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CONVERGENCE AND ERROR ESTIMATES
FOR THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS
Thierry Gallouët

Abstract. We are interested in the paper by the discretization of the (unsteady and sta-
tionary) compressible (isentropic) Navier-Stokes Equations with the Marker-And- Cell
scheme. We present recent results for the convergence (as the discretization parameter
goes to zero) of the approximate solutions to a weak solution of the continuous equations
and error estimates when the solution of the continuous equations is regular enough.
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§1. Introduction

I present in this paper some results obtained with R. Eymard, R. Herbin, J. C. Latché, D.
Maltese and A. Novotny.

Let Ω be a bounded open connected set of R3 with a Lipschitz continuous boundary,
T > 0, γ > 3/2, u0 ∈ L2(Ω), ρ0 ∈ Lγ(Ω) and f ∈ L2(]0,T [, L2(Ω)3). The compressible
Navier-Stokes equations read

∂tρ + div(ρu) = 0 in Ω×]0,T [, (mass equation) (1)
∂t(ρu) + div(ρu ⊗ u) − ∆u + grad p = f in Ω×]0,T [, (momentum equation) (2)
p = ργ in Ω×]0,T [. (Equation Of State) (3)

To this system, we add a Dirichlet boundary condition,

u = 0 on ∂Ω×]0,T [, (4)

and an initial condition
u(·, 0) = u0, ρ(·, 0) = ρ0 on ∂Ω. (5)

The main unknowns of Problem (1)-(5) are u and ρ (then, p is given with (3)). Under
the assumption ρ0 > 0 a.e. on Ω and

∫
Ω

( 1
2ρ0|u0|

2 + ρ
γ
0/(γ − 1))dx < +∞, existence of

a weak solution (u, ρ) to (1)-(5) is known (but no uniqueness in general) since the works
of P.-L. Lions [18] and E. Feireisl and coauthors [5], [6]. This weak solution sastifies
ρ ∈ L∞(]0,T [, Lγ(Ω)), ρ ≥ 0 a.e., u ∈ L2([0,T [,H1

0(Ω)3) and ρ|u|2 ∈ L∞(]0,T [, L1(Ω)).
Futhermore,

∫
Ω
ρ(x, t)dx =

∫
Ω
ρ0(x)dx a.e.. In particular, such a weak solution has a finite

energy. More precisely, for a.e. t in ]0,T [, if f = 0,∫
Ω

(
1
2
ρ|u|2 +

ργ

γ − 1
)(t) dx +

∫ t

0

∫
Ω

| grad u|2 dxdτ ≤
∫

Ω

(
1
2
ρ0|u0|

2 +
ρ
γ
0

γ − 1
)dx. (6)
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It is said that this weak solution is a “suitable” solution.
We are also interested by the stationary compressible Navier Stokes equations. In this

case, Ω is a bounded open set of R3, with a Lipschitz continuous boundary, γ > 3/2, f ∈
L2(Ω)3 and M > 0. The equations read

div(ρu) = 0 in Ω, (7)
div(ρu ⊗ u) − ∆u + grad p = f in Ω, (8)
p = ργ in Ω. (9)

To this system, we add a Dirichlet boundary condition,

u = 0 on ∂Ω×]0,T [, (10)

and
ρ ≥ 0 a.e.

∫
Ω

ρ(x)dx = M. (11)

Here also, the main unknowns of Problem (7)-(11) are u and ρ (and p is given with (9)).
Existence of a weak solution (u, ρ) to (7)-(11) is known (but no uniqueness) with u ∈ H1

0(Ω)3

and ρ ∈ Lγ(Ω), at least for γ > 5/3, see for instance [19], [20]. Indeed, the “optimal” space
for this weak solution depends on γ (except for u which always belongs to H1

0(Ω)3). If γ > 3,
ρ ∈ L2γ(Ω) and then p ∈ L2(Ω). If γ < 3, ρ ∈ Lγδ(Ω), with δ = 3(γ−1)/γ, and then p ∈ Lδ(Ω).
In particular, the function ρ belongs to L2(Ω) for γ ≥ 5/3.
Remark 1. For γ = 3/2, one has q̄ = 3(γ − 1)/γ = 1, and γδ = 3(γ − 1) = 3/2, so that
the natural spaces for p, ρ,u seem to be p ∈ L1(Ω), ρ ∈ L

