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STABILIZED VIRTUAL ELEMENT METHOD
FOR THE INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS
Diego Irisarri and Guillermo Hauke

Abstract. In this work, we present a discretization for the incompressible Navier-Stokes
equations based on the stabilized virtual element method (VEM). Basically, VEM can
be considered a generalization of FEM that enables a polynomial decomposition of the
domain. In this work, the concepts of stabilized methods are introduced in the VEM for-
mulation. Thus, stabilization terms are included in the variational form to circumvent the
Babuška-Brezzi condition and to stabilize the solution for convection dominated flows.
Numerical examples are presented to show the behavior of the method.
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§1. Introduction

The virtual element method (VEM) can be considered a generalization of the finite element
method (FEM) that allows a greater versatility in the partition of the domain. The basis of
VEM was established in [4, 5, 12]. Many works related to VEM have been published both in
the field of elasticity [6, 13, 19] and fluid mechanics [23, 10, 8, 9].

In this work, we address the stabilized VEM formulation for incompressible Navier-
Stokes equations. The VEM has already been applied to the Stokes problem [2, 8] and
the Navier-Stokes equations [9]. It is well known that the space for the velocity and pres-
sure cannot be selected arbitrarily since the Babuška-Brezzi condition or inf-sup condition
must be satisfied. However, stabilization terms can be introduced in the discretization in or-
der to circumvent the inf-sup condition. In this work, the concepts of stabilized methods
[15, 21, 22, 18, 26, 20, 16] are introduced in the VEM formulation for Navier-Stokes equa-
tions. This formulation enables to select the velocity and pressure spaces with equal order
interpolation functions. Thus, stabilization terms are included in the variational form to cir-
cumvent the Babuška-Brezzi condition and to stabilize the solution for convection dominated
flows. We consider the transient incompressible Navier-Stokes using a semi-discrete scheme
(see, for instance, [18, 17]).

§2. The incompressible Navier-Stokes equations

The problem is defined on a bounded domain Ω ⊂ RN , N = 2, 3. The boundary is partitioned
into two non-overlapping zones Γg and Γh such that Γg ∪ Γh = Γ and Γg ∩ Γh = �.

Let us set up the unsteady incompressible Navier-Stokes equations, given by
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

∂u
∂t

+ (∇u)u − 2ν∇ · ε(u) +
1
ρ
∇p = f in Ω × (0,T )

∇ · u = 0 in Ω × (0,T )
u = g on Γg × (0,T )

2νε(u)n = h on Γh × (0,T )
u = u0 in Ω at t = 0

(1)

where u and p are the unknown velocity and pressure, respectively. ρ is the fluid density, ν
represents the kinematic viscosity, f is the source term.

The tensor ε(u) is the symmetric part of the velocity gradient and is defined as

εi j =
1
2

(ui, j + u j,i) for i, j = 1, ..., nsd (2)

where nsd is the number of spatial dimensions, i.e., nsd = 2 for 2D and nsd = 3 for 3D.

2.1. Variational formulation

Firstly, we define the spaces for the test and trial functions,

V = {u(·, t) ∈ H1(Ω)nsd , t ∈ [0,T ] | u(·, t) = 0 on Γg}

S = {u(·, t) ∈ H1(Ω)nsd , t ∈ [0,T ] | u(·, t) = g on Γg}

P = Q = {q(·, t) ∈ L2(Ω) ∩ H1(Ω), t ∈ [0,T ] s.t.
∫

Ω

q(·, t)dΩ = 0}

The variational formulation is defined as: Find u ∈ S and p ∈ P such that

B(u, p; u, q) = F(u, q), (u, q) ∈ V × Q (4)

with

B(u, p; u, q) = d(u, u) + a(u, u) + c(u; u, u) + bm(p, u) + bc(u, q) (5)

where d(·, ·), a(·, ·), bm(·, ·), bc(·, ·) are bilinear forms and c(·; ·, ·) is the trilinear form that
represents the convective term,

d(u, u) =

(
∂u
∂t
, u

)
, a(u, u) =

(
νε(u), ε(u)

)
, c(w; u, u) = ((∇u)w, u

)
bm(p, u) =

(
∇p, u

)
, bc(u, q) =

(
∇ · u, q

) (6)

and

F(u, q) = ( f , u) + (h, u)Γh (7)
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§3. Virtual element method discretization

In this section, we show the VEM discretization of the variational form (4) using a first order
approximation. The domain Ω is decomposed into a partition Th composed of polygons K,
and let Eh be the set of edges e of Th. Let Ω̃ denote the union of the polygons, Ω̃ =

⋃nel
e=1 K

where nel is the number of polygons. In this work, linear elements are employed. We define
the following initial local space defined on each element:

Ṽh(K) := {v ∈ C0(K) : v|e ∈ P1(e) ∀ e ⊂ ∂K,∆v ∈ P1(K)},

where P1(K) are the polynomials of degree 1 on the polygon K. In Ṽh(K), we can take the
values of v ∈ Ṽh(K) at the vertices as degrees of freedom, dof. Then, the number of degrees
of freedom in K is equal to the number of vertices NV .

