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Abstract. In this paper, we investigate non-associative properties in algebraic hyperstruc-
tures as it plays out in the biological inheritance which is expressed in the genotypic and
phenotypic information that are passed to the progenies from the parental traits. This is
with the intention to valuate with precision the non-associativity of weak associative prop-
erties in algebraic structures derived from some biological inheritance crossing. Examples
of biological inheritance crossing which obey the WASS condition x · (y · z)∩ (x · y) · z , ∅
for the 1, 2, 3-variable forms were found (though the corresponding identities were not
obeyed). The structures (H,⊗) were found to be hypergroupoids or hyperquasigroups
which obey 1-variable identity (3-power associativity) or 2-variable identities (LAP, RAP
or flexibility) or 3-variable identities (extra-1 or extra-2 or extra-3). Such hyperstructures
can be termed to be 3-power associative, flexible, left (right) alternative or extra; in their
precise measure of weakness in associativity.
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§1. Introduction

The study of algebraic hyperstructures was born in 1934 by F. Marty [6] when he gave
the definitions of hypergroups and illustrated with some applications. It had since been a
motivating platform for further studies in hyperstructures and its applications to other issues
of life. Hyperstructures are algebraic structures equipped with at least one multi-valued op-
eration, called a hyperoperation. The largest classes of hyperstructures are the ones called
Hv-structures. Algebraic hyperstructures are suitable generalizations of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements is a set. Algebraic
hyperstructure theory has a multiplicity of applications to other disciplines such as geom-
etry, graphs and hypergraphs, binary relations, lattices, groups, fuzzy sets and rough sets,
automata, cryptography, codes, median algebras, relation algebras, C∗-algebras, artificial in-
telligence and probability theory.

Etherington presented Genetic algebras in 1939, Non-associative algebra and the sym-
bolism of genetics in 1941. Schafer published Structure of genetic algebras in 1949. Mendel
authored Experiments in Plant-Hybridization in 1866.
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In this work, our main objective is to showcase that non-associativity in hyperstructures
is associated with biological inheritance. We explore some properties in algebraic hyper-
structures that naturally occur as genetic information gets passed down through generations.
Mathematically, the algebraic hyperstructures that arise in genetics are very interesting ones.
They are generally commutative but not associative. It is noteworthy that the order in which
genes interact in a given filial generation matters, thus, this necessitated the idea of non-
associativity. Hence, the need to valuate with precision the relationship that exist between
the progenies of each crosses. Thus, the import of the idea of weak associativity property
which the study of hyperstructures availed us. Interestingly, many of the algebraic properties
of these hyperstructures have genetic import. This work is furtherance to ideas presented by
Davvaz et al. [4], contributions made by Al-Tahan and Davvaz [1, 2], Anvariyeh and Momeni
[3] and recent compilations of reports in Davvaz and Vougiouklis [5]

§2. Preliminaries and Basic Definitions

In this section, some basic definitions related to hyperstructures and biological inheritance
are presented. It is known that an operation (◦) on a set H is any map from H × H to H. In
other words, to any two elements x, y ∈ H there correspond an element of H which we denote
x ◦ y. This map is written as follows

◦ : H × H → H : (x, y) 7→ x ◦ y ∈ H

Usual operations are the addition (+) and the multiplication (·). Hyperoperation or multival-
ued operation in a set is any operation which maps to any elements x, y of H into a non-empty
subset x ∗ y of H. Thus, we write

∗ : H × H → P(H)\∅ = P∗(H) : (x, y) 7→ x ∗ y ⊂ H

where P(H) is the power set of H.

A pair (H, ∗), consisting of a set equipped with a hyperoperation, is called an hypergroupoid.
This is the hyperstructure or multivalued structure. Hyperstructure is every algebraic structure
in which at least one hyperoperation is defined.

