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Abstract. In this article we generalize an approximation formula for three dimensional
periodic data on a grid using fractal techniques which helps us to construct both smooth
and non-smooth approximants depending on the choice of scale factors. We obtain bounds
of the approximation error and showed the convergence with very weak conditions, when
the sampling frequency is indefinitely increased. The density of the mappings involved in
the space of two-dimensional periodic and continuous functions is proved using certain
ranges of the scaling factors. A numerical example is presented to illustrate the proposed
approximation methods.
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§1. Introduction

Current major investigations in the theory of approximation concern smooth approximation.
However it would be good to have mathematical structures to describe real life models which
are non-smooth in nature. Such a structure is provided, for instance, by the theory of fractal
functions (see for instance cf. [1], [2], [3], [8], [9]). Barnsley (cf. [1], [2]) first introduced the
concept of fractal interpolation functions (FIFs) using the theory of iterated function system
(IFS) (cf. [5]). FIFs form the basis of iterative constructive approximation theory. Barnsley
and Harrington (cf. [3]) derived the calculus of FIF and showed that depending on the pa-
rameters of the IFS, one can construct smooth or non-smooth FIFs. Adapting the notion of
FIF, Navascués (cf. [10]) constructed an entire family of fractal functions f α, parameterized
by an appropriate vector α, beginning from a given continuous function f on a compact in-
terval I. This type of maps tend to bridge the gap between the smoothness of the classical
mathematical objects and the pseudo-randomness of experimental data.

In the theory of classical trigonometric approximation, D. Jackson (cf. [6], [7]) described
the degree of approximation of a continuous function by means of algebraic trigonometric
polynomials. For the one dimensional case, he introduced an approximation formula (cf. [6])
for 2π periodic continuous functions as

Σm f (x) = Hm

2m∑
i=1

f (xi)
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2

)
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4

, (1.1)
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where

xi+1 − xi =
π

m
, i = 1, 2, . . . , 2m − 1 and H−1

m =

2m∑
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(

m(xi−x)
2

)
m sin

(
xi−x

2

) 
4

.

We generalize the previous formula (cf. [11]) using a positive exponent γ, and derive the con-
vergence properties with very weak conditions on the original function. Recently, (cf. [14]),
Navascués and Sebastián extended the approximation formula (1.1) for the two dimensional
case. The formula proposed in [14] has an explicit representation in terms of the sample data
on a two dimensional grid.

The approximation problem considered here is the representation of a prescribed periodic
continuous and real-valued function of two variables using fractal techniques. In addition,
we prove the density of the mappings involved in the space of two-dimensional periodic and
continuous functions using certain ranges of the scaling factors. Numerical examples are
given in the last section to illustrate the proposed process.

§2. Preliminaries

First we shall review the materials from the references (cf. [1], [7], [10], [13]) which will be
used in the sequel.

2.1. Construction of fractal functions
Let us recall the construction of fractal interpolation functions in this section. Consider an
interpolation data set {(xi, yi), i ∈ NN ∪ {0}}, where NN = {1, 2, . . . ,N}. Let ∆ := x0 < x1 <
· · · < xN be a partition of the interval I = [x0, xN]. Let Li : I → Ii = [xi−1, xi], i ∈ NN be
contractive homeomorphisms such that

Li(x0) = xi−1, Li(xN) = xi. (2.1)

Let K = I × R and N continuous mappings, Fi : K → R be satisfying

Fi(x0, y0) = yi−1, Fi(xN , yN) = yi, |Fi(x, y) − Fi(x, y′)| ≤ |ci||y − y
′|, (2.2)

where (x, y), (x, y′) ∈ K, ci ∈ (−1, 1), i ∈ NN . Now define functions wi : R2 → R2 as
wi(x, y) = (Li(x), Fi(x, y)) ∀ i ∈ NN .

Theorem 1. The Iterated Function System (IFS) I = {K;wi, i = 1, 2, . . . ,N} admits a unique
attractor G, which is the graph of a continuous function f : I → R which obeys f (xi) = yi

for i = 0, 1, 2, . . . ,N.