We define the following projectors in K:

• the H1-seminorm projection Π
∇,K
1 : [Ṽh(K)]nsd → [P1(K)]nsd ,∫

K
∇(Π∇1 u − u) : ∇p1 dx = 0 and

∫
∂K

(Π∇1 u − u) ds = 0 ∀p1 ∈ P1, (8)

• the L2-projection for scalar functions Π
0,K
k : Ṽh → Pk(K) is defined locally as∫

K
(v − Π0

kv) pk dx = 0 ∀pk ∈ Pk for k = 0 and k = 1. (9)

We can now introduce the local Virtual Element space:

Vh(K) := {v ∈ Ṽh(K) :
∫

K
v p1 dx =

∫
K

Π∇1 v p1 dx ∀ p1 ∈ P1(K)}. (10)

The dimension of Vh(K) is Ndof = NV as the same as the degrees of freedom which are
unisolvent with respect to Vh(K) [1].

The global virtual spaces defined for the unknown variables of the discrete problem are

Vu
h := {u ∈ [H1(Ω)]nsd : u|K ∈ [Vh(K)]nsd ∀K ∈ Th} (11)

Qh := {q ∈ H1(Ω) s. t.
∫

Ω

q dΩ = 0 : q|K ∈ Vh(K) ∀K ∈ Th}. (12)

The basis functions on each element K, ϕi ∈ Ṽh(K), are defined, as happens in FEM, as
the canonical basis functions, dofi(ϕ j) = δi j for i, j = 1, ...,Ndof . We recall that the basis
functions for the velocity and pressure are the same. Thus, the unknown variables (uh, ph)
are expressed as a linear combination of these basis functions,

uh =

Ndof∑
i=1

dofi(uh)ϕi ph =

Ndof∑
i=1

dofi(ph)ϕi. (13)

The Galerkin formulation reads: Find (uh, ph) ∈ Vu
h × Qh such that
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B(uh, ph; uh, qh) = F(uh, qh), for all (uh, qh) ∈ Vh × Ph (14)

with

B(uh, ph; uh, qh) = d(uh, uh) + a(uh, uh) + c(uh; uh, uh) + bm(ph, u) + bc(uh, qh) (15)

where the bilinear forms d(·, ·), a(·, ·), bm(·, ·), bc(·, ·) and the trilinear form c(·; ·, ·) are

d(uh, uh) =
∑

K

dK(uh, uh) =
∑

K

(∂uh

∂t
, uh

)
K

a(uh, uh) =
∑

K

aK(uh, uh) =
∑

K

(νε(uh), ε(uh))K

c(uh; uh, uh) =
∑

K

cK(uh; uh, uh) =
∑

K

((∇uh)uh, uh)K

bm(ph, uh) =
∑

K

bK
m(ph, uh) =

∑
K

(∇ph, uh)K

bc,h(uh, qh) =
∑

K

bK
c (uh, qh) =

∑
K

(∇ · u, qh)K .

(16)

The discrete terms belonging to B(·, ·) are computable using the projector operators and
the degrees of freedom. Thus, we define the approximate bilinear and trilinear forms:

aK
h (uh, uh) =

∫
K
νΠ0

0∇uh : Π0
0∇uhdΩ + SK

ν

(
(I − Π∇1 )uh, (I − Π∇1 )uh

)
dK

h (uh, uh) =

∫
K

∂

∂t
Π0

1uh · Π
0
1uhdΩ + SK

t
(
(I − Π0

1)uh, (I − Π0
1)uh

)
cK

h (uh; uh, uh) =

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
· Π0

1uh dΩ

bK
m,h(uh, uh) =

∫
K

Π0
0∇ph · Π

0
1uh dΩ

bK
c,h(uh, uh) =

∫
K

(Π0
0∇ · uh)(Π0

1qh) dΩ

(17)

where the VEM-stabilization terms SK
α are necessary for stability [1] and will be explained

later.
In this work, the stabilized VEM that is proposed uses a linear approximation (k = 1)

both for the velocity and the pressure. Thus, the degrees of freedom of pressure and velocity
are the values at the vertices. We have followed the work of Franca et al. [18] to stabilize the
VEM formulation. As it is well known, in stabilized methods additional terms are included
in the Galerkin formulation that consist in weighting the residual by a determined differential
operator (related to the differential equation) applied to the test functions. Besides, a general-
ized trapezoidal method is employed for the temporal term in order to reach the steady-state
solutions and deal with the nonlinearity of the equations.

