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§1. Introduction

In the 50’s Berger [3] obtained the list of possible holonomy groups of simply connected,
irreducible and non-symmetric Riemannian manifolds. In that list for the particular case of
7-dimensional manifolds appeared the exceptional holonomy Lie group G2. A first tool in
order to describe manifolds with holonomy G2 is the concept of G2-structure introduced by
Bonan in [4]. A G2-structure on a 7-dimensional manifold M can be characterized by the
existence of a certain globally defined 3-form σ which is called the fundamental 3-form. The
presence of such a structure on a manifold defines a metric gσ on it, a volume form, and hence
a Hodge star operator, namely ∗. Fernández and Gray in [12] gave a characterization for a
manifold endowed with a G2-structure to have holonomy restricted to the group G2.

Theorem 1. [12]. Let M be a manifold endowed with the G2-structure σ. Denote by ∇σ

the Levi-Civita connection of the metric induced by the G2-structure. Then, the following
conditions are equivalent:

• Hol(∇σ) ⊆ G2.

• ∇σσ = 0.

• dσ = d ∗ σ = 0.

The problem of obtaining manifolds with holonomy group G2 was not a straightforward
task and until the 80’s the first examples were not described. In particular the first local
example is due to Bryant [5], and later in a joint work with Salamon [6] obtained the first
complete examples. These examples are obtained by considering 7-dimensional manifolds
endowed with SO(3) or SO(4)-structures and a splitting of type 3+4. On those manifolds can
be described a G2-structure σ such that dσ = 0 and d ∗σ = 0. Concerning compact examples
with holonomy G2 the first ones were described by Joyce in [20] using the Kümmer con-
struction for K3 surfaces. Later, Kovalev [22] and more recently Corti, Haskins, Nordstrom
and Pacini have obtained new compact examples of manifolds with holonomy G2 with the
twisted connected sum construction and an extension of that technique respectively.

The torsion of a G2-structure can be identified with the covariant derivative of the fun-
damental form σ and, as it is described in [12], it can be decomposed into four G2 irre-
ducible components, namely X1, X2, X3 and X4. Thus, a G2-structure is said to be of type
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P,Xi,Xi⊕X j,Xi⊕X j⊕Xk orX if the covariant derivative∇σσ lies in {0}, Xi, Xi⊕X j, Xi⊕X j⊕Xk

or X = X1⊕X2⊕X3⊕X4, respectively. Hence, there exist 16 different classes of G2-structures.
Another technique that allows to obtain examples of manifolds with holonomy in the

group G2 is via the study of flows of G2-structures. These flows consist on one-parameter
families of G2-structures with certain initial conditions and such that satisfy an appropriated
evolution equation. If this evolution equation is chosen appropriately, a solution for that flow
is such that the initial value for the G2-structures, which can have torsion, evolves to a G2-
structure without torsion. In this note we summarize some known results concerning the
study of flows of G2-structures, concretely we focus our attention on the Laplacian flow and
the Laplacian coflow of a G2-structure.

§2. Preliminars

We start explainning the basics about SU(3) and G2-structures which are helpful for a brief
introduction to the topic.

2.1. G2-structures
A G2-structure on a 7-dimensional manifold M consists of a reduction of the structure group
of its frame bundle to the Lie group G2. The existence of such structure on a manifold M
can also be characterized by the presence of a global non-degenerate 3-form σ which can be
locally written as

σ = e127 + e347 + e567 + e135 − e146 − e236 − e245, (1)

where {e1, . . . , e7} is a local basis of 1-forms on M which we call the adapted basis. As usual
in the related literature the notation ei1...ik stands for the wedge product ei1 ∧ · · · ∧ eik .

A manifold M endowed with a G2-structure σ is called a G2 manifold and the correspond-
ing structure defines also a volume form vol7 and a Riemannian metric gσ satisfying

gσ(X,Y)vol7 =
1
6
ιXσ ∧ ιYσ ∧ σ,

for every X,Y vector fields on M.
In order to describe the different classes of G2-structures we consider first the G2 type

decomposition of the space of forms (see [5] for details). Let (M, σ) be a G2 manifold,
consider the action of the group G2 on the space of differential p-forms on the manifold M,
namely Ωp(M). This action is irreducible on Ω1(M) and Ω6(M), but it is reducible for Ωp(M)
with 2 ≤ p ≤ 5. The G2 irreducible decompositions for p = 2 and 3 are

Ω2(M) = Ω2
7(M) ⊕Ω2

14(M),

where those irreducible spaces can characterized by

Ω2
7(M) = {∗7(α ∧ ∗7σ) | α ∈ Ω1(M)},

Ω2
14(M) = {β ∈ Ω2(M) | β ∧ σ = − ∗7 β} = {β ∈ Ω2(M) | β ∧ ∗7σ = 0},
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Class Torsion forms Condition Structure

