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ACCURATE LEAST SQUARES FITTING
WITH A GENERAL CLASS OF SHAPE

PRESERVING BASES
Esmeralda Mainar, Juan Manuel Peña and Beatriz Rubio
Abstract. In this paper we consider the problem of least squares fitting with a very general
class of bases with interest in Computer Aided Geometric Design and Approximation
Theory. We compute a factorization of the collocation matrix A of these bases that allows
us to obtain a QR decomposition of A. Then the triangular system corresponding to
the matrix factor R is solved using a bidiagonal factorization of this matrix. Numerical
experiments show the accuracy of this procedure.
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§1. Introduction

The accurate computation with structured classes of matrices is an important issue in Numeri-
cal Linear Algebra and it is receiving increasing attention in the recent years (cf. [10, 23, 7]).
For this purpose, a parametrization adapted to the structure of the considered matrices is
needed. Let us recall that an algorithm can be performed with high relative accuracy (HRA)
when it only uses products, quotients, additions of numbers with the same sign or subtractions
of initial data (cf. [11]). Performing an algorithm with HRA is a very desirable goal because
it implies that the relative errors of the computations are of the order of the machine precision,
independently of the size of the condition number of the considered problem. Bidiagonal fac-
torizations provide a parametrization that has played a crucial role to derive algorithms with
HRA for some classes of totally positive (TP) matrices. In this case, the mentioned bidi-
agonal factorizations can be explicitly computed by means of an elimination process called
Neville elimination (cf. [12]). When the bidiagonal factorization of the considered matrix
is obtained with HRA, the computation of the inverse matrix, its eigenvalues and singular
values, the solutions of some linear systems or the computation of its QR factorization can
be also performed with HRA using the algorithms presented by Koev in [17] and [16]. Up
to now, this has been achieved with some relevant subclasses of TP matrices with applica-
tions to Computer Aided Geometric Design (cf. [22, 6, 7, 23, 19]), to Finance (cf. [5]) or to
Combinatorics (cf. [8]).

In Computer Aided Geometric Design shape preserving representations are associated
with normalized totally positive (NTP) bases because parametric curves inherit the geometric
properties of their control polygons with respect to these bases. Among all NTP bases of a
given space of functions, there exists a unique normalized B-basis, which is the basis with op-
timal shape preserving properties (cf. [24], [4]). The Bernstein bases and the B-spline bases
are the normalized B-bases of their corresponding spaces. The matrices considered in [6, 9]
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are collocation matrices of polynomial rational functions. However the rational model has
several drawbacks (see [20]). Rational curves require additional parameters (weights), which
do not have an evident geometric meaning and whose selection is often unclear. In addi-
tion, the behavior of rational bases with respect to differentiation and integration operations,
is particularly unpleasant and the exact integration of rational curves is hard and requires
(whenever possible) involved non rational forms. On the other hand, the rational model can-
not encompass transcendental curves such as the helix or the cycloid, which are of interest in
many applications. Furthermore the parametrization of conic sections does not correspond to
the natural arc-length parametrization, so given uniform partitions in the parameter space we
can get unevenly spaced points. Therefore, non-polynomial basis functions (such as trigono-
metric functions, hyperbolic functions or their mixtures with polynomials) are often used to
represent some typical curves or surfaces without rational forms. In [19] algorithms for the
computation of the bidiagonal decomposition of square collocation matrices of a very gen-
eral class of non-polynomial bases with interest in Computer Aided Geometric Design and
Approximation Theory are provided. The obtained algorithms are used in [19] to perform
accurate algebraic computations, such as the calculation of their inverses, their eigenvalues
or their singular values. In this paper, following the approach of [21] for a polynomial case,
we generalize the mentioned bidiagonal factorizations to the case of rectangular collocation
matrices. Using their QR decompositions, we focus on the problem of least squares fitting
in the spaces generated by the general class of bases defined in [19]. By computing the bidi-
agonal decomposition of the coefficient matrix of the least squares problem, an algorithm
for the computation of its QR decomposition is then applied. Finally, using the bidiagonal
decomposition of the matrix factor R, a triangular system is solved.