The stabilized VEM formulation includes additional terms to circumvent the Babuška-
Brezzi condition and to obtain a stable solution for convection dominated flows. This formu-
lation can be written as:
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Find (uh, ph) ∈ Vu
h × Qh such that

B(uh, ph; uh, qh) + Bτ(uh, ph; uh, qh) = F(uh, qh) + Fτ(uh, qh)
for all (uh, qh) ∈ Vh × Ph

(18)

where

Bτ(uh, ph; u, q) =
∑
K∈Ω̃

((∂uh

∂t
+ (∇uh)uh + ∇ph − 2ν∇ · ε(uh),

τ
(
(∇uh)uh + ∇qh ± 2ν∇ · ε(uh)

))
+ (∇ · uh, δ∇ · uh)

)
K

(19)

Fτ(uh, q) =
∑
K∈Ω̃

(
f , τ

(
(∇uh)uh + ∇qh ± 2ν∇ · ε(uh)

))
K

(20)

where τ and δ are the stability parameters. They are taken from the work of Codina [16],

τ =

(c1ν

h2 +
c2‖uh‖L∞(K)

h

)−1
δ =

c3h2

τ
. (21)

The constants c1, c2 and c3 are taken as c1 = 4, c2 = 2 and c3 = 1. Other possibilities for
non-regular elements can be found in [3]. The value of h (length of the element) is taken as
h =
√
|K|, where |K| is the area of the element.

We observe that the operators Bτ(·, ·) and Fτ(·) correspond to the stabilization terms. Since
we only consider k = 1, the terms containing ∇ · ε(uh) disappear because ∇ · ε(uh) = 0. The
stabilized terms for the momentum and continuity equations are defined as follows.
· Stabilized terms for the momentum equations

τ

(
∂uh

∂t
, (∇uh)uh

)
= τ

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
· Π0

1
∂uh

∂t
dΩ

τ((∇uh)uh, (∇uh)uh) = τ

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
·
[
(Π0

0∇uh)(Π0
1uh)

]
dΩ

τ(∇ph, (∇uh)uh) = τ

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
· (Π0

0∇qh) dΩ

τ(
∂uh

∂t
,∇qh) = τ

∫
K

(Π0
0∇qh) · Π0

1
∂uh

∂t
dΩ

τ((∇uh)uh,∇qh) = τ

∫
K

(Π0
0∇qh) ·

[
(Π0

0∇uh)(Π0
1uh)

]
dΩ

τ(∇ph,∇qh) = τ

∫
K

(Π0
0∇qh) · (Π0

0∇ph) + SK
p ((I − Π∇1 )ph, (I − Π∇1 )qh) dΩ

(22)

· Stabilized terms for the continuity equation

δ(∇ · uh,∇ · uh) = δ

∫
K

(Π0
0∇ · uh)(Π0

0∇ · uh) dΩ (23)
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We observe that in the presented VEM formulation, there appear some terms called
SK
α (·, ·) which are the VEM-stabilization part, for α = ν, t, p. These terms are a peculiar-

ity of VEM and they emerge from the projection of the basis functions. In order to compute
the above mentioned matrices, we decompose the basis functions as ϕ = Πϕ + (I − Π)ϕ.
Therefore, we project the basis functions, Πϕ, from the virtual space to a determined poly-
nomial space. Thus, these terms that involve the projection of the variables, both Π∇k and Π0

k ,
can be computed exactly via numerical integration and they ensure consistency. However,
a peculiarity of VEM is that the kernel of these projections, (I − Π)ϕ, must be considered
for some terms to ensure the VEM stability [7, 4]. The terms SK

α (,̇·) take into account the
terms (I − Π)ϕ which are not considered by the consistency part. The only condition is that
SK
α (,̇·) scales as the consistency part. In this case, it has been observed numerically that three

stability terms must be considered.
The term SK

α (,̇·) can be selected in different ways. A rigorous work on the stability term
can be found in [7, 11]. In [27, 19] are proposed different definitions for the VEM stabilization
term SK . The authors exploited the flexibility of selecting this term in order to improve the
characteristics of the method. Here, we define them as follows:

• The diffusion term,

SK
ν

(
(I − Π∇1 )uh, (I − Π∇1 )uh

)
≈ ν

[
(I − Π∇1 )−→u h

]T [
(I − Π∇1 )−→v Mx

h
]