P τ0 = τ1 = τ2 = τ3 = 0 dσ = d ∗7 σ = 0 Parallel

X2 τ0 = τ1 = τ3 = 0 dσ = 0 Closed

X4 τ0 = τ2 = τ3 = 0 dσ = 3τ1 ∧ σ, d ∗7 σ = 4τ1 ∧ ∗7σ Locally Conformal Parallel

X1 ⊕ X3 τ1 = τ2 = 0 d ∗7 σ = 0 Coclosed

X2 ⊕ X4 τ0 = τ3 = 0 dσ = 3τ1 ∧ σ Locally Conformal Closed

Table 1: Principal classes of G2-structures

and
Ω3(M) = Ω3

1(M) ⊕Ω3
7(M) ⊕Ω3

27(M),

with
Ω3

1(M) = { fσ | f ∈ C∞(M)},

Ω3
7(M) = {∗7(α ∧ σ) | α ∈ Ω1(M)},

Ω3
27(M) = {γ ∈ Ω3(M) | γ ∧ σ = 0, γ ∧ ∗7σ = 0},

where Ω
p
k (M) denotes a G2 irreducible space of p-forms of dimension k at every point. Note

that the description on the other degrees are obtained via the isomorphism described by the
Hodge star operator, i.e. ∗7 Ω

p
k (M) � Ω

7−p
k (M).

The G2 type decomposition of forms on M allows to express the exterior derivative of σ
and ∗7σ as follows

dσ = τ0 ∗7σ + 3 τ1 ∧ σ + ∗7 τ3,

d ∗7σ = 4 τ1 ∧ ∗7σ + τ2 ∧ σ,
(2)

where τ0 ∈ C
∞(M), τ1 ∈ Ω1(M), τ2 ∈ Ω2

14(M) and τ3 ∈ Ω3
27(M) are called the torsion forms

of the G2-structure.
Notice that all the information of the torsion of a G2-structure is encoded on the covariant

derivative of the fundamental formσ but also on the exterior derivatives ofσ and ∗σ. Thus the
different classes of G2-structures can be described in terms of their behavior or equivalently,
in view of (2), by the torsion forms τ0, τ1, τ2, τ3. In Table 1 some Fernández-Gray classes of
G2-structures are given.

The presence of certain G2-structures on a manifold give information concerning its ge-
ometrical properties. Manifolds endowed with a parallel G2-structure have holonomy con-
tained in G2, manifolds with a closed G2-structure have non-positive scalar curvature. How-
ever, the scalar curvature of a manifold endowed with a coclosed G2-structure has no sign
restrictions. Locally Conformal Parallel and Locally Conformal Closed G2-structures are
(locally) Parallel and Closed G2-structures which can be described by a conformal change of
the original G2-structure.

2.2. SU(3)-structures
An SU(3)-structure on a 6-dimensional manifold N consists of a triple (g, J,Ψ) such that g is
a Riemannian metric, J is an almost complex structure compatible with the metric, and Ψ is
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Class Condition Structure

{0} dω = dψ+ = dψ− = 0 Calabi-Yau

W−
1 dω = 3ψ+, dψ− = −2ω2 Nearly Kähler

W−
2 dω = dψ+ = 0 Symplectic half-flat

W−
1 ⊕W

−
2 ⊕W3 dω2 = dψ+ = 0 Half-flat

Table 2: Principal classes of SU(3)-structures

a complex volume form satisfying

3
4

i Ψ ∧ Ψ = ω3,

where ω is the fundamental form associated to the almost Hermitian structure (g, J). Note
that an SU(3)-structure on a 6-dimensional manifold N can be described by the pair (ω, ψ+),
where ψ+ is the real part of the complex volume form Ψ. Indeed, for the imaginary part ψ−
of the form Ψ one has that ψ− = Jψ+, so ψ− is determined by ψ+ and the almost complex
structure J (see [18]). We will denote by gω,ψ+

the Riemannian metric induced by the SU(3)-
structure.

Note that SU(3) and G2-structures are closely related, in particular the presence of an
SU(3)-structure (ω, ψ+), on a 6-dimensional manifold N induces a G2-structure on the 7-
dimensional manifold N × L with L = R or S 1 which can be defined by

σ = ω ∧ ds + ψ+,

being s the coordinate on L.
As it is described in [9] the torsion of an SU(3)-structure, namely T , is identified with the

covariant derivatives of ω and J and lies in a space of the form

T ∈ W±
1 ⊕W

±
2 ⊕W3 ⊕W4 ⊕W5,

whereWi are the irreducible components under the action of the group SU(3). Analogously
than for the G2 case, this torsion can also be given in terms of the derivatives of the forms ω,
ψ+ and ψ−. Equivalently the torsion forms of an SU(3)-structure can be defined (see [2] for
details), but we will not care about this description on this note.