The layout of the paper is as follows. Section 2 includes matrix notations basic concepts
and tools. We also recall the Neville elimination procedure, which allows us to introduce the
bidiagonal factorization of a square strictly totally positive matrix. Section 3 introduces the
class of fg-Bernstein bases and recalls the bidiagonal factorization of the collocation matrices
associated to these bases derived in [19]. In Section 4, we generalize these decompositions
to the case of rectangular matrices. Then a procedure for computing the solution of the least
squares problems in the space generated by fg-Bernstein bases is obtained. Finally, Section
5 shows numerical examples with accurate results obtained when we apply the explained
procedure.

§2. Basic notations and auxiliary results

A matrix is totally positive (TP) if all its minors are nonnegative and strictly totally positive
(STP) if they are positive (see [1]). A system of functions (u0, . . . , un) defined on I ⊆ R is TP
if all its collocation matrices(

u j−1(ti)
)

1≤i≤l+1;1≤ j≤n+1
, t1 < · · · < tl+1 in I

are TP. A TP system of functions on I is normalized (NTP) if
∑n

i=0 ui(t) = 1, for all t ∈ I. NTP
bases are commonly used in Computer Aided Geometric Design due to their shape preserving
properties (see [3], [24]).
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Among all NTP bases of a space, we can find a unique normalized B-basis, which is the
optimal shape preserving basis (cf. [4]). For instance, the Bernstein bases and the B-spline
bases are the normalized B-bases of their corresponding spaces. The following characteriza-
tion of a B-basis is a consequence of Corollary 3.10 of [4] and Proposition 3.11 of [4].

Theorem 1. Let (u0, . . . , un) be a TP basis of a spaceU. Then (u0, . . . , un) is a B-basis if for
any other TP basis (v0, . . . , vn) of U the matrix K of change of basis such that (v0, . . . , vn) =

(u0, . . . , un)K is TP.

Let us now recall some basic matrix notations and results on Neville elimination. Our
notation follows the notation used in [12, 15]. Given n ∈ N and k ∈ {1, . . . , n}, let Qk,n be the
set of increasing sequences of k positive integers less than or equal to n. If α, β ∈ Qk,n, we
denote by A[α|β] the k × k submatrix of A containing rows of places α and columns of places
β.

Neville elimination is a procedure to make zeros in a column of a matrix by adding to a
given row an appropriate multiple of the previous one (see [12, 15]). For a given nonsingular
matrix A = (ai, j)1≤i, j≤n, let us present this elimination procedure for the case that no row
exchanges are necessary. Neville elimination consists of at most n−1 successive major steps,
resulting in the sequence of matrices:

A(1) := A→ A(2) → · · · → A(n) = U.

For 1 ≤ k ≤ n − 1, A(k+1) = (a(k+1)
i, j )1≤i, j≤n is obtained from A(k) = (a(k)

i, j )1≤i, j≤n by defining

a(k+1)
i, j := a(k)

i, j −
a(k)

i,k

a(k)
i−1,k

a(k)
i−1, j if a(k)

i−1,k , 0, k + 1 ≤ i, j ≤ n,

so that A(k+1) has zeros below its main diagonal in the k first columns. Finally, U is an upper
triangular matrix. The element pi, j := a( j)

i, j , 1 ≤ j ≤ i ≤ n, is called the (i, j) pivot of the
Neville elimination of A. The pivots pi,i are called diagonal pivots. The Neville elimination
can be performed without row exchanges if all the pivots are nonzero and, in this case, Lemma
2.6 of [12] implies that pi,1 = ai,1, 1 ≤ i ≤ n, and

pi, j =
det A[i − j + 1, . . . , i|1, . . . , j]

det A[i − j + 1, . . . , i − 1|1, . . . , j − 1]
, 1 < j ≤ i ≤ n. (1)

Furthermore, the (i, j) multiplier of the Neville elimination of A is

mi, j :=
a( j)

i, j

a( j)
i−1, j

=
pi, j

pi−1, j
, 1 ≤ j < i ≤ n. (2)

