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LIPSCHITZ SPACES ASSOCIATED TO THE
HARMONIC OSCILLATOR

Marta de León-Contreras and José L. Torrea

Abstract.
We define Lipschitz classes adapted to the Harmonic Oscillator

H = −∆ + |x|2, x ∈ Rn.

These classes will be defined either through a pointwise condition or through some in-
tegral conditions, in this case by using a semigroup approach. We will prove that the
different definitions are equivalent. The semigroup approach will allow us to prove regu-
larity properties of some Bessel operators associated toH .
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§1. Introduction

Along this note, we shall denote byH the Harmonic Oscillator

H = −∆ + |x|2, x ∈ Rn.

Our purpose is to define Lipschitz classes adapted to H . These classes will be defined ei-
ther through a pointwise condition or through some integral conditions, in this case by us-
ing a semigroup approach. We will prove that the different definitions are equivalent. The
semigroup approach will allow us to prove regularity properties of some Bessel operators
associated toH . Several of the results contained in this note can be found in [1] and [2].

Lipschitz (also called Hölder) spaces are classes of smooth functions which are basic in
functional analysis, Fourier analysis and partial differential equations. Roughly speaking, for
certain k ∈ N ∪ {0} and k < α < k + 1, the space Lipschitz-α is the class of functions that are
more regular than Ck (the space of functions whose k-order derivatives are continuous) and
less regular than Ck+1. Lipschitz spaces are usually defined through pointwise estimates but
this approach is not convenient when we want to prove regularity results of some differential
operators, because in most of cases it leads to quite involved computations. However, the
semigroup description of Lipschitz spaces is really useful for this purpose. This approach was
introduced by Taibleson and Stein in the 60’s, see [8, 13, 14, 15]. They characterized classical
Lipschitz spaces through the heat semigroup, ey∆ and the Poisson semigroup e−y

√
−∆. These

characterizations raise the question of analyzing some Hölder spaces associated to different
Laplacians and to find the pointwise and semigroup estimate characterizations. In the case
of the Ornstein-Ulhenbeck operator O = − 1

2 ∆ + x · ∇, in [3] some Lipschitz classes were
defined by means of its Poisson semigroup, e−y

√
O, and in [4] a pointwise characterization
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was obtained for 0 < α < 1. In the case of the classical parabolic operator ∂t − ∆, in [12]
Lipschitz classes adapted to this operator were characterized through the Poisson semigroup.
In the case of the Hermite operator on Rn, n ≥ 1, H = −∆ + |x|2, adapted Hölder classes
were defined pointwise in [11]. These last spaces were characterized in [1] by means of the
Poisson semigroup, e−y

√
H , also in the parabolic case. Laplacians More recently, see [2],

some spaces have been defined in the case of Schrödinger operatorsL = −∆+V in Rn, n ≥ 3,
where V is a nonnegative potential satisfing(

1
|B|

∫
B

V(y)qdy
)1/q

≤
C
|B|

∫
B

V(y)dy, q > n/2, for every ball B. (1)

It could be said that the breakdown of the analysis of Schrödinger operators was the paper by
Shen, [7]. It relays on estimates of the heat kernel of e−tL. However this method only covers
the range n ≥ 3.

The Harmonic Oscillator is probably the most important example among the family of
Schrödinger operators. It has the advantage that the kernel of the heat semigroup, e−tH f (x) is
known explicitly. Along this note we shall show how this fact allows us to built a satisfactory
theory of Lipschitz spaces for all n ≥ 1. In this way we shall complement some results of
[1] and [2]. We do not want to be exhaustive in this presentation. However we shall remark
those results that are new. Sometimes the proofs will be only suggested.

Definition 1 (Hermite Hölder spaces). Let 0 < α < 2. We consider the space of functions

Cα
H

(Rn) =
{
f : (1 + | · |)α f (·) ∈ L∞(Rn), and sup

|z|>0

‖ f (· + z) + f (· − z) − 2 f (·)‖∞
|z|α

< ∞.
}

with associated norm
‖ f ‖Cα

H
= [ f ]Mα + [ f ]Cα

H
.

Where [ f ]Mα = ‖(1 + | · |)α f (·)‖∞ and [ f ]Cα
H

= sup
|z|>0

‖ f (· + z) + f (· − z) − 2 f (·)‖∞
|z|α

.