Definition 1. A hypergroup is a pair (H, ◦), where ◦ : H × H −→ P∗(H), such that the
following conditions hold for all x, y, z of H:

1. (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H which means that⋃
u∈ x◦y

u ◦ z =
⋃
v∈ y◦z

x ◦ v

2. H ◦ x = x ◦ H = H, where

H ◦ x =
⋃
h∈H

h ◦ x and x ◦ H =
⋃
h∈H

x ◦ h

This condition is called the reproduction axiom.
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A commutative hypergroup (H, ◦) is a join space if for all x, y, z of H, the following
implication holds:

x/y ∩ z/w , ∅ =⇒ x ◦ w ∩ y ◦ z , ∅ (transposition axiom).

where x/y = {u ∈ H|x ∈ u ◦ y}.

In 1934, Marty introduced the concept of a hypergroup. The motivation example was the
following: Let G be a group and H be any subgroup of G. Then G/H = {xH | x ∈ G} becomes
a hypergroup where the hyperoperation is defined in a usual manner:

xH ◦ yH = {zH | z ∈ xH · yH},

for all x, y ∈ G.

Definition 2. Let (H, ◦) be a hypergroupoid.

(i) An element e ∈ H is called an identity if, for all x ∈ H, x ∈ x ◦ e ∩ e ◦ x.
An identity e is called scalar identity if, for all x ∈ H, x ◦ e = e ◦ x = x.
An identity e is called partial identity if, for any x ∈ H, x ∈ x ◦ e or x ∈ e ◦ x.

(ii) An element x′ ∈ H is called an inverse of x ∈ H if there is an identity e ∈ H, such that
e ∈ x ◦ x′ ∩ x′ ◦ x.

Definition 3. Let H be a non-empty set and · : H × H −→ P∗(H) be a hyperoperation.

(i) Then, the hypergroupoid (H, ·) is said to be weakly associative if

x · (y · z) ∩ (x · y) · z , ∅

WASS: the weak associativity

(ii) Then, the hypergroupoid (H, ·) is said to be weakly commutative if

x · y ∩ y · x , ∅

COW: the weak commutativity

(iii) Then, the hypergroupoid (H, ·) is said to be strongly commutative if

x · y = y · x

Remark 1. If (H, ·) is an hypergroupoid with WASS, then, it is called an Hv-semigroup. In
addition, if (H, ·) has the reproduction axiom, then it is called an Hv-group.

Definition 4. Let (H, ·) be an hypergroupoid and let x, y, z ∈ H.

(i) (H, ·) is said to have the 3-power associativity property (3-PA) if it obeys the identity
(x · x) · x = x · (x · x).

(ii) (H, ·) is said to have the left alternative property (LAP) if it obeys the identity x · (x · y) =

(x · x) · y.
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⊗ RY Ry rY ry

RY RRYY RRYy RrYY RrYy

Ry RRYy RRyy RrYy Rryy

rY RrYY RrYy rrYY rrYy

ry RrYy Rryy rrYy rryy

Table 1: Dihybrid crosses with Pea plants

(iii) (H, ·) is said to have the right alternative property (RAP) if it obeys the identity (y·x)·x =

y · (x · x).

(iv) (H, ·) is said to have the flexibility or elasticity if it obeys the identity (x ·y) · x = x · (y · x).

(v) (H, ·) is said to have the extra-1 law if obeys the identity ((x · y) · z) · x = x · (y · (z · x)).

(vi) (H, ·) is said to have the extra-1 law if it obeys the identity ((x · y) · z) · x = x · (y · (z · x)).

(vii) (H, ·) is said to have the extra-2 law if it obeys the identity (y · x) · (z · x) = (y · (x · z)) · x.

(viii) (H, ·) is said to have the extra-3 law if it obeys the identity (x · y) · (x · z) = x · ((y · x) · z).

(ix) (H, ·) is called an hyperquasigroup if it has the reproduction axiom.

Remark 2. For any other weak law (aside WASS and COW), an hypergroupoid (H, ·) with
such weak law will be called an Hv-structure.