Neville elimination has been used to characterize TP and STP matrices (see [12, 15]). From
Theorem 4.1 of [12] and p. 116 of [15], a given matrix A is STP if and only if the Neville
elimination of A and AT can be performed without row exchanges, all the multipliers of
the Neville elimination of A and AT are positive and all the diagonal pivots of the Neville
elimination of A are positive.
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Bidiagonal factorizations have played a crucial role to derive, for TP matrices, algorithms
with HRA (cf. [16]). According to the arguments of p.116 of [15], an STP matrix A ∈
R(n+1)×(n+1) can be factorized, in a unique way under certain conditions, in the form

A = FnFn−1 · · · F1DG1 · · ·Gn−1Gn, (3)

where Fi and Gi are the lower and upper triangular bidiagonal matrices

Fi =



1
0 1

. . .
. . .

0 1
mi+1,1 1

. . .
. . .

mn+1,n+1−i 1


,

GT
i =



1
0 1

. . .
. . .

0 1
m̂i+1,1 1

. . .
. . .

m̂n+1,n+1−i 1


, (4)

and D = diag
(
p1,1, . . . , pn+1,n+1

)
. The entries mi, j and m̂i, j are the multipliers of the Neville

elimination of A and AT , respectively, and the diagonal entries pi,i are the diagonal pivots of
the Neville elimination of A. In fact a unique bidiagonal factorization can be obtained for
nonsingular TP matrices (see [14, 15]).

§3. The class of fg-Bernstein bases

Let us suppose that I = [a, b] and f , g : I → R are nonnegative continuous functions. For a
given n ∈ N, the corresponding fg-Bernstein basis of order n was defined in [19] as

(un
0, . . . , u

n
n), un

k(t) :=
(
n
k

)
f k(t)gn−k(t), t ∈ [a, b], k = 0, . . . , n. (5)

The following result corresponds to Proposition 19 of [18] and characterizes when the fg-
Bernstein basis defined in (5) is a B-basis.

Proposition 2. The system given in (5) is a B-basis if and only if the function f /g defined on
I0 := {t ∈ I | g(t) , 0} is increasing and satisfies

inf
{

f (t)
g(t)
| t ∈ I0

}
= 0, sup

{
f (t)
g(t)
| t ∈ I0

}
= +∞. (6)
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Theorem 2 of [19] proves that, given nonnegative f , g : I → R such that f (t) , 0, g(t) , 0,
∀t ∈ (a, b) and f /g is a strictly increasing function, then

A :=
((

n
j−1

)
f j−1(ti)gn− j+1(ti)

)
1≤i, j≤n+1

, a < t1 < · · · < tn+1 < b, (7)

is STP. Moreover, in Theorem 3 of [19], the following bidiagonal decomposition (3) of the
collocation matrices (7) was deduced

A = FnFn−1 · · · F1DG1 · · ·Gn−1Gn, (8)

where Fi and Gi, 1 ≤ i ≤ n, are the lower and upper triangular bidiagonal matrices of the
form (4) and D = diag

(
p1,1, . . . , pn+1,n+1

)
. The entries mi, j, m̂i, j and pi,i are given by

mi, j =
gn− j+1(ti)g(ti− j)
gn− j+2(ti−1)

∏ j−1
k=1

(
f (ti)g(ti−k) − f (ti−k)g(ti)

)∏ j
k=2

(
f (ti−1)g(ti−k) − f (ti−k)g(ti−1)

) ,
m̂i, j =

n − i + 2
i − 1

f (t j)
g(t j)

, 1 ≤ j < i ≤ n + 1,

pi,i =

(
n

i − 1

)
gn−i+1(ti)∏i−1

k=1 g(tk)

i−1∏
k=1

(
f (ti)g(tk) − f (tk)g(ti)

)
, 1 ≤ i ≤ n + 1. (9)

Let us observe that a sufficient condition to obtain the bidiagonal decomposition of A with
HRA is that the expressions f (ti), g(ti) and f (ti)g(tk)− f (tk)g(ti), for all k < i, can be computed
with HRA.