The previous function is called a Fractal Interpolation Function (FIF) corresponding to
the IFS I = {Li(x), Fi(x, y)}Ni=1, and it satisfies the following functional equation:

f (x) = Fi(L−1
i (x), f ◦ L−1

i (x)), x ∈ Ii, i ∈ NN . (2.3)

In this paper we choose Li(x) = aix + bi satisfying (2.1) and Fi(x, y) = αiy + qi(x), where
qi : I → R are continuous functions verifying (2.2). The vector α = (α1, . . . , αN) is called a
vertical scaling factor and it must satisfy the inequality |α|∞ = max{|αi|; i = 1, 2, . . . ,N} < 1.
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2.2. α-fractal function
Let f : I → R be a continuous function. Consider qi(x) = f ◦ Li(x) − αib(x), where b is
defined from f through a linear map L (L f = b) satisfying b(x0) = f (x0), b(xN) = f (xN). The
fixed point function associated with the above IFS is known as the α-fractal function f α, and
it enjoys the following equation:

f α(x) = f (x) + αi( f α − b)(L−1
i (x)), x ∈ Ii, i ∈ NN . (2.4)

The previous equation provides the inequality

‖ f α − f ‖∞ ≤
|α|∞

1 − |α|∞
‖ f − b‖∞ =

|α|∞
1 − |α|∞

‖ f − L f ‖∞, (2.5)

which bounds the uniform distance between f α and f . Navascués (cf. [10]) proposed the
linear and continuous operator F α defined by F α( f ) = f α.

§3. One dimensional fractal Jackson approximant

Let C(T 1) denote the set of all continuous periodic function on [−π, π]. Let ∆m : −π = x0 <
· · · < x2m−1 < x2p = π be such that xi+1 = xi +

π
m for all i = 0, 1, 2, . . . , 2m−1. Let us consider

the continuous and periodic basis
{

Pmiγ(x) =

∣∣∣∣∣ sin
( m(xi−x)

2

)
m sin

( xi−x
2

) ∣∣∣∣∣γ ; i = 0, 1, 2, . . . , 2m
}

. Let us define

the set τm = span{Pmiγ}
2m
i=0. Let us consider a Jackson type operator Tmγ : C(T 1) → τm

assigning a periodic approximant belonging to τm for every g ∈ C(T 1) (with respect to the
data {(xi, g(xi))}2m

i=0), defined as

Tmγ(g)(x) = Hmγ(x)
2m∑
i=0

g(xi)Pmiγ(x),

where (Hmγ(x))−1 =
2m∑
i=0

∣∣∣∣∣ sin
( m(xi−x)

2

)
m sin

( xi−x
2

) ∣∣∣∣∣γ. It is easy to see that

‖Tmγg‖C(T 1) ≤ ‖g‖C(T 1).

In fact, the equality holds if we choose g(x) = 1. In the one dimensional case, the error
of discrete Jackson approximation was studied in cf. [12]. According to this reference, for
g ∈ C(T 1), and γ > 2, the error of the approximation can be bounded as

‖Tmγ(g) − g‖C(T 1) ≤

(
π

2

)γ
ωg

(
π

4m

)
(1 + 2γζ(γ − 1)) , (3.1)

where ζ is the Riemann zeta function. We define the α-fractal Jackson approximant of g ∈
C(T 1) as

T α
mγ(g)(x) = Hmγ(x)F α

 2m∑
i=0

g(xi)Pmiγ(x)

 = Hmγ(x)

 2m∑
i=0

g(xi)Pα
miγ(x)

 ,
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where Pα
miγ(x) is the α-fractal function of Pmiγ with respect to the partition ∆ of I = [−π, π]

and a linear bounded operator L. Let us denote Pmγ(g)(x) =
2m∑
i=0
g(xi)Pmiγ(x). Then

‖Pmγ(g)‖∞ ≤ ‖g‖∞‖
2m∑
i=0

Pmiγ(x)‖∞. (3.2)

Thus ‖Pmγ(g)‖∞ ≤ ‖g‖∞‖H−1
mγ‖∞ which provides the inequality ‖Pmγ‖ ≤ ‖H−1

mγ‖∞, where
‖Pmγ‖ represents the norm of the operator with respect to the supremum norm ‖.‖∞ in C(T 1).
Here H−1

mγ represents the inverse with respect to the product. For the operator T α
mγ,

‖T α
mγ(g)‖∞ ≤‖Hmγ‖∞‖F

α(Pmγ)‖∞

≤ ‖F α‖‖Hmγ‖∞‖H−1
mγ‖∞‖g‖∞

= Rmγα‖g‖∞, (3.3)

where Rmγα = ‖F α‖‖Hmγ‖∞‖H−1
mγ‖∞. Then ‖T α

mγ‖ ≤ Rmγα. Let us consider the error term
T α

mγ(g) − g:

T α
mγ(g)(x) − g(x) =Hmγ

2m∑
i=0

g(xi)Pα
miγ(x) − Hmγ

2m∑
i=0

g(xi)Pmiγ(x) + Hmγ

2m∑
i=0

g(xi)Pmiγ(x) − g(x)

= HmγP
α
mγ(g)(x) − HmγPmγ(g)(x) + HmγPmγ(g)(x) − g(x),

where

Pαmγ(g)(x) =

2m∑
i=0

g(xi)Pα
miγ(x) = F α(Pmγ(g))(x).