§3. Examples of Different Genetic Inheritance

In his dihybrid crosses with pea plants, Gregor Mendel simultaneously examined two dif-
ferent genes that controlled two different traits. For instance, in one series of experiments,
Mendel began by crossing a plant that was homozygous for both round seed shape and yellow
seed color (RRYY) with another plant that was homozygous for both wrinkled seed shape and
green seed color (rryy). Then, when Mendel crossed two of the F1 (First Filial generation)
progeny plants with each other (RrYy × RrYy), he obtained an F2(Second Filial generation).

P : (Round and yellow) RRYY ⊗ (wrinkled and green) rryy

F1 : RrYy

F2 : F1 ⊗ F1

F2 : RrYy ⊗ RrYy

Theorem 1. Let H = {RY,Ry, rY, ry} with ⊗ defined on H as given in Table 1. Then,

(i) (H,⊗) is a non-associative hyperquasigroup and Hv-group.

(ii) (H,⊗) is an Hv-structure which does not satisfy the left alternative property.

(iii) (H,⊗) is an Hv-structure which does not satisfy the right alternative property.

(iv) (H,⊗) is an Hv-structure which does not satisfy the flexibility property.
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(v) (H,⊗) is an Hv-structure which is a 3-power associative hyperquasigroup

Proof. (H,⊗) is an hyperquasigroup based on the multiplication Table 1.
(i) Let us check if (H,⊗) is associative or not:

(Ry ⊗ rY) ⊗ ry , Ry ⊗ (rY ⊗ ry)

RrYy ⊗ ry , Ry ⊗ rrYy

{RrYy,Rryy, rrYy, rryy} , {RrYy,Rryy} but, (Ry ⊗ rY) ⊗ ry ∩ Ry ⊗ (rY ⊗ ry) , ∅.

Hence, (H,⊗) is a non-associative hyperquasigroup and Hv-group.
(ii) Let us check if the left alternative property is satisfied:

x · xy = xx · y

Then,
Ry ⊗ (Ry ⊗ ry) , (Ry ⊗ Ry) ⊗ ry

Ry ⊗ Rryy , RRyy ⊗ ry

{RRyy,Rryy} , {Rryy,Rryy} but, Ry ⊗ (Ry ⊗ ry) ∩ (Ry ⊗ Ry) ⊗ ry , ∅.

Hence, (H,⊗) is an Hv-structure which does not satisfy the left alternative property.
(iii) Let us check if the right alternative property is satisfied:

x · yy = xy · y

Then,
rY ⊗ (ry ⊗ ry) , (rY ⊗ ry) ⊗ ry

rY ⊗ rryy , rrYy ⊗ ry

rrYy , {rrYy, rryy} but, rY ⊗ (ry ⊗ ry) ∩ (rY ⊗ ry) ⊗ ry , ∅.

Hence, (H,⊗) is an Hv-structure which does not satisfy the right alternative property.
(iv) Let us check if the flexibility property is satisfied:

x · yx = xy · x

Ry ⊗ (rY ⊗ Ry) , (Ry ⊗ rY) ⊗ Ry

Ry ⊗ RrYy , RrYy ⊗ Ry

{RRYy,RRyy,Rryy} , {RRYy,RRyy,RrYy,Rryy} but,Ry⊗(rY⊗Ry)∩(Ry⊗rY)⊗Ry , ∅.

Hence, (H,⊗) is an Hv-structure which does not satisfy the flexibility property.
(v) It can be deduced from the multiplication Table 1 that the 3-power associativity property

holds:
x · xx = xx · x ∀ x ∈ H.

For instance, Ry ⊗ (Ry ⊗ Ry) = (Ry ⊗ Ry) ⊗ Ry

Ry ⊗ RRyy = RRyy ⊗ Ry

RRyy = RRyy. �

Remark 3. Therefore, (H,⊗) is an Hv-structure, which is a 3-power associative hyperquasi-
group whose weakness in associativity is 1-variable measurable and not 2-variable measur-
able because it failed LAP, RAP and flexibility property.
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⊗ AA Aa aa