There are many interesting choices of functions f and g satisfying conditions (6) and
allowing us the definition of B-bases whose STP collocation matrices can be factorized as in
(8). For example, if

f (t) :=
t − a
b − a

, g(t) :=
b − t
b − a

, t ∈ [a, b],

the basis (5) is the Bernstein basis of the space of polynomials of degree not greater than n
on the compact interval [a, b]. Let us observe that, in this case, the computation of f (ti), g(ti)
and f (ti)g(tk) − f (tk)g(ti) = (ti − tk)/(b − a), k < i, can be performed with HRA because it
only requires quotients and subtractions of the initial data. Therefore we can also guarantee
that the bidiagonal decomposition (8) of the corresponding collocation matrices (7) can be
obtained with HRA. We can also consider

f (t) := t2, g(t) := 1 − t2, t ∈ [0, 1].

Taking into account Proposition 2, we deduce that the system (5) is the normalized B-basis
of the space 〈1, t2, . . . , t2n〉 of even polynomials of degree less than or equal to 2n on [0, 1].
Let us also observe that the computation of f (ti), g(ti) and f (ti)g(tk) − f (tk)g(ti) = t2

i − t2
k =

(ti + tk)(ti− tk), k < i, requires additions, products and subtractions of the initial data, therefore
it can be done with HRA. Again, we can guarantee that the bidiagonal decomposition (8) of
the corresponding collocation matrices (7) can be obtained with HRA.

Another particular case can be given by considering the functions

f (t) := sin2 (t/2) = (1 − cos t)/2, g(t) := cos2 (t/2) = (1 + cos t)/2, t ∈ I = [0, π]. (10)
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In [24] it was proved that the system (5) is the normalized B-basis of the space of even
trigonometric polynomials 〈1, cos t, cos 2t, . . . , cos nt〉 on I. On the other hand, if we consider
0 < ∆ < π/2 and

f (t) := sin ((∆ + t)/2) , g(t) := sin ((∆ − t)/2) , t ∈ I = [−∆,∆], (11)

for a given n = 2m, the system (5) is a basis that coincides, up to a positive scaling, with the
normalized B-basis of the space 〈1, cos t, sin t, . . . , cos mt, sin mt〉 of trigonometric polynomi-
als of degree less than or equal to m on I (see Section 3 of [25]). Finally, for any ∆ > 0, we
can also consider

f (t) := sinh ((∆ + t)/2)) , g(t) := sinh ((∆ − t)/2) , t ∈ I = [−∆,∆]. (12)

For n = 2m, the system (5) is a B-basis of the space 〈1, et, e−t, . . . , emt, e−mt〉 of hyperbolic
polynomials of degree less than or equal to m on I.

In the last three cases, taking into account that f (ti)g(tk) − f (tk)g(ti) is equal to (cos(tk) −
cos(ti))/2, for the functions f and g defined in (10), sin (∆) sin ((ti − tk)/2), for the functions f
and g defined in (11) and sinh (∆) sinh ((ti − tk)/2), for the functions f and g defined in (12),
the computation with HRA of the corresponding bidiagonal decomposition (8) should require
the evaluation with HRA of the involved trigonometric or hyperbolic functions. Although this
cannot be guaranteed, Section 5 and the numerical experiments in [19] show that accurate al-
gebraic computations with the collocation matrices associated to these non-polynomial bases
functions can be performed.