Thus, using the above computations we obtain

‖T α
mγ(g) − g‖∞ ≤ ‖Hmγ‖∞‖P

α
mγ(g) − Pmγ(g)‖∞ + ‖Tmγ(g) − g‖∞. (3.4)

Using (2.5), the first term of the above inequality can be bounded as

‖Pαmγ(g) − Pmγ(g)‖∞ ≤
|α|∞

1 − |α|∞
‖Pmγ(g) − LPmγ(g)‖∞

≤
|α|∞

1 − |α|∞
‖I − L‖‖Pmγ(g)‖∞

≤
|α|∞

1 − |α|∞
‖I − L‖‖H−1

mγ‖∞‖g‖∞.

(3.5)

Finally, using (3.1) and (3.5) in (3.4) we get

‖T α
mγ(g) − g‖C(T 1) ≤ ‖Hmγ‖∞

|α|∞‖I − L‖
1 − |α|∞

‖H−1
mγ‖∞‖g‖∞ +

(
π

2

)γ
ωg

(
π

4m

)
(1 + 2γζ(γ − 1)) .

(3.6)
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§4. Fractal Jackson approximation on T 2

In this section, the approximation process described above is extended to data on a two di-
mensional torus. Let be given two partitions ∆1

m : −π = x0 < x1 < · · · < x2m−1 < x2m = π
and ∆2

n : −π = y0 < y1 < · · · < y2n−1 < y2n = π of the circle. Let us consider the grid
∆ = ∆1

m × ∆2
n of T 2 = T 1 × T 1 and data {(xi, y j, zi j) : i = 0, 1, 2, . . . , 2m; j = 0, 1, 2, . . . , 2n}

with 2π-periodicity condition in both variables. Let α ∈ (−1, 1)2m and β ∈ (−1, 1)2n be scale
vectors for ∆1

m and ∆2
n respectively. Let us define the operator using different exponents γ1, γ2

for both single functions as

Jmnγ1γ2 ( f )(x, y) = Kmnγ1γ2 (x, y)
2m∑
i=0

2n∑
j=0

f (xi, y j)Pmiγ1 (x)Qn jγ2 (y),

where xi+1 − xi = π
m ; i = 0, 1, 2, . . . , 2m − 1, y j+1 − y j = π

n ; j = 0, 1, 2, . . . , 2n − 1,

Pmiγ1 (x) =

∣∣∣∣∣∣∣ sin
(m(xi−x)

2
)

m sin
( xi−x

2
) ∣∣∣∣∣∣∣
γ1

,

Qn jγ2 (y) =

∣∣∣∣∣∣∣ sin
( n(y j−y)

2
)

n sin
( y j−y

2
)
∣∣∣∣∣∣∣
γ2

,

and

K−1
mnγ1γ2

(x, y) =

2m∑
i=0

2n∑
j=0

∣∣∣∣∣∣∣ sin
(m(xi−x)

2
)

m sin
( xi−x

2
) ∣∣∣∣∣∣∣
γ1

∣∣∣∣∣∣∣ sin
( n(y j−y)

2
)

n sin
( y j−y

2
)
∣∣∣∣∣∣∣
γ2

.

Lemma 2. (cf. [11]) For all k = 1, 2, . . . , γ and z ∈ R:∣∣∣∣∣ sin(kz)
k sin(z)

∣∣∣∣∣γ ≤ 1.

Definition 1. (cf. [4]) Let f be a continuous function defined on T 2. The modulus of conti-
nuity of f is defined as

ω f (δ) := sup
‖x1−x2‖≤δ

{| f (x1) − f (x2)| : x1, x2 ∈ T 2}.

We will use the following properties of the modulus of continuity:

1. ω f (δ1 + δ2) ≤ ω f (δ1) + ω f (δ2).

2. ω f (λδ) ≤ λω f (δ) for λ ∈ N.