AA AA {AA, Aa} Aa

Aa {AA, Aa} {AA, Aa, aa} {Aa, aa}

aa Aa {Aa, aa} aa

Table 2: Hereditary information inherited from crosses

3.1. Simple Mendelian Inheritance
The zygotes AA and aa are called homozygous, since they carry two copies of the same

allele. In this case, simple Mendelian inheritance means that there is no chance involved as
to what genetic information will be inherited in the next generation; i.e., AA will pass on
the allele A and aa will pass on a. However, the zygotes Aa and aA (which are equivalent)
each carry two different alleles. These zygotes are called heterozygous. The rules of simple
Mendelian inheritance indicate that the next filial generation will inherit either A or a with
equal measure. So, when two gametes reproduce, a multiplication is induced which indi-
cates how the hereditary information will be passed down to the next filial generation. This
multiplication is given by the following rules:

1. A × A = A

2. A × a = {A, a}

3. a × A = {a, A}

4. a × a = a

In 1. and 4. above, both gametes carry the same allele, while there is equal presence of the
two alleles in 2. and 3.

Theorem 2. Let H = {AA, Aa, aa} with ⊗ defined on H as given in Table 2. Then,

(i) (H,⊗) is a non-associative hypergroupoid, not a hyperquasigroup and a Hv-semigroup.

(ii) (H,⊗) is an Hv-structure which does not satisfy the left alternative property.

(iii) (H,⊗) is an Hv-structure which does not satisfy the right alternative property.

(iv) (H,⊗) is an Hv-structure which satisfies the flexibility property.

(v) (H,⊗) is an Hv-structure which is a 3-power associative hypergroupoid.

(vi) (H,⊗) is an Hv-structure which satisfies the extra-1 identity.

(vii) (H,⊗) is an Hv-structure which does not satisfy the extra-2 identity.

(viii) (H,⊗) is an Hv-structure which does not satisfy the extra-3 identity.

Proof. (H,⊗) is an hypergroupoid and not a hyperquasigroup based on the multiplication
Table 2.

(i) We shall show that the hypergroupoid (H,⊗) is non-associative:

(AA ⊗ Aa) ⊗ aa , AA ⊗ (Aa ⊗ aa)
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{AA, Aa} ⊗ aa , AA ⊗ {Aa, aa}

{Aa, aa} , {AA, Aa} but, (AA ⊗ Aa) ⊗ aa ∩ AA ⊗ (Aa ⊗ aa) , ∅

Hence, (H,⊗) is non-associative and an Hv-semigroup.

(ii) Let us check if the left alternative property (LAP) is satisfied:

xx · y = x · xy

(Aa ⊗ Aa) ⊗ aa , Aa ⊗ (Aa ⊗ aa)

{AA, Aa, aa} ⊗ aa , Aa ⊗ {Aa, aa}

{Aa, aa} , {AA, Aa, aa} but, (Aa ⊗ Aa) ⊗ aa ∩ Aa ⊗ (Aa ⊗ aa) , ∅

Hence, LAP is not satisfied by (H,⊗). So, (H,⊗) is an Hv-structure.

(iii) Let us check if the right alternative property (RAP) is also satisfied:

xy · y = x · yy

(AA ⊗ Aa) ⊗ Aa , AA ⊗ (Aa ⊗ Aa)

{AA, Aaa} ⊗ Aa , AA ⊗ {AA, Aa, aa}

{AA, Aa, aa} , {AA, Aa} but, (AA ⊗ Aa) ⊗ Aa ∩ AA ⊗ (Aa ⊗ Aa) , ∅

Hence, RAP is not satisfied by (H,⊗). So, (H,⊗) is an Hv-structure.

(iv) We shall show that flexibility property holds in (H,⊗) by considering the following and
others:

x · yx = xy · x ∀x, y ∈ H.

(a) AA ⊗ (aa ⊗ AA) = (AA ⊗ aa) ⊗ AA

AA ⊗ Aa = Aa ⊗ AA

{AA, Aa} = {AA, Aa}.

(b) AA ⊗ (Aa ⊗ AA) = (AA ⊗ Aa) ⊗ AA

AA ⊗ {AA, Aa} = {AA, Aa} ⊗ AA

{AA, Aa} = {AA, Aa}.