Remark 1. This definition was already considered for Schrödinger operators L, where the
function 1 + |x| was substituted by the inverse of the so called critical radius ρ(x), see (4). It
can be seen that, if 0 < α < 1, the last space coincides with the space such that [ f ]Mα < ∞
and sup|z|>0

‖ f (·+z)− f (·)‖∞
|z|α . This space was defined in [10], [11].

Definition 2. Let e−yH = Wy and e−y
√
H = Py be the heat and Poisson semigroups associated

toH . For α > 0 we define the spaces ΛW
α/2 and ΛP

α as

(A) ΛW
α/2 =

{
f : [ f ]Mα < ∞ and

∥∥∥∂k
yWy f

∥∥∥
L∞(Rn)

≤ Cky
−k+α/2, k = [α/2] + 1

}
. We shall

denote by S W
α [ f ] the infimum of the constants Ck above.

(B) ΛP
α =

{
f : MP[ f ] =

∫
Rn

| f (x)|
(1+|x|)n+1 dx < ∞, and

∥∥∥∂k
yPy f

∥∥∥
L∞(Rn)

≤ Bky
−k+α, k = [α] + 1

}
.

We shall denote by S P
α[ f ] the infimum of the constants Bk above.

We observe that condition [ f ]Mα < ∞ implies that in particular the function f must be
bounded. Moreover, if f ∈ ΛP

α then ρ(·)−α f ∈ L∞(Rn), see [2] Theorem 1.9. For H it is
known that ρ(x) = 1

1+|x| . Therefore we get that f ∈ L∞(Rn), so ΛP
α coincides with the space
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defined in [1]. We will also see that this condition is natural as soon as either S P
α[ f ] < ∞ or

S W
α [ f ] < ∞.

The main Theorem of this note is the following

Theorem 1. Let 0 < α < 2, n ≥ 1. The following statements are equivalent:

(1) f ∈ Cα
H

(Rn), (2) f ∈ ΛW
α/2, (3) f ∈ ΛP

α .

Moreover, the norms of the function f in these spaces are equivalent.

The Theorem was proved to be true in the case L for n ≥ 3 and 0 < α ≤ 2 − n
q , where q

is the exponent in (1). In [1] it was proved that (1) is equivalent to (3). On the other hand, the
proof of (2) implies (3) was given in [2] and it remains valid in this case for any α > 0. We
include it here as Theorem 6, we believe that is of independent interest. Finally, we sketch
the proof of (1) implies (2) at the end of Section 2.

Our second aim is to study the regularity of operators in the Lipschitz spaces. As example
of the technique we shall present here the Bessel potential of order β > 0,

(Id +H)−β/2 f (x) =
1

Γ(β/2)

∫ ∞

0
e−te−tH f (x)tβ/2

dt
t
.

Theorem 2. Let α, β > 0. Then, the Bessel potential satisfies

(i) ‖(Id +H)−β/2 f ‖ΛW
α+β

2

≤ C‖ f ‖ΛW
α/2
.

(ii) ‖(Id +H)−β/2 f ‖ΛW
β/2
≤ C‖ f ‖∞.

All the results in this note have been proved for the elliptic operator H but they can be
done in the parabolic case parallely, as we did in [1] for the Poisson case.

§2. Proof of Theorem 1.

It is well-known that, for f ∈ Lp(Rn), 1 ≤ p ≤ ∞, see [9], the heat semigroup associated to
H is given by the Mehler’s formula

e−yH f (x) = Wy f (x) =

∫
Rn

Wy(x, z) f (x − z)dz =

∫
Rn

e−
|z|2 coth y

4 e−
|2x−z|2 tanh y

4

(2π sinh(2y))n/2 f (x − z)dz, (2)

In addition, by Bochner subordination, for f ∈ Lp(Rn), 1 ≤ p ≤ ∞, the Poisson semigroup is
given by

e−y
√
H f (x) = Py f (x) =

y

2
√
π

∫ ∞

0

∫
Rn

e−y
2/4τ e−

|x−z|2
4 coth τe−

|x+z|2
4 tanh τ

(2π sinh 2τ)n/2 f (z) dz
dτ
τ3/2 . (3)

See [1] for more details.
Remark 2. The following results will be use along the paper. Let τ > 0.