Lemma 3. For any γ1, γ2 > 0, the norm of Kmnγ1γ2 can be bounded as

‖Kmnγ1γ2‖∞ ≤
1
4

(
π

2

)2γmax

,

where γmax = max{γ1, γ2}.
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Proof. From the definition of Kmnγ1γ2 we have

K−1
mnγ1γ2

(x, y) =

2m∑
i=0

2n∑
j=0

∣∣∣∣∣∣∣ sin( m(xi−x)
2 )

m sin( xi−x
2 )

∣∣∣∣∣∣∣
γ1

∣∣∣∣∣∣∣ sin( n(y j−y)
2 )

n sin( y j−y

2 )

∣∣∣∣∣∣∣
γ2

= H−1
mγ1

(x)H−1
nγ2

(y)

≤
1
2

(
π

2

)γ1 1
2

(
π

2

)γ2

≤
1
4

(
π

2

)2γmax

,

where H−1
mγ(x) is defined in Section 3 and considering that H−1

mγ(x) ≥ 2
(

2
π

)γ
for any γ > 0

(cf. [12]). �

Theorem 4. Let f ∈ C(T 2). Then for any γ1, γ2 > 2, the approximant Jmnγ1γ2 ( f ) converges
uniformly to f whenever m, n tend to infinity.

Proof. Consider the approximation error as Emnγ1γ2 ( f )(x, y) = Jmnγ1γ2 ( f )(x, y) − f (x, y).
Applying the definition of Kmnγ1γ2 , modulus of continuity of f , and the changes xi − x =

2ui, y j − y = 2v j we obtain

|Emnγ1γ2 ( f )(x, y)| ≤ 2Kmnγ1γ2 (x, y)
2m∑
i=0

2n∑
j=0

(ω f (ūi) + ω f (v̄ j))
∣∣∣∣∣ sin mūi

m sin ūi

∣∣∣∣∣γ1
∣∣∣∣∣∣ sin nv̄ j

n sin v̄ j

∣∣∣∣∣∣γ2

,

where ūi, v̄ j are constructed as increasing order in |ui|, |v j| respectively. From the inequalities
(15) and (16) of the reference [14], for all i, j ≥ 2,∣∣∣∣∣∣∣ sin

(m(xi−x)
2

)
m sin

( xi−x
2

) ∣∣∣∣∣∣∣
γ1

≤

(
2
i

)γ1

and

∣∣∣∣∣∣∣ sin
( n(y j−y)

2
)

n sin
( y j−y

2
)
∣∣∣∣∣∣∣
γ2

≤

(
2
j

)γ2

. (4.1)

Using (4.1) and similar lines as given in [14], we obtain an error bound as

|Emnγ1γ2 ( f )(x, y)| ≤ ω f

(
π

4m
+
π

4n

)
F(γ1, γ2),

where F(γ1, γ2) is independent of m, n. Thus the error term tends to zero when the partition
is indefinitely refined. �

Definition 2. The fractal operator of Jackson approximation of a continuous f on the torus
is defined as

J
αβ
mnγ1γ2 ( f )(x, y) = Kmnγ1γ2 (x, y)

2m∑
i=0

2n∑
j=0

f (xi, y j)Pα
miγ1

(x)Qβ
n jγ2

(y).

Theorem 5. Let f ∈ C(T 1 × T 1) and γ1, γ2 > 2, then

‖J
αβ
mnγ1γ2 ( f )− f ‖∞ ≤ mn

(
π

2

)2γmax
(
|α|∞

1 − |α|∞
‖I − L‖‖F β‖∞ +

|β|∞
1 − |β|∞

‖I − L∗‖
)
+ω f

(
1
m

+
1
n

)
F(γ1, γ2),

where α, β are suitable scaling vectors used to construct the fractal perturbation of the basis
functions Pmiγ1 and Qn jγ2 .
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Proof. To attain the prescribed upper bound we will use

‖J
αβ
mnγ1γ2 ( f ) − f ‖∞ ≤ ‖J

αβ
mnγ1γ2 ( f ) − Jmnγ1γ2 ( f )‖∞ + ‖Jmnγ1γ2 ( f ) − f ‖∞.

According to the definition of Jαβ
mnγ1γ2 ( f ) and Kmnγ1γ2 ,

‖J
αβ
mnγ1γ2 ( f )−Jmnγ1γ2 ( f )‖∞ ≤ ‖Kmnγ1γ2‖∞

∥∥∥∥∥∥∥∥
2m∑
i=0

2n∑
j=0

f (xi, y j)
(
Pα

miγ1
(x)Qβ

n jγ2
(y) − Pmiγ1 (x)Qn jγ2

)∥∥∥∥∥∥∥∥
∞

.