(c) Aa ⊗ (aa ⊗ Aa) = (Aa ⊗ aa) ⊗ Aa

Aa ⊗ {Aa, aa} = {Aa, aa} ⊗ Aa

{AA, Aa, aa} = {Aa, Aa, aa}.

Hence, we see that (H,⊗) satisfies the flexibility property.
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(v) We shall now show that the 3-power associative property is true:

x · xx = xx · x

Then,
(d) AA ⊗ (AA ⊗ AA) = (AA ⊗ AA) ⊗ AA

AA = AA

(e) Aa ⊗ (Aa ⊗ Aa) = (Aa ⊗ Aa) ⊗ Aa

Aa ⊗ {Aa, Aa, aa} = {AA, Aa, aa} ⊗ Aa

{AA, Aa, aa} = {AA, Aa, aa}

(e) aa ⊗ (aa ⊗ aa) = (aa ⊗ aa) ⊗ aa

aa = aa

Hence, by (d), (e) and (f), we see that (H,⊗) satisfies the 3-power associative property.

(vi) We shall show that extra-1 identity holds in (H,⊗) by considering the following and
others:

(xy · z)x = x(y · zx) ∀ x, y, z ∈ H

Then,
((AA ⊗ Aa) ⊗ aa) ⊗ AA = AA ⊗ (Aa ⊗ (aa ⊗ AA))

({AA, Aa} ⊗ aa) ⊗ AA = AA ⊗ (Aa ⊗ Aa)

{Aa, aa} ⊗ AA = AA ⊗ {AA, Aa, aa}

{AA, Aa} = {AA, Aa}

Hence, (H,⊗) satisfies extra-1 identity.

(vii) Let us check if (H,⊗) satisfies extra-2 identity:

yx · zx = (y · xz)x

Then,
(Aa ⊗ AA) ⊗ (aa ⊗ AA) , (Aa ⊗ (AA ⊗ aa)) ⊗ AA

{AA, Aa} ⊗ Aa , (Aa ⊗ Aa) ⊗ AA

{AA, Aa, aa} , {AA, Aa} but, (Aa ⊗ AA) ⊗ (aa ⊗ AA) ∩ (Aa ⊗ (AA ⊗ aa)) ⊗ AA , ∅

Hence, (H,⊗) does not satisfy extra-2 identity.

(viii) Let us check if (H,⊗) satisfies extra-3 identity:

xy · xz = x(yx · z)

Then,
(AA ⊗ Aa) ⊗ (AA ⊗ aa) , AA ⊗ ((Aa ⊗ AA) ⊗ aa)

{AA, Aa} ⊗ Aa ⊗ AA ⊗ (({AA, Aa}) ⊗ aa)

{AA, Aa, aa} , AA ⊗ {AA, Aa, aa}

{AA, Aa, aa} , {AA, Aa} but, (AA ⊗ Aa) ⊗ (AA ⊗ aa) ∩ AA ⊗ ((Aa ⊗ AA) ⊗ aa) , ∅

Hence, (H,⊗) does not satisfy extra-3 identity. �
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Remark 4. Therefore, (H,⊗) is an Hv-structure, which is a 3-power associative, flexible
and extra-1 hyperqroupoid. Its weakness in associativity is 1, 2, 3-variable measurable even
though it failed LAP and RAP. Depending on the algebraic properties that are satisfied, these
can be used to categorise each cross mating that takes place. It can also be used as counsel to
guide in experimentation procedures in cross breeding, in order to cut cost, manage time, en-
ergy and materials. It gives an added advantage over being probabilistic in experimentation.

3.2. Combs in Chicken
The research conducted by the British geneticists, William Bateson and R. C. Punnett

showed that the shape of the comb in chickens was caused by the interaction between two
different genes. Bateson and Punnett were aware of the fact that different varieties of chick-
ens possess distinctive combs. For instance, Wyandottes have a “rose" comb, Brahmas have
a “pea" comb, and Leghorns have a “single" comb. When Bateson and Punnett crossed a
Wynadotte chicken with a Brahma chicken, all of the F1 progeny had a new type of comb,
which the duo termed a “walnut" comb. In this case, neither the rose comb of the Wyandotte
nor the pea comb of the Brahma appeared to be dominant, because the F1 offspring had their
own unique phenotype.