(1) If τ < 1, then sinh τ ∼ τ, cosh τ ∼ C, coth τ ∼ 1
τ

and tanh τ ∼ τ.

(2) If τ > 1, then sinh τ ∼ eτ, cosh τ ∼ eτ, coth τ ∼ C and tanh τ ∼ C.
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(3) Let z ≥ 0 and α ≥ 0 there exist a constant Cα > 0 such that zαe−z ≤ Cαe−z/2.

As usual, by A ∼ B we mean there exist constants C1,C2 such that C1A ≤ B ≤ C2A.
We shall also need some expressions of hat kernel acting over constants functions. The

reader can be found the proofs of the following formulas in [1].

Lemma 3. For each x ∈ Rn and τ > 0, we have:

(1) e−yH1(x) =
e−

tanh(2y)
2 |x|2

(cosh(2y))n/2 .

(2) |∂ye−yH1(x)| ≤ C(min{y, 1} + |x|2)
e−

tanh(2y)
2 |x|2

(cosh(2y))n/2 .

Lemma 4. Let k ∈ N. Then for every x ∈ Rn and y > 0,∣∣∣∣ ∫
Rn
∂k
yWy(x, z)dz

∣∣∣∣ ≤ Ck

yk .

Proof. For k = 1, the proof follows easily by using Remark 2 and the estimate

|∂yWy(x, z)| ≤ C
e−

|2x−z|2 tanh y
c e−

|z|2 coth y
c

(sinh(2y))n/2y
.

For k ≥ 1 the proof is parallel. �

Remark 3. Observe that for bounded functions f , Lemma 4 assures that∥∥∥∂yWy f
∥∥∥

L∞(Rn) ≤ C‖ f ‖∞y−1. Therefore we can assume in the definition of ΛW
α/2 that y < 1.

By subordination the same fact occurs for ΛP
α .

Proposition 5. Let α > 0,

• If k = [α/2] + 1 and f is a function satisfying Mα[ f ] < ∞, then ‖∂k
yWy f ‖L∞(Rn) ≤

Cαy
−k+α/2 if, and only if, for m ≥ k, ‖∂m

y Wy f ‖L∞(Rn) ≤ Cmy
−m+α/2. Moreover, for each

m, Cm and Cα are comparable.

• If k = [α] + 1 and f is a function satisfying MP[ f ] =
∫
Rn

| f (x)|
(1+|x|)n+1 dx < ∞, then,

‖∂k
yPy f ‖L∞(Rn) ≤ Cky

−k+α if, and only if, for m ≥ k, ‖∂m
y Py f ‖L∞(Rn) ≤ Cmy

−m+α.

Proof. Let m ≥ [α/2] + 1 = k. By the semigroup property and Lemma 4 we have∣∣∣∣∂m
y Wy f (x)

∣∣∣∣ = C
∣∣∣∣∂m−k
y Wy/2(∂k

uWu f (x)
∣∣∣
u=y/2)

∣∣∣∣ ≤ C′α
1

ym−k y
−k+α/2 = Cmy

−m+α/2.

For the converse, the fact |∂`yWy f (x)| → 0 as y → ∞, allows us to integrate on y as many
times as we need to get ‖∂k

yWy f ‖L∞(Rn) ≤ Cα y
−k+α/2.

For the Poisson semigroup the proof is parallel. �

The following result appears for the first time in [2] in the case of Schrödinger operators.

Theorem 6. Let α > 0 . If f ∈ ΛW
α/2, then f ∈ ΛP

α . Moreover, S P
α[ f ] ≤ CS W

α [ f ].
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Proof. Let k = [α/2]+1 and f ∈ ΛW
α/2, then [α]+1 = [α/2+α/2]+1 ≤ [α/2]+[α/2]+2 = 2k.

By Proposition 5 it is enough to prove that ‖∂2k
y Py f ‖∞ ≤ Cy−(2k)+α.