3
2 (Ω), u ∈ H1

0(Ω)3. Using the
Sobolev embedding H1

0(Ω) ⊂ L6(Ω) these natural spaces gives ρu ⊗ u ∈ L1(Ω)3. This is a
reason for the limitation γ > 3/2. However, in the case of the stationary compressible Stokes
equations (that is without this term ρu ⊗ u in (8)), one has a weak solution with p ∈ L2(Ω)
(and ρ ∈ L2γ(Ω)) and there is no restriction on γ in the sense that we can take γ ≥ 1 (see for
instance [4, 3] for γ > 1 and [9] for γ = 1).

For this two problems (Compressible Navier-Stokes Equations and Stationary Compress-
ible Navier-Stokes Equations, namely Problem (1)-(5) and Problem (7)-(11)) we are inter-
ested by the discretized models obtained with the Marker-And-Cell scheme (MAC in short)
and, for the unsteady problem, with an implicit discretization in time. The reason of this
choice is that the MAC scheme is widely used in computational fluid dynamics. It was intro-
duced in [16] and considered (since the beginning) as a suitable space discretization for both
incompressible and compressible flow problems (see [14, 15] for the seminal papers and [23]
for a review). We refer to [3], [10], [12] for a description of the MAC scheme. Of course, we
have to consider a domain Ω adapted to the discretization by the MAC scheme.

Admitting the existence of an approximate solution, that is a solution of the discretized
problem (this existence can be proven), two questions ares interesting:

1. Is it possible to prove convergence (up to the subsequence) of the approximate solution
to the weak solution of the continuous problem as the mesh size goes to 0 (and also the
time step in the evolution case) ?

2. In case of uniqueness of the solution of the continuous problem, is it possible to obtain
error estimates and what are they ?
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The answer for this two questions are partially known, it remains some open questions
(and the known results are completely different between the unsteady case and the steady
case) :

1. For the stationary compressible Navier-Stokes problem (namely (7)-(11)), we prove,
for γ > 3, convergence (up to the subsequence) of the approximate solution to the
(weak) solution of (7)-(11) as the mesh size goes to 0, see [10]. But it is an open
problem for 3/2 < γ ≤ 3. Note that for γ > 3 the proof of convergence given in [10]
also gives existence of a weak solution to (7)-(11) since the existence of an approximate
solution is also proven in [10].

2. For the compressible Navier-Stokes problem (namely (1)-(5)), the convergence of the
approximate solution, up to a subsequence, to the solution of the continuous problem
is probably true, but we do not have a complete proof.

3. For the compressible Navier-Stokes problem (namely (1)-(5)), if the solution of the
continuous problem is regular enough (then we call it a “strong solution”), we obtain,
for γ > 3/2 an error estimate, cf. [12] for the case f = 0. The rate of convergence
obtained in [12] depends on γ and is probably not optimal.

4. For the stationary compressible Navier-Stokes problem, even when the solution of the
continuous problem is regular, we are not able to obtain error estimates.

Remark 2. It is possible to obtain some convergence results or some error estimates with other
schemes than the MAC scheme. For instance, a convergence result is given for the unsteady
compressible Navier-Stokes equations in [17] with a FV-FE scheme, albeit only in the case
γ > 3 (the difficulty in the realistic case γ ≤ 3 arise from the treatment of the non linear
convection term). Some error estimates (when the solution of these unsteady compressible
Navier-Stokes equations is regular enough) have been derived for this FV-FE scheme in [11]
if γ > 3/2.

§2. Error estimates

2.1. For the compressible Navier-Stokes problem

For the compressible Navier-Stokes problem the proof of an error estimate, that is the compar-
ison of a “strong” solution of Problem (1)-(5) and an approximate solution (that is a solution
given by the MAC-scheme in space and an Euler-backward scheme in time) is very close to
the so called “weak-strong uniqueness principle", which is the comparison of a “strong” so-
lution and a weak solution of Problem (1)-(5). Indeed, the weak-strong uniqueness principle
states that if Problem (1)-(5) has a regular enough solution (the main hypothesis on the solu-
tion is the fact that div u ∈ L1(]0,T [, L∞(Ω)) and grad p ∈ L1(]0,T [, L∞(Ω))) then Problem
(1)-(5) has a unique weak solution (and this solution is equal to the strong solution).