§4. Accurate least squares fitting with fg-Bernstein bases

Let us suppose that f and g are functions defined on [a, b] such that f (t) , 0, g(t) , 0,
∀t ∈ (a, b), and f /g is a strictly increasing function. Given a set of parameters a < t1 < · · · <
tl+1 < b and real values p1 < · · · < pl+1, for some n ≤ l, we want to compute a function

p(t) :=
n+1∑
j=1

c j

(
n

j − 1

)
f j−1(t)gn− j+1(t), t ∈ [a, b],

minimizing the sum of the squares of the deviations from the data
∑l+1

i=1 |pi − p(ti)|2. In order
to compute the coefficients of p(t) with respect to the considered fg-Bernstein basis we have
to solve, in the least square sense, the overdeterminated linear system Ac = p, where

A :=
((

n
j−1

)
f j−1(ti)gn− j+1(ti)

)
1≤i≤l+1;1≤ j≤n+1

is the rectangular collocation matrix of the fg-Bernstein basis corresponding to the nodes
t1 < · · · < tl+1, p = (p1, . . . , pl+1)T is the data vector and c = (c1, . . . , cn+1)T is the vector with
the coefficients we want to compute. Using Theorem 2 of [19], we can easily deduce that A
is STP and so has maximal rank n + 1. Therefore this problem has a unique solution, which
is given by the solution of the linear system

AT Ac = AT p.
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Solving the previous normal equations is a worse conditioned problem than computing the
solution through the QR decomposition of the coefficient matrix A, which is the usual ap-
proach. In [16] an efficient algorithm for computing the QR decomposition of an STP matrix
A is presented. In [17] the Matlab or Octave library TNQR, containing an implementation of
the mentioned last algorithm, is available. Assuming that the bidiagonal factorization of A
is known, TNQR computes the matrix Q and the bidiagonal factorization of the matrix R with
HRA. Now, following the approach of [21], we shall describe how to solve our least squares
problem by means of a bidiagonal decomposition for rectangular matrices that generalizes
the bidiagonal factorization described, for the square case, in the previous section and the QR
decomposition provided by TNQR.

In order to compute the solution of the least squares problem, we define the (l+1)×(n+1)
matrix M such that

Mi,i := pi,i, i = 1, . . . , n + 1,
Mi, j := mi, j, j = 1, . . . , n + 1; i = j + 1, . . . , l + 1,
Mi, j := m̂i, j, i = 1, . . . , n; j = i + 1, . . . , n + 1,

where the mi, j, m̂i, j and pi,i are obtained as in (9). Then, using TNQR, we can obtain the QR
decomposition of A such that

A = Q
(

R
0

)
,

where Q ∈ R(l+1)×(l+1) is an orthogonal matrix and R ∈ R(n+1)×(n+1) is an upper triangular
matrix with positive diagonal entries. Following Section 1.3.1 in [2], the solution of the least
squares problem is obtained from(

d1
d2

)
= QT p, Rc = d1, r = Q

(
0
d2

)
, (13)

where d1 ∈ R
n+1, d2 ∈ R

l−n and r = p(t)−Ac. The matrices Q and R have an special structure
described in [13]. In particular, R is nonsingular and TP. In order to obtain the solution of the
upper triangular system Rc = d1, we have used the routine TNSolve of [16], which uses the
bidiagonal decomposition of the upper triangular TP matrix R.

§5. Numerical experiments

Now let us illustrate the accuracy of the method explained in the previous section for the com-
putation of the solution of the least squares minimization problem with fg-Bernstein bases.
For different choices of f and g, we have considered fg-Bernstein bases of order n defined
on [a, b] and computed with Matlab two approximations of the vector c = (c1, . . . , cn+1) such
that the function

p(t) =

n+1∑
j=1

c j

(
n

j − 1

)
f j−1(t)gn− j+1(t), t ∈ [a, b],

minimizes
∑100

k=1(pk−p(tk))2, where p1, . . . , p100 are given integer values and t1, . . . , t100, l > n,
are equidistant parameters in (a, b). One approximation has been obtained using the proce-
dure explained in the previous section and the other approximation has been obtained using
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n+1 TNQR A \ p TNQR A \ p̃
15 4.89151 × 10−15 8.09049 × 10−13 8.18912 × 10−15 4.57057 × 10−13

20 2.97354 × 10−15 1.95465 × 10−12 2.68153 × 10−15 4.60592 × 10−12

25 4.20615 × 10−15 9.55201 × 10−10 3.864845 × 10−15 9.49291 × 10−10

30 8.16195 × 10−16 2.56043 × 10−8 9.15474 × 10−16 4.55599 × 10−8

Table 1: Relative errors with f (t) = (1 + t)/2, g(t) = (1 − t)/2, t ∈ [−1, 1].