P : RRpp ⊗ rrPP

F1 : RrPp

F2 : RrPp ⊗ RrPp

Moreover, when two of these F1 progeny were crossed with each other, some of the mem-
bers of the resulting F2 generation had walnut combs, some had rose combs, some had pea
combs, and some had a single comb. Because the four comb shapes appeared in a 9:3:3:1
ratio (i.e., nine walnut chickens per every three rose chickens per every three pea chick-
ens per every one single-comb chicken), it seemed that two different genes must play a role
in comb shape. Through continued research, Bateson and Punnett deduced that Wyandotte
(rose-combed) chickens must have the genotype RRpp, while Brahma chickens must have
the genotype rrPP. A cross between a Wyandotte and a Brahma would yield offspring that
all had the RrPp genotype, which manifested as the walnut-comb phenotype. Indeed, any
chicken with at least one rose-comb allele (R) and one pea-comb allele (P) would have a
walnut comb. Thus, when two F1 walnut chickens were crossed, the resulting F2 genera-
tion would yield rose-comb chickens (RRpp), pea-comb chickens (rrPP), and walnut-comb
chickens (RrPp), as well as chickens with a new, fourth phenotype—the single-comb phe-
notype. Based on the process of elimination, it could be assumed that these single-comb
chickens had the rrpp genotype (Bateson & Punnett, 1905; 1906; 1908).

Lemma 3. Let H = {RP,Rp, rP, rp} with ⊗ defined on H as given in Table 3. Then, (H,⊗) is
a non-associative hyperquasigroup and an Hv-group.

Proof. (H,⊗) is an hyperquasigroup based on the multiplication Table 3.

(RP ⊗ rP) ⊗ rp , RP ⊗ (rP ⊗ rp)

RrPP ⊗ rp , RP ⊗ rrPp
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⊗ RP Rp rP rp

RP RRPP RRPp RrPP RrPp

Rp RRPp RRpp RrPp Rrpp

rP RrPP RrPp rrPP rrPp

rp RrPp Rrpp rrPp rrpp

Table 3: Crosses of Combs in Chicken

{RrPp, rrPp} , {RrPP,RrPp} but, (RP ⊗ rP) ⊗ rp ∩ RP ⊗ (rP ⊗ rp) , ∅

Hence, (H,⊗) is a non-associative hyperquasigroup and an Hv-group. �

§4. Non-associativity of Genetic Inheritance

Algebraic hyperstructure with genetic realization are not necessarily associative but may be
weakly associative. It seems logical that the order in which populations mate is significant.
i.e., if parents A and B mate and then the resulting progenies mates with C, the resulting
progeny is not the same as the offsprings resulting from A mating with the progenies obtained
from mating parents B and C originally. Symbolically, (A×B)×C is not equal to A× (B×C).
Epistasis: One set of alleles (a gene) may mask or inhibit the expression of another gene’s
alleles.

4.1. Epistasis of Dominant Traits in Eye Color
The two allelomorphs responsible for eye color, christened OCA2 and HERC2 may be

represented by Oo and Hh. O and H are dominant over o and h. The alleles interact as shown
below:
Omhh and oomn have phenotype blue and OmHn has phenotype brown.
In this case, m = O or o and n = H or h. Hence, we have the result as stated below:

P : OOHH ⊗ oohh

F1 : OoHh

and
F1 ⊗ F1 : OoHh ⊗ OoHh

F2 : Brown, Blue, Blue

Brown is represented by D1, Blue by D2 and Blue by D3.
Remark 5. Note that, phenotypically there is no distinction between D2 and D3 but there is
a clear distinction between their genotypic composition. Hence, the genotypic representation
of the resulting offsprings in F2 is given as:

