,I1) and (E2,I2) are equivalent as matroids.
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Proof. By the assumption that h is a homeomorphism such that h(C1) = C2 and h(Q) = Q,
h induces a bijection {Cs1

1
, . . . ,Cs1

r
} → {Cs2

1
, . . . ,Cs2

r
} which in turn induces a bijection h∗ :

E1 → E2. Let I1 ∈ I1 be an independent set. Then by Lemma 10, there exists only a
finite number of primes such that a D2p cover branched at 2Q + p(

∑
s∈J1

Cs) for some subset
J1 ⊂ I1 exists. Since h is a homeomorphism, the same is true for h∗(I1) which implies that
h∗(I1) ∈ I2, by Lemma 9. The converse is also true so we have I1 ∈ I1 if and only if
h∗(I1) ∈ I2. Therefore (E1,I1) and (E2,I2) are equivalent as matroids. �

The contrapositive of Proposition 5 gives Theorem 1.
Remark 1. The statement of Proposition 5 concerns the matroid structure over Q. However,
from the proof, it is evident that if we consider the matroid structures of the sections in
MW(S ) ⊗ Z/pZ for all p we would be able to distinguish the arrangements in more detail.

Definition 3. Let (E1,I1), (E2,I2) be matroids. The matroids (E1,I1), (E2,I2) are said to
be equivalent as matroids if there exists a bijection ϕ : E1 → E2 such that I1 ∈ I1 if and only
if ϕ(I1) ∈ I2.

3.1. Elliptic surfaces and the Mordell-Weil lattice
In this subsection, we list the basic facts about quartics, rational elliptic surfaces and the
Mordell-Weil lattice. We refer the reader to [10], [8] for more details.

In this paper, an elliptic surface is a smooth projective surface S , with a relatively minimal
genus 1 fibration φ : S → C over a smooth projective curve C having a section O : C → S .
We identify O with its image in S . We also assume that S has at least one singular fiber. Let
Sing(φ) = {v ∈ C | φ−1(v) is singular }. For v ∈ Sing(φ), we put Fv = φ−1(v) and denote its
irreducible decomposition by Fv = Θv,0 +

∑mi−1
i=1 av,iθv,i, where mv,i is the number of irreducible

components and Θv,0 is the unique irreducible component with Θv,0.O = 1. The subset of
Sing(φ) that corresponds to reducible singular fibers will be denoted by R. Let MW(S ) be the
set of sections of φ : S → C.

The set MW(S ) can be endowed with a group structure as follows. Let ES be the generic
fiber of φ and C(C) be the function field of C. It is known that there is a bijection between
C(C) rational points ES (C(C)) of ES and MW(S ). Furthermore, since we have O ∈ MW(S ),
(E(S ),O) can be considered as an elliptic curve over C(C) and has a group structure where O
acts as the identity element.

Furthermore, under these circumstances, MW(S ) becomes a finitely generated abelian
group with a pairing 〈, 〉 : MW(S )→ Q called the height pairing ([10]). The explicit formula
to calculate the pairing for s1, s2 ∈ MW(S ) is given by

〈s1, s2〉 = χ(S ) + s1.O + s2.O − s1.s2 −
∑
v∈R

contrv(s1, s2).

The formulas for calculating contrv(s1, s2) can be found in [10]. In the following we will only
need the values of contrv(s1, s2) for singular fibers of type I2 of the form Fv = Θv,0 + Θv,1. In
this case we have

contrv(s1, s2) =

1/2 (s1.Θv,1 = s2.Θv,1 = 1)
0 otherwise

.
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3.2. Criterion for existence of dihedral covers
Let D2n be the dihedral group of order 2n. We present a criterion for the existence of certain
dihedral covers of P2 in terms of MW(S ). The existence/non-existence of the dihedral covers
will enable us to distinguish the topology of the curves.

Let Q be a quartic plane curve, zo ∈ Q be a general point of Q, s1, . . . , sr ∈ MW(S Q,zo ) be
sections such that Csi , Cs j , where Csi = f (si) as in the Introduction.

Theorem 6 ([5, Corollary 4]). Let p be an odd prime. Under the above setting, there exists
a D2p-cover of P2 branched at 2Q + p(Cs1 + · · · + Csr ) if and only if there exists integers
ai ∈ {1, . . . , p − 1} for i = 1, . . . r such that

∑r
i=1 aisi ∈ p MW(S ).

Corollary 7. If there exists a D2p cover branched at 2Q + p(Cs1 + · · ·+ Csr ), then the images
of s1, . . . , sr in MW(S ) ⊗ Z/pZ become linearly dependent.