Since ∂2
y

(
ye−

y2
4τ

τ3/2

)
= ∂τ

(
ye−

y2
4τ

τ3/2

)
, k-times integration by parts give

|∂2k
y Py f (x)| =

∣∣∣∣∣∣∣∣ 1
2
√
π

∫ ∞

0
∂2k
y

ye−
y2

4τ

τ3/2

 e−τH f (x)dτ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1
2
√
π

∫ ∞

0
∂k
τ

ye−
y2

4τ

τ3/2

 e−τH f (x)dτ

∣∣∣∣∣∣∣∣
=

1
2
√
π

∣∣∣∣∣∣∣∣
∫ ∞

0
(−1)k

ye−
y2

4τ

τ3/2

 ∂k
τe
−τL f (x)dτ

∣∣∣∣∣∣∣∣ ≤ C S W
α [ f ]

∫ ∞

0

ye−
y2

4τ

τ3/2 τ−k+α/2dτ

≤ C S W
α [ f ]y−2k+α.

�

Remark 4. It is clear that if f is a function such that (1 + | · |)α f ∈ L∞(Rn), then f ∈ L∞(Rn).
Therefore, the following Remark 5 establishes that in the definition of ΛW

α/2, we can consider
indistinctly f ∈ L∞(Rn) or (1 + |x|)α f ∈ L∞(Rn). The proposition was proved in the case L in
[2].
Remark 5. Let α > 0. If f is a bounded function such that ‖∂m

y Wy f ‖L∞(Rn) ≤ Cmy
−m+α/2,

m = [α/2] + 1, then |x|α f ∈ L∞(Rn).

Proof. We shall do the proof only in the case 0 < α < 1, for the other cases see [2]. Now for
|x| > 1 and 0 < α < 1 we have

|x|α| f (x)| ≤ |x|α sup
0<y< 1

|x|

|Wy f (x)| ≤ |x|α sup
0<y< 1

|x|

(
|Wy f (x) −W 1

|x|
f (x)| + |W 1

|x|
f (x)|

)

≤ |x|α sup
0<y< 1

|x|

∣∣∣∣∣∣∣
∫ 1

|x|

y

∂z1 Wz1 f (x)dz1

∣∣∣∣∣∣∣ + C‖ f ‖
Λ

Wy
α/2

≤ C|x|α sup
0<y< 1

|x|

∣∣∣∣∣∣∣
∫ 1

|x|

y

z−1+α
1 dz1

∣∣∣∣∣∣∣ + C‖ f ‖
Λ

Wy
α/2
≤ C.

�

Now we shall prove that (1) implies (2) in Theorem 1.
Suppose that f is a function that satisfies the conditions in (1). Let y < 1. By using that∫

Rn
∂yWy(x, z) f (x + z)dz =

∫
Rn
∂yWy(x,−z) f (x − z)dz, we can write

∂yWy f (x) =
1
2

∫
Rn
∂yWy(x, z)( f (x − z) + f (x + z) − 2 f (x))dz

+
1
2

∫
Rn

(
∂yWy(x, z) − ∂yWy(x,−z)

)
f (x − z)dz + f (x)∂ye−yH1(x)

= I + II + III.
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On the one hand, by using Remark 2 and Lemma 4 we have that

|I| ≤ C
∫
Rn

e−
|z|2 coth y

c e−
|2x−z|2 tanh y

c |z|α

(sinh(2y))n/2y
dz ≤ Cy−1+α/2.

Regarding II, observe that

∣∣∣∣ ∂yWy(x, z) − ∂yWy(x,−z)
∣∣∣∣ =

∣∣∣∣∣∣ ∂y
 e−

|z|2 coth y
4

(2π sinh(2y))n/2

[
e−

|2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣ ∂y
 e−

|z|2 coth y
4

(2π sinh(2y))n/2

 [e− |2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

]

+
e−

|z|2 coth y
4

(2π sinh(2y))n/2 ∂y

[
e−

|2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

] ∣∣∣∣∣∣
≤ Ce−

|z|2 coth y
4

(
|z|2

(sinh(y))2(sinh(2y))n/2 +
coth(2y)

(sinh(2y))n/2

) ∣∣∣∣∣e− |2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

∣∣∣∣∣
+

e−
|z|2 coth y

4

(2π sinh(2y))n/2

∣∣∣∣∣∣
∫ 1

−1
∂θ∂y

(
e−

|2x−θz|2 tanh y
4

)
dθ

∣∣∣∣∣∣
= IIa + IIb.

Observe that

∣∣∣∣∣e− |2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

−1
∂θe−

|2x−θz|2 tanh y
4 dθ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

−1
∇z(e−

|2x−θz|2 tanh y
4 ) · z dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

−1
e−

|2x−θz|2 tanh y
4 (

θ tanh y
2

(2x − θz) · z)dθ

∣∣∣∣∣∣
≤ C|z|(tanh y)1/2.