n+1 TNQR A \ p TNQR A \ p̃
15 8.4759 × 10−16 1.31186 × 10−12 1.80073 × 10−15 4.36905 × 10−14

20 1.74157 × 10−15 3.8791 × 10−13 1.77785 × 10−15 1.39799 × 10−13

25 7.41971 × 10−15 4.14554 × 10−10 1.92262 × 10−14 2.00229 × 10−10

30 2.36573 × 10−15 1.67828 × 10−9 1.10435 × 10−14 1.18769 × 10−8

Table 2: Relative errors with f (t) = t2, g(t) = 1 − t2, t ∈ [0, 1].

the Matlab command \. We have also computed the solution of these least squares problems
using the Mathematica command LeastSquares with a precision of 100 digits and consid-
ered this solution c as the exact solution of the problem. Let us recall that in general we
cannot guarantee HRA. However the numerical experiments show great accuracy in all the
considered cases.

We have computed the relative error of every approximation c̃ = (c̃1, . . . , c̃n+1) of the
solution c of the least squares problems by means of the formula

e =
‖c − c̃‖2
‖c‖2

.

We have considered pk := k × (−1)k, k = 1, . . . , 100 and also p̃k := k, k = 1, . . . , 50,
p̃k := −k, k = 51, . . . , 100. The obtained errors are included in Table 1 (for the choice
f (t) = (1 + t)/2, g(t) = (1− t)/2, t ∈ [−1, 1]), in Table 2 (for the choice f (t) = t2, g(t) = 1− t2,
t ∈ [0, 1]), in Table 3 (for the choice f (t) = (1 − cos t)/2, g(t) = (1 + cos t)/2, t ∈ [0, π]), in
Table 4 (for the choice f (t) = sin((1 + t)/2), g(t) = sin((1 − t)/2), t ∈ [−1, 1]) and, finally, in
Table 5 (for the choice f (t) = sinh((1+t)/2), g(t) = sinh((1−t)/2), t ∈ [−1, 1]). The computed
results confirm the accuracy of the proposed method that, clearly, keeps the accuracy when
the dimension of the problem increases.

In conclusion, we have presented a method for solving least squares problems with col-
location matrices of fg-Bernstein bases that can be performed, in some cases, with HRA. We
think that the proposed method exploits the structural properties of totally positive matrices
and this could explain the great accuracy, even though HRA cannot be guaranteed, providing
results much more accurate than those obtained by Matlab using the standard method for the
resolution of least squares problems.
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n+1 TNQR A \ p TNQR A \ p̃
15 2.95136 × 10−14 1.99703 × 10−12 1.2823 × 10−14 4.93654 × 10−13

20 1.81561 × 10−14 6.64461 × 10−11 1.7008 × 10−15 1.64829 × 10−12

25 4.61364 × 10−14 1.72592 × 10−9 1.15137 × 10−14 7.41444 × 10−10

30 7.88557 × 10−14 4.34384 × 10−8 4.88251 × 10−15 6.41024 × 10−9

Table 3: Relative errors with f (t) = (1 − cos t)/2, g(t) = (1 + cos t)/2, t ∈ [0, π].

n+1 TNQR A \ p TNQR A \ p̃
15 1.23029 × 10−15 2.63437 × 10−12 1.05317 × 10−14 3.25159 × 10−12

20 4.79405 × 10−15 4.12448 × 10−11 1.34693 × 10−15 3.39137 × 10−11

25 6.14711 × 10−16 1.05147 × 10−9 1.57822 × 10−14 3.70748 × 10−10

30 6.47177 × 10−15 6.98518 × 10−8 9.14979 × 10−15 1.6299 × 10−7

Table 4: Relative errors with f (t) = sin((1 + t)/2), g(t) = sin ((1 − t)/2), t ∈ [−1, 1].
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