This idea of the weak-strong uniqueness principle comes back to G. Prodi [21] (1959)
and J. Serrin [22] (1963) for the case of Incompressible Navier-Stokes Equations. For the
compressible isentropic Navier-Stokes equations, the first result is probably in [13]. More
general Equation Of State are considered in [6].
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For the compressible Navier-Stokes equations, the proof of this weak-strong uniqueness
principle uses the so-called “relative entropy” introduced by C. M. Dafermos for Euler Equa-
tions [2]. In other papers, the “relative entropy” is called “modulated energy”. We will use
below the term “relative energy” which seems to be more adapted to our system of equations.

We first describe in Sec. 2.2 this weak-strong uniqueness principle in a very simple case
containing the main idea of the method.

2.2. Weak-strong uniqueness principle, simple case

We present in this section the weak-strong uniqueness principle in the case of the compress-
ible Stokes equations with γ = 2 and f = 0. The set Ω is still a bounded open connected set
of R3, with a Lipschitz continuous boundary and T > 0. The problem read

∂tρ + div(ρu) = 0 in Ω×]0,T [, (12)
∂tu − ∆u + grad p = 0 in Ω×]0,T [, (13)

p = ρ2 in Ω×]0,T [. (14)

with a Dirichlet boundary condition,

u = 0 on ∂Ω×]0,T [, (15)

and an initial condition
u(·, 0) = u0, ρ(·, 0) = ρ0 on ∂Ω. (16)

Let (ū, ρ̄, p̄) be a regular solution of (12)-(16) (we call it ”strong solution”) and let (u, ρ, p)
be a suitable weak solution of (12)-(16).

The idea of the proof is to use a Gronwall inequality on the “relative energy" between (u,
ρ) and (ū, ρ̄) which reads in this case (Stokes Equations, γ = 2), for t ∈ [0,T ],

Et(u, ρ | ū, ρ̄) =

∫
Ω

(
1
2
|u(t) − ū(t)|2 + |ρ(t) − ρ̄(t)|2) dx.

Note that this quantity is indeed well defined for any t, thanks to some continuity which can
be proven for u and ρ. We now transform formally the quantity Et(u, ρ | ū, ρ̄) in three steps,
using (12)-(16).

Step 1 Energy Inequalities for the suitable weak solution and for the strong solution
We formally take u as test function in the momentum equation for u (Equation (13)) to

obtain, for t ∈ [0,T ],

1
2

∫
Ω

|u|2(t) dx +

∫ t

0

∫
Ω

(| grad u|2 − p div u) dxdτ =
1
2

∫
Ω

|u0|
2dx. (17)

We formally take ρ as test function in the mass equation (Equation (12)) to obtain

1
2

∫
Ω

ρ2(t) dx −
1
2

∫
Ω

ρ2
0 dx −

∫ t

0

∫
Ω

ρu · grad ρ dxdτ = 0.



Convergence and error estimates for the compressible Navier-Stokes equations 99

But, since ρ2 = p,∫ t

0

∫
Ω

ρu · grad ρ dxdτ =
1
2

∫ t

0

∫
Ω

u · grad(ρ2) dxdτ = −
1
2

∫ t

0

∫
Ω

p div u dxdτ

and then ∫
Ω

ρ2(t) dx +

∫ t

0

∫
Ω

p div u dxdτ =

∫
Ω

ρ2
0 dx. (18)

Then, adding Equations (17) and (18) gives for all t ∈ [0,T ],

1
2

∫
Ω

|u|2(t) dx +

∫
Ω

ρ2(t) dx +

∫ t

0

∫
Ω

(| grad u|2 dxdτ =
1
2

∫
Ω

|u0|
2dx +

∫
Ω

ρ2
0 dx.