There exist many different classes of SU(3)-structures but the most relevant in the con-
struction of G2-structures are given in Table 2.

Calabi-Yau manifolds have holonomy in the group SU(3). Concerning nearly Kähler
SU(3)-structures, not many examples of manifolds endowed with such structure are known,
see [8] for homogeneous examples or in [16] can be found complete inhomogeneous exam-
ples on S 6 and S 3 × S 3. Other well-known SU(3)-structures are the half-flat ones. These
structures were first considered in [19] (see also [9]) and can be evolved to a parallel G2-
structure. Symplectic half-flat structures have been considered for several authors (see, for
example, [10] and [13]) in order to obtain closed G2-structures.
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§3. Laplacian flow and coflow

The first author considering flows of G2-structures was Bryant in [5]. The objective of con-
sidering flows of G2-structures was to obtain examples of G2-structures without torsion as
the result of certain evolution of other G2-structures with torsion. Thus, Bryant considered
the so-called Laplacian flow of a G2-structure σ0 which is given by

d
dtσ(t) = ∆tσ(t),
σ(0) = σ0,
dσ(t) = 0,

(3)

where ∆t denotes the corresponding Hodge Laplacian operator. On compact manifolds short
time existence and uniqueness of solution for the Laplacian flow of a closed G2-structure has
been proved by Bryant and Xu in [7]. Xu and Ye in [29] proved long time existence and
convergence of solution of the Laplacian flow starting near a torsion-free G2-structure. In the
last years Lotay and Wei in the series of papers [25, 26, 27] have obtained important results
concerning long time existence and convergence of solution of the Laplacian flow.

On the other hand, in [21] Karigiannis, McKay and Tsui introduced the Laplacian coflow.
This latter flow can be considered as the analogue to the Laplacian flow in which the funda-
mental 3-form is claimed to be coclosed instead of closed. Thus, this flow is given by the
equations 

d
dtψ(t) = −∆tψ(t),
ψ(0) = ψ0,
dψ(t) = 0,

with ψ(t) = ∗tσ(t) and ∗t denoting the Hodge star operator. As far as the authors know, short
time existence and uniqueness of solution for this latter flow is not known. In [17] Grigorian
introduced a modified version of this flow called modified Laplacian coflow for which he
proved short time existence and uniqueness of solution.

3.1. Solutions of the Laplacian flow and coflow on Lie groups

The first examples of long time existence of solution for the Laplacian flow of closed G2-
structures were described in [11]. Concretely those examples are nilpotent Lie groups en-
dowed with a one parameter family of left-invariant closed G2-structures.

Theorem 2. [11]. Consider the simply connected Lie group with Lie algebra given by the
structure equations

de5 = e1 ∧ e2, de6 = e1 ∧ e3, and dei = 0 for all i = 1, 2, 3, 4, 7.

The family of closed G2 forms σ(t) on N given by

σ(t) = e147 + e267 + e357 + f (t)3e123 + e156 + e245 − e346, t ∈
(
−

3
10
,+∞

)
,
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where f (t) is the function

f (t) =
(10

3
t + 1

) 1
5
.

is the solution of the Laplacian flow (3) with initial value

σ0 = e147 + e267 + e357 + e123 + e156 + e245 − e346.

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-back by
time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets, as t goes to
infinity.

More examples of long time solutions can also be found in [11] or in [23, 24]. Anal-
ogously in [1] have been given explicit long time solutions for the Laplacian coflow and
the modified Laplacian coflow. These examples consist of one-parameter families of left-
invariant coclosed G2-structures on the 7-dimensional Heisenberg Lie group H7 which is
given by the matrices of the form

a =


1 x1 x3 x5 x7

1 x2
1 x4

1 x6
1


with xi ∈ R for all i = 1, . . . 7. Then a global system of coordinates xi for H7 is defined by
xi(a) = xi. A standard calculation shows that a basis for the left invariant 1-forms on H7 can
be described by

e1 = dx1, e2 = dx2, e3 = dx3, e4 = dx4,

e5 = dx5, e6 = dx6, and e7 = dx7 − x1dx2 − x3dx4 − x5dx6.

Thus, the corresponding Lie algebra, namely h7 is given by the structure equations

de7 = −e1 ∧ e2 − e3 ∧ e4 − e5 ∧ e6, and dei = 0 for all i = 1, . . . , 6.