Therefore, by using Remark 2 we have that

|IIa| ≤ Ce−
|z|2 coth y

4

(
|z|3(tanh y)1/2

(sinh(y))2(sinh(2y))n/2 +
coth(2y)|z|(tanh y)1/2

(sinh(2y))n/2

)

≤ Ce−
|z|2
cy

(
|z|3

y3/2+n/2 +
|z|

y1/2+n/2

)
≤ C

e−
|z|2
cy

yn/2 .
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On the other hand, since

∣∣∣∣ ∫ 1

−1
∂θ∂y

(
e−

|2x−θz|2 tanh y
4

)
dθ

∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

−1
∇z∂y

(
e−

|2x−θz|2 tanh y
4

)
· z dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

−1
∂y

(
e−

|2x−θz|2 tanh y
4

θ tanh y
2

(2x − θz) · z
)

dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

−1
e−

|2x−θz|2 tanh y
4

(
−
θ tanh y

2
|2x − θz|2

4 cosh2(y)
(2x − θz) · z +

θ(2x − θz) · z
2 cosh2 y

)
dθ

∣∣∣∣∣∣
≤ C

|z|

(tanh y)1/2 cosh2 y
,

we have that |IIb| ≤ C e−
|z|2 coth y

4

(2π sinh(2y))n/2
|z|

(tanh y)1/2 cosh2 y
≤ C e−

|z|2
cy

yn/2 . Estimates IIa and IIb and the fact

that y < 1 allow us to get |II| ≤ C‖ f ‖∞y−1+α/2.
Finally, by using Remark 2 and Lemma 3 (2) we get

|III| ≤ C| f (x)|(1 + |x|2)
e−

tanh(2y)|x|2

2

(cosh(2y))n/2 ≤ C| f (x)|(1 + |x|2)e−cy|x|2

≤ C([ f ]Mα + ‖ f ‖∞)y−1+α/2.

This is the end of the proof of Theorem 1.

§3. Proof of Theorem 2.

Since ‖Wy f ‖∞ ≤ C‖ f ‖∞ and ‖∂`yWy f ‖∞ ≤ C ‖ f ‖∞
y`

for ` ∈ N, we can apply Fubini’s Theorem
and the derivatives and the integral commute.

Let f ∈ ΛW
α/2 and ` = [α/2 + β/2] + 1. Then

|∂`yWy((Id +H)−β/2 f (x))| =
∣∣∣∣∣ 1
Γ(β/2)

∫ ∞

0
e−t∂`yWy(Wt f )(x)tβ/2

dt
t

∣∣∣∣∣
≤ C

∫ ∞

0
e−t(∂`wWw f (x)

∣∣∣∣
w=y+t

)tβ/2
dt
t

≤ C
∫ ∞

0
e−t(y + t)−`+α/2tβ/2

dt
t

t
y=u
≤ Cyα/2+β/2−`

∫ ∞

0

uβ/2e−yu

(1 + u)`−α/2
du
u

≤ Cyα/2+β/2−`.

When f ∈ L∞(Rn) we proceed analogously by using that, for ` = [β/2]+1, ‖∂`yWyWν f ‖∞ ≤
C ‖ f ‖∞

y`
.
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§4. Remarks about Schrödinger operators

It can be checked that the Harmonic Oscillator, V(x) = |x|2, satisfies condition (1) for all
q < ∞. On the other hand, one of the fundamental tools in the theory of the operator L is the
so called “critical radius” ρ(x), x ∈ Rn, defined as

ρ(x) := sup
{
r > 0 :

1
rn−2

∫
B(x,r)

V(y)dy ≤ 1
}
. (4)

In the caseH , ρ(x) = 1
1+|x| . The function 1

1+|x| , appeared before the paper by Shen, [7], in the
historical work of Muckenhoupt, [6]. It was related with the Ornstein-Uhlenbeck operator on
the line. For the interested reader we refer to the paper [5]. In that paper it is shown that 1

1+|x| ,
n ≥ 1, shares all the properties of ρ(x). Of particular interest is the existence of a covering of
the space with balls of type B(x, 1

1+|x| ). All these remarks together say that Theorem 1 could
also be proved by changing in an appropriated way the proof given for the operator L in [2].
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