+ν
[
(I − Π∇1 )−→v h

]T [
(I − Π∇1 )−→v My

h
] (24)

• The temporal term,

SK
t ((I − Π0

1)uh, (I − Π0
1)uh) ≈ h2

K
[
(I − Π0

1)−→u h
]T [

(I − Π0
1)−→v Mx

h
]

+h2
K
[
(I − Π0

1)−→v h
]T [

(I − Π0
1)−→v My

h
] (25)

• The stability term, τ(∇qh,∇ph)

SK
p
(
(I − Π∇1 )ph, (I − Π∇1 )qh

)
≈

[
(I − Π∇1 )−→p h

]T [
(I − Π∇1 )−→q h

]
(26)

with −→u h, −→u h and −→p h being the vector containing the degrees of freedom of uh, vh and ph in
the element K, respectively. That is to say,

uh|K =

Ndof,K∑
i=1

[−→u h]iϕi, vh|K =

Ndof,K∑
i=1

[−→v h]iϕi and ph|K =

Ndof,K∑
i=1

[−→p h]iϕi, (27)

where Ndof,K are the degrees of freedom in K. Similarly, we have that −→v Mx
h , −→v My

h and −→q h

are the degrees of freedom for the test function in the x-momentum equation, y-momentum
equation and continuity equation.

Whereas the VEM-stabilization term in the diffusion SK
ν is the classical choice in VEM,

see for instance [4], we have considered two more VEM stabilizing terms. The temporal term
stabilization is only necessary to be considered when the temporal term is dominant. However
it has been observed that it improves considerably the condition number of the matrix. On the
other hand, the term SK

p is very important in order to obtain a proper solution since it helps
to penalize those non-physical oscillations of the pressure.
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Figure 1: Domain dimensions and mesh.

As for the source term, it is approximated by

( f h, uh) =
∑
K∈Th

( f h, uh)K =
∑
K∈Th

∫
K

Π0
1 f · uh dΩ =

∑
K∈Th

∫
K

f · Π0
1uh dΩ (28)

where Eq. (28) expresses the RHS and it is computable using the degrees of freedom.
In the discrete problem, there are terms with derivatives of the velocities with respect to

time that represent the evolution of the velocity field.
We consider the generalized trapezoidal rule given by the following predictor multi-

corrector algorithm [18]. We name a = ∂u
∂t the acceleration. For the purpose of integrating in

time, we write Eq. (18) separating the terms that include the acceleration a and the others,

M(ah) + K(uh, ph) = F + Fτ (29)

where, for the sake of simplicity, we use now ah, uh and ph to denote the vectors including
the global degrees of freedom of the acceleration, velocity and pressure, respectively. In [24]
the time integration algorithm is explained in more detail.

§4. Numerical examples: Flow around a circular cylinder

This problem has been studied extensively in the literature, see for instance [14] and its ref-
erences. The flow around the circular cylinder depends on the Reynolds number which is
defined as Re = U·D

ν
, where U is the incoming flow velocity, D is the diameter, and ν is the

kinematic viscosity. The domain is depicted in Fig. 1 and the mesh consists of hexagonal
elements generated by PolyMesher, [25]. We have employed 8000 elements. We impose the
velocity (u, v) = (1, 0) on the outer boundary except on the right boundary where natural out-
flow boundary conditions are set. The no-slip boundary condition is applied on the cylinder
surface. Fig. 2 represents the velocity and pressure magnitudes for Re = 25.

We have simulated this problem for Reynolds number up to 45 in which the steady flow
becomes unstable. It is well-known that for Re that range from 6 to 45 approx. the flow is
symmetric with two vortices behind the cylinder, see Fig. 3. In contrast, for higher Re, a
Hopf bifurcation arises producing unstable flow.

As we can observed the numerical solution is stable and similar to the expected one for
this problem. Also, in comparison with the use of FEM and stabilized methods, the solution
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(a) Velocity field (b) Pressure

Figure 2: Velocity field and pressure. Re = 25.

(a) Re = 5 (b) Re = 10 (c) Re = 15

(d) Re = 25 (e) Re = 30 (f) Re = 45

Figure 3: Streamlines for several Reynolds numbers.

is close to the VEM solution we have presented [18, 24]. In [24], there are more numerical
examples related to this work.

§5. Conclusions

In this work, the Navier-Stokes equations are discretized using VEM. The numerical method
is based on the theory of stabilized methods. Thus, this method enables to select the velocity
and pressure spaces with equal order interpolation functions circumventing the Babuška-
Brezzi condition. Also, it can be applied to convection dominated flows since stabilization
terms are considered. Numerical examples show the good performance of the method.
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