Theorem 3. [1]. Consider H7 the 7-dimensional Heisenberg Lie group. Then, the solution
of the Laplacian coflow on H7 with the initial coclosed G2 form,

σ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245,

is given by

σ(t) =
1

f (t)
(e127 + e347 + e567) + f (t)3(e135 − e146 − e236 − e245), t ∈

(
−∞,

3
5

)
where f (t) is the positive function

f (t) =
(
1 −

5
3

t
) 1

10
.
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Recently the study of the Laplacian flow and coflow of G2-structures on Lie groups
has been extended to different classes of G2-structures like Locally Conformal Parallel G2-
structures (LCP for short) or Locally Conformal Closed ones (LCC for short). In particular,
in [28] the authors consider the Laplacian flow, resp. coflow, of a LCP G2-structure which
can be defined as:



d
dt
σ(t) = ∆tσ(t),

σ(0) = σ0,

dσ(t) = 3 τ(t) ∧ σ(t),
d ∗t σ(t) = 4 τ(t) ∧ ∗tσ(t).



d
dt
ψ(t) = −∆tψ(t),

ψ(0) = ψ0,

dψ(t) = 4 τ(t) ∧ ψ(t),
d ∗t ψ(t) = 3 τ(t) ∧ ∗tψ(t),

obtaining the following results:

Theorem 4. [28]. Every 7-dimensional rank-one solvable extension of a nilpotent Lie group
with a Locally Conformal Parallel G2 form, σ0, admits a long time solution σ(t) to the Lapla-
cian flow, preserving the LCP condition along the flow, such that σ(0) = σ0.

Theorem 5. [28]. Every 7-dimensional rank-one solvable extension of a nilpotent Lie group
with a Locally Conformal Parallel G2 form admits a long time LCP solution to the Laplacian
coflow.

On the other hand the Laplacian flow of LCC G2-structures can be described by
d
dtσ(t) = ∆t σ(t),
dσ(t) = 3τ(t) ∧ σ(t),
σ(0) = σ0.

(4)

For this latter flow explicit examples of long time solutions are given in [14].

Theorem 6. [14]. Consider the simply connected, solvable Lie group whose Lie algebra has
structure equations

de1 =
1
2

e1 ∧ e7, de2 =
1
2

e2 ∧ e7, de3 =
1
2

e3 ∧ e7, de4 =
1
2

e4 ∧ e7,

de5 = e1 ∧ e4 + e2 ∧ e3 + e5 ∧ e7, de6 = e1 ∧ e3 − e2 ∧ e4 + e6 ∧ e7, and de7 = 0.

The family of locally conformal closed G2-structures σ(t) given by

σ(t) = (1 − 4t)3/4 e127 + (1 − 4t)3/4 e347 + e567 + e135 − e146 − e236 − e245, where t ∈
(
−∞, 1

4

)
is the solution for the Laplacian flow (4) of the G2 form

σ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245.

The Lee 1-form θ(t) of σ(t) is θ(t) = −e7. Moreover, the underlying metrics g(t) of this
solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat
metric, uniformly on compact sets, as t goes to −∞, and they blow-up as t goes to 1

4 .
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3.2. Solutions of the Laplacian flow and coflow on warped products

Solutions of the Laplacian flow and coflow have also been obtained using warped products.
The warped product of two Riemannian manifolds (F, gF) and (B, gB) is denoted by B × f F
and consists on the product manifold B × F endowed with the metric g = π∗1(gB) + f 2π∗2(gF)
with f a non-vanishing real differentiable function on B and π1, π2 the projections of B × F
onto B and F, respectively.

As it is described in [15] if we consider (ω, ψ±) an SU(3)-structure over a 6-dimensional
manifold M6 the 3-form

σ = fω ∧ ds + ψ+

defines a G2-structure on M7 = M6×L with L = R or S 1 where f is a non-vanishing function
on L and s the coordinate in L. This G2-structure is called warped G2-structure since the
induced metric, namely gσ, is exactly gω,ψ+

+ f 2ds2. Considering warped G2-structures Fino
and Raffero in [15] obtained sufficient conditions on the SU(3)-structure and the warping
function f that guarantee the existence of solution for the Laplacian flow of a closed G2-
structure.

Concerning the Laplacian coflow of a coclosed G2-structure Karigiannis, MacKay and
Tsui in [21] showed that using warped products solutions for this flow could be obtained
from 6-dimensional manifolds endowed with Nearly Kähler or Calabi Yau structures.

Let us finish by noticing that the Nearly Kähler or Calabi Yau conditions are very re-
strictive and thus not many examples of these classes are known. On the contrary with the
approach of Fino and Raffero in [15] solutions for the Laplacian flow of a closed G2-structure
can be obtained from less restrictive conditions on the SU(3)-structure (concretely symplectic
half-flat condition). Thus the following question naturally arises:

Question: Is it possible to obtain solutions for the Laplacian coflow as warped products of
6-dimensional manifolds endowed with less restrictive SU(3)-structures, like half-flat ones?
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