The norm of the sum in the previous expression can be bounded as∥∥∥∥∥∥∥∥
2m∑
i=0

2n∑
j=0

f (xi, y j)
(
Pα

miγ1
Qβ

n jγ2
− Pmiγ1 Qn jγ1

)∥∥∥∥∥∥∥∥
∞

≤ ‖ f ‖∞
2m∑
i=0

2n∑
j=0

‖Pα
miγ1

Qβ
n jγ2
− Pmiγ1 Qn jγ2‖∞

≤ ‖ f ‖∞
2m∑
i=0

2n∑
j=0

(
‖Pα

miγ1
Qβ

n jγ2
− Pmiγ1 Qβ

n jγ2
‖∞ + ‖Pmiγ1 Qβ

n jγ2
− Pmiγ1 Qn jγ2‖∞

)
.

(4.2)

Now the first norm of the expression (4.2) in the parenthesis can be bounded as

‖Pα
miγ1

Qβ
n jγ2
− Pmiγ1 Qβ

n jγ2
‖∞ ≤‖Pα

miγ1
− Pmiγ1‖∞‖Q

β
n jγ2
‖∞

≤
|α|∞

1 − |α|∞
‖Pmiγ1 − LPmiγ1‖∞‖F

β‖ ‖Qn jγ2‖∞

≤
|α|∞

1 − |α|∞
‖I − L‖‖Pmiγ1‖∞‖F

β‖ ‖Qn jγ2‖∞,

(4.3)

where we have assumed bmiγ1 = LPmiγ1 for a bounded linear operator L. But ‖Pmiγ1‖∞ ≤

1, ‖Qn jγ2‖∞ ≤ 1 due to Lemma 2. Similarly, the second norm of (4.2) in the parenthesis can
be bounded as

‖Pmiγ1 Qβ
n jγ2
− Pmiγ1 Qn, j,γ2‖∞ ≤‖Pmiγ1‖∞‖Q

β
n jγ2
− Qn, j,γ2‖∞

≤
|β|∞

1 − |β|∞
‖I − L∗‖,

(4.4)

where b∗n jγ2
= L∗Qn jγ2 for a bounded linear operator L∗. Finally, using (4.3), (4.4) in (4.2) we

obtain∥∥∥∥∥∥∥∥
2m∑
i=0

2n∑
j=0

f (xi, y j)
(
Pα

m,i,γ1
Qβ

n, j,γ2
− Pm,i,γ1 Qn, j,γ2

)∥∥∥∥∥∥∥∥
∞

≤
|α|∞

1 − |α|∞
‖I − L‖ ‖F β‖ +

|β|∞
1 − |β|∞

‖I − L∗‖.

Using Lemma 3, Theorem 4 and the above expression, the final bound for the error is

‖J
αβ
mnγ1γ2 ( f ) − f ‖∞ ≤ mn

(
π

2

)2γmax
(
|α|∞

1 − |α|∞
‖I − L‖ ‖F β‖ +

|β|∞
1 − |β|∞

‖I − L∗‖
)
+
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ω f

(
1
m

+
1
n

)
F(γ1, γ2).

�

Corollary 6. If f ∈ C([−π, π] × [−π, π]), γ1, γ2 > 2 and if we choose scaling vectors α, β
such that mn|α|∞, mn|β|∞ have the same rate of convergence as that of ω f , then the discrete
fractal approximant Jαβ

mnγ1γ2 ( f ) converges uniformly to f as m, n tend to infinity. The order of
convergence does not depend on γ1, γ2.

Remark 1. The present approach may be extended to high-dimensional settings, for functions
defined on hypertori. The convergence results would remain qualitatively equal to those
exposed in this paper.

§5. Example

In this section we give the numerical explanation of the proposed approximants for different
exponents and scale vectors. Figure 1(a) represents the graph of the smooth function f (x, y) =

2 sin2(x) + 3 cos2(y) over the interval [−π, π] × [−π, π]. Figure 1(b) represents the surface
corresponding to the discrete approximant Jmnγ1γ2 ( f ) for the values of m = n = 10 and
γ1 = γ2 = 4. In order to get the fractal surface Jαβ

mnγ1γ2 ( f ) corresponding to the discrete
surface data, we consider a uniform partition of [−π, π] in both directions with M = N = 10.
Figure 1(c) depicts the fractal surface corresponding to αi = βi = 0.12 for i = 1, 2, . . . ,N and
γ1 = γ2 = 4. Figure 1(d) represents another periodic fractal surface for αi = 0.08, βi = 0.1
for i = 1, 2, . . . ,N and γ1 = 3, γ2 = 4. Usually, we tend to think that the sample points come
from a smooth function, but in practice this is not always the case. Thus for non-smooth
periodic surface data, these procedures may help to provide a better approximation.
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