Note that the converse of Corollary 7 is not true, as it is necessary for the images of
s1, . . . , sr to have a linear dependence relation where all coefficients are non-zero for there
to exist a dihedral cover. If there does not exist such linear dependence relation, the branch
locus will not be the whole of 2Q + p(Cs1 + · · · + Csr ). To exclude such cases, the notion of
circuits is useful.

Corollary 8. If the images of s1, . . . , sr in MW(S )⊗Z/pZ forms a circuit, then there exists a
D2p-cover branched at 2Q + p(Cs1 + · · · + Csr ).

If s1, . . . , sr form a circuit over Q, then their images in MW(S ) ⊗ Z/pZ form a circuit for
infinitely many prime numbers p. Hence we have:

Lemma 9. If s1, . . . , sr are linearly dependent, then there are infinitely many prime numbers
p such that there exists a D2p-cover branched at 2Q + p(Csi1

+ · · · + Csit
) for some nonempty

subset {i1, . . . , it} ⊂ {1, . . . , r}.

On the other hand, if s1, . . . , sr are independent over Q, then they are independent over
Z/pZ except for a finite number of primes. This implies the following.

Lemma 10. If s1, . . . , sr are independent over Q, then there are only a finite number of prime
numbers p such that there exists a D2p-cover branched at 2Q + p(Csi1

+ · · · + Csit
) for some

nonempty subset {i1, . . . , it} ⊂ {1, . . . , r}.

§4. The smooth case

In this section, we will consider the case where Q is a smooth quartic.

4.1. The bitangents of Q and sections of S Q,zo

We will use the notation given in the Introduction. Let Q be a smooth plane quartic and
zo ∈ Q be a general point of Q. Since Q is smooth, Ŝ Q = S Q. In this case S Q,zo has only one
reducible singular fiber F0 = Θ0,0 + Θ0,1 of type I2. The component Θ0,0 is the exceptional
divisor of the first blow up of µzo in the introduction, and Θ0,1 is the strict transform of the
preimage of the tangent line of Q at zo. All other singular fibers are irreducible. By [8], we



Matroids and the topology of quartic and bitangents 271

have MW(S Q,zo ) � E∗7 where E∗7 is the dual lattice of the root lattice E7. It is known that the
E∗7 lattice has 56 minimal vectors ±l1, . . . ,±l28 of height 3

2 . It is also well known that Q has
28 bitangent lines L1, . . . , L28. The correspondence between the 28 pairs of minimal vectors
and the 28 bitangent lines is given in [11], but we describe the relation below for the readers
convenience.

Lemma 11. Let l ∈ MW(S Q,zo ) be a minimal vector of height 3
2 . Then L = f (l) is a bitangent

line of Q, where f is the morphism f : S Q,zo → P
2 given in the Introduction.

Proof. By the explicit formula for the height pairing, and since χ(S Q,zo ) = 1 and l.l = −1, we
have

〈l, l〉 = 2 + 2l.O − contr(l, l) =
3
2
.

Where contr(l, l) is the contribution from the unique reducible singular fiber F0. Since the
possible values of contr(l, l) = 0, 1

2 , we have l.O = 0 and contr(l, l) = 1
2 which implies that

l.Θ0,1 = 1. This implies that l is disjoint with the exceptional set of νzo . Also, if we consider
the section −l = σ∗(l), the preimage of l under the involution σ, we have

〈l,−l〉 = 1 + l.O + (−l).O − l.(−l) − contr(l,−l) = −
3
2

Hence we obtain l.(−l) = 2. Let l̂ = νzo (l) and −̂l = νzo (−l). The above implies that l̂.−̂l =

l̂.Q̂ = 2, where Q̂ is the ramification locus of f̂Q. Now since ( f̂Q)∗(L) = l̂ + −̂l we have
2L.L = (̂l + −̂l).(̂l + −̂l). Hence we obtain L.L = 1 which implies that L is a line in P2.
Also, the local intersection numbers of L and Q must be even by construction, hence L is a
bitangent line. �

Remark 2. Note that the two points of tangency may coincide to give a line L intersecting Q
at a single point with multiplicity 4, which we will still consider to be a bitangent line.

Lemma 12. Let L be a bitangent line of Q and let f ∗(L) = l + l′. Then l, l′ become minimal
sections with height 3

2 and l′ = σ∗l = −l.

Proof. By following through the proof of Lemma 11 backwards, we have the desired result.
�

The above two lemmas give us the following propositon.

Proposition 13. There is a bijection between the set of 28 bitangent lines of Q and the set of
28 pairs of minimal vectors of the E∗7 lattice.

4.2. The configuration of bitangents
In this subsection we explain the proof of Proposition 2. In [6], an explicit set of equations for
computing the equations of the 28 bitangents, called Riemann’s Equations, is given. Using
these equations, it is possible to calculate the equations of all 28 bitangents provided that one
has the data of seven bitangent lines L1, . . . , L7 of Q, which form an Aronhold set (i.e. a
septuple of bitangents such that, for any subset of three bitangents the six points of tangency
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do not lie on a conic.). We can assume that L1, . . . , L7 are given by the following equations
for a suitable choice of coordinates where [t0, t1, t2] are homogeneous coordinates of P2:

L1 = V(t0), L2 = V(t1), L3 = V(t2), L4 = V(t0 + t1 + t2)
L4+i = V(a0it0 + a1it1 + a2it2), (i = 1, 2, 3)

Reimann’s Equations gives us the explicit equations of the bitangent lines in terms of the
coefficients ai j. It also allows us to recover the equation of Q similarly. Once we have
explicit equations it is possible to calculate the combinatorics of the quartic and bitangent
lines. We used the open-source mathematics software system SageMath [13] for the actual
calculations.

Lemma 14. Let L1, . . . , L7 be lines defined as above. Then, for a general choice of a0i, a1i, a2i

(i = 1, 2, 3) the following hold:

1. There exists a smooth quartic Q having L1, . . . , L7 as an Aronhold set of bitangents.

2. Any three bitangent lines of Q are non-concurrent.

3. Every bitangent line of Q is a true bitangent, i.e. it is tangent to Q at two distinct
points.

Proof. The equations of Q, and its bitangents L1, . . . , L28 are given in terms of ai j by Rie-
mann’s equation as in [6]. Since all three condition in the statements are closed conditions on
a0i, a1i, a2i (i = 1, 2, 3), it is enough to find one example where the statements hold. Almost
any choice will serve our purpose. We omit the details of the equations and calculations do
to lack of space. �

Lemma 14 immediately implies Proposition 2.

4.3. The proof of Proposition 4

In this subsection, we describe the method we used to distinguish the matroid structures of
minimal vectors of the E∗7 lattice in order to calculate nr. We used SageMath [13] for the
actual calculations.

The object that we want to classify are the matroid structures on the sets of the form
{li1 , . . . , lir } where lir are representatives of pairs ±lir of minimal vectors of height 3

2 . It is
known that the E∗7 lattice can be representation in Q8 in a way so that the minimal vectors are
of the form

±
1
4

(1, 1, 1, 1, 1, 1,−3,−3)

and its permutations. We use this representation in our calculations.
We used an inductive argument on the number of vectors r. For each subset E ⊂ {l1, . . . , l28}

having r-elements, we assign an (nr−1 + 1)-ple of integers inductively as follows. The values
of nr will also be determined inductively along the way.

• Step (1)
For every subset with a single element, we assign the pair α1,1 = (1; 1).
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• Step (k + 1)
Suppose that every subset having k elements has been assigned an (nk−1 + 1)-ple of
integers. We set nk to be the number of distinct (nk−1 + 1)-ples that have been assigned
and label them by αk,1, . . . , αk,nk . Next, to each subset E ⊂ {l1, . . . , l28} having k + 1
elements, we assign an (nk + 1)-ple as follows:

(i) Consider the linear dependence/independence of E. Put i = 0 if it is dependent
and i = 1 if it is independent.

(ii) Let mk
j be the number of subsets of E of k elements that have the (nk−1 + 1)-ple

αk, j assigned.
(iii) Assign the (nk + 1)-ple (i; mk

1, . . . ,m
k
nk

) to E.

Lemma 15. Let E1, E2 be subsets of {l1, . . . , l28} and |E1| = |E2| = r. If E1 and E2 have the
same matroid structure, then the (nr−1 + 1)-ples of integers assigned above are equivalent.

Proof. We use induction on r to prove this lemma. The case for r = 1 is trivial as every subset
having a single element has the same pair assigned and has the same matroid structure.

Assume the statement holds for r = k. If |E1| = |E2| = k + 1 and E1, E2 have equivalent
matroid structure, there exists a bijection ϕ : E1 → E2 that preserves independent sets. Hence
E1 is independent if and only if E2 is independent and the value of i must be equal. Also,
ϕ induces a bijection from {E ⊂ E1 | |E| = k} to {E ⊂ E2 | |E| = k} and an equivalence of
matroid structures among the corresponding subsets. Hence the values of mk

j must be equal
do to the hypothesis of induction, and the assigned (nk + 1)-ple are equivalent. �

Lemma 15 and calculations done by computer using SageMath gives Proposition 4.
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