Indeed, this is Inequality (6) with an equality instead of an inequality, but the computation
here is formal. For the suitable weak solution, one has Inequality (6) which is here

1
2

∫
Ω

|u|2(t) dx +

∫
Ω

ρ2(t) dx +

∫ t

0

∫
Ω

(| grad u|2 dxdτ ≤
1
2

∫
Ω

|u0|
2dx +

∫
Ω

ρ2
0 dx. (19)

For the the strong solution (which is “more” than a suitable weak solution), one has also

1
2

∫
Ω

|ū|2(t) dx +

∫
Ω

ρ̄2(t) dx +

∫ t

0

∫
Ω

(| grad ū|2 dxdτ ≤
1
2

∫
Ω

|u0|
2dx +

∫
Ω

ρ2
0 dx. (20)

Using (19) and (20), for all t,

Et(u, ρ | ū, ρ̄) =

∫
Ω

(
1
2
|u(t) − ū(t)|2 + |ρ − ρ̄|2) dx ≤

−

∫
Ω

u(t) · ū(t) dx − 2
∫

Ω

ρ(t)ρ̄(t) dx −
∫ t

0

∫
Ω

(| grad u|2 + | grad ū|2) dxdτ

+

∫
Ω

|u0|
2 dx + 2

∫
Ω

|ρ0|
2 dx, (21)

We have now to transform the two first terms of the right hand side of (21).
Step 2 Transformation of

∫
Ω
ρ(t)ρ̄(t) dx.

Using the regularity of the strong solution, we can take ρ̄ as test function in the mass
equation for the weak solution (Equation (12)) and ρ as test function in the mass equation for
the strong solution. This gives∫ t

0

∫
Ω

(∂tρ)ρ̄ dxdτ −
∫ t

0

∫
Ω

ρu · grad ρ̄ dxdτ = 0,

∫ t

0

∫
Ω

(∂tρ̄)ρ dxdτ +

∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ = 0.

The non-symmetry between these two equalities is due to fact that (u, ρ) is only a weak
solution. Adding the two equations leads to∫

Ω

ρ̄(t)ρ(t) dx −
∫

Ω

ρ2
0 dx =

∫ t

0

∫
Ω

ρu · grad ρ̄ dxdτ −
∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ. (22)
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Step 3 Transformation of
∫

Ω
u(t) · ū(t) dx.

Using, here also, the regularity of the strong solution, we can take ū as test function in
the momentum equation for the weak solution (Equation (13)) and u as test function in the
momentum equation for the strong solution. This gives∫ t

0

∫
Ω

(∂tu)ū dxdτ +

∫ t

0

∫
Ω

(grad u : grad ū − p div(ū)) dxdτ = 0,

∫ t

0

∫
Ω

(∂tū)u dxdτ +

∫ T

0

∫
Ω

(grad u : grad ū + u · grad p̄) dxdτ = 0.

Adding the two equations leads to

∫
Ω

ū(t) ·u(t) dx−
∫

Ω

|u0|
2 dx =

∫ t

0

∫
Ω

(−2 grad u : grad ū + p div(ū)−u · grad p̄) dxdτ. (23)

Step 4 End of the proof of the weak strong uniqueness principle

We use (22) and (23) to transform (21). We obtain

Et(u, ρ | ū, ρ̄) ≤ −
∫ t

0

∫
Ω

| grad u − grad ū|2 dxdτ −
∫ t

0

∫
Ω

(p div(ū) − u · grad p̄) dxdτ

− 2
∫ t

0

∫
Ω

ρu · grad ρ̄ dxdτ + 2
∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ.

Using p = ρ2, p̄ = ρ̄2,
∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ =
∫ t

0

∫
Ω

(ρ̄ρ div(ū) + ρū · grad ρ̄) dxdτ and∫ t
0

∫
Ω

(div(ū)ρ̄2 + 2ūρ̄ · grad ρ̄)dxdτ = 0, this inequality can be rewritten as

Et(u, ρ | ū, ρ̄) ≤
∫ t

0

∫
Ω

(−| grad u − grad ū|2 − (ρ − ρ̄)2 div(ū) − 2(ρ̄ − ρ)(ū − u) · grad ρ̄) dxdτ.

and then

Et(u, ρ | ū, ρ̄) ≤
∫ t

0

∫
Ω

(−(ρ − ρ̄)2 div(ū) − 2(ρ̄ − ρ)(ū − u