F2 : D̂1(o f genotypeOOHH), D̂2(o f genotypeOOhh), D̂3(o f genotypeoohh)
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OOHH (Brown)

OOHh (Brown)

OOhh (Blue)

OoHH (Brown)

OoHh (Brown)

Oohh (Blue)

ooHH (Blue)

ooHh (Blue)

oohh (Blue)

Table 4: Different genetic combinations of eye colors

⊗ OH Oh oH oh

OH OOHH (Brown) OOHh (Brown) OoHH (Brown) OoHh (Brown)

Oh OOHh (Brown) OOhh (Blue) OoHh (Brown) Oohh (Blue)

oH OoHH (Brown) OoHh (Brown) ooHH (Blue) ooHh (Blue)

oh OoHh (Brown) Oohh (Blue) ooHh (Blue) oohh (Blue)

Table 5: Genes that are far apart or on different chromosomes

Genes come in different versions (or alleles). OCA2 comes in brown (O) and blue (o)
versions. HERC2 also comes in two different versions, brown (H) and blue (h). Since people
have two copies of each gene, there are nine different possible genetic combinations. This is
expressed in Table 4.

Thus, from the result of above experiment, we have that:

(D̂1 ⊗ D̂2) ⊗ D̂3 , D̂1 ⊗ (D̂2 ⊗ D̂3)

and
(D1 ⊗ D2) ⊗ D3 , D1 ⊗ (D2 ⊗ D3)

Since genes come in different versions, resulting in epistatic representation of the phenotypes,
we have that:

(D̂1 ⊗ D̂2) ⊗ D̂3 ∩ D̂1 ⊗ (D̂2 ⊗ D̂3) , ∅

and
(D1 ⊗ D2) ⊗ D3 ∩ D1 ⊗ (D2 ⊗ D3) , ∅

Based on Table 4, we have the multiplication table given in Table 5.

Lemma 4. Let H = {OH,Oh, oH, oh} with ⊗ defined on H as given in Table 5. Then, (H,⊗)
is a non-associative hyperquasigroup and an Hv-group.
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Proof. (H,⊗) is an hyperquasigroup based on the multiplication Table 3. Now,

(OH ⊗ oH) ⊗ oh , OH ⊗ (oH ⊗ oh)

OoHH ⊗ oh , OH ⊗ ooHh

{OoHh, ooHh} , {OoHH,OoHh}

Hence, (H,⊗) is a non-associative hyperquasigroup. In fact,

(OH ⊗ oH) ⊗ oh
⋂

OH ⊗ (oH ⊗ oh) , ∅

because {OoHh, ooHh}
⋂
{OoHH,OoHh} = {OoHh}.

Thus, considering other triplets as well, (H,⊗) is a Hv-group. �

§5. Summary and Conclusion

After the introduction of the notion of hyperstructures about 80 years ago, a number of
researches, including its applications have been carried out. Vougiouklis (1990) introduced
and studied weak hyper-algebraic structures (Hv−group) for a pair (H, ·) where H is a set and
“· ” is an hyperoperation, with the axiom

x · (y · z) ∩ (x · y) · z , ∅ for all x, y, z ∈ H (5.1)

some other authors have found the genotypes of F2−offspring to be a cyclic Hv-semigroup
and relationship between algebraic hyperstructures and biological inheritance have been es-
tablished (Al-Tahan et al. 2017).

The main objective of this paper was to valuate with precision the non-associativity of weak
associative properties in algebraic structures derived from some biological inheritance cross-
ing. In this work, examples of biological inheritance crossing which obey axiom (5.1) in the
2, 3-variable forms were found. Though the corresponding identities were not obeyed. The
structure (H,⊗) were found to be hypergroupoids or hyperquasigroups which obey 1-variable
identity (3-power associativity) or 2-variable identities (LAP, RAP or flexibility) or 3-variable
identities (extra-1 or extra-2 or extra-3). Such hyperstructures can be termed to be 3-power
associative, flexible, left (right) alternative or extra; in their precise measure of weakness in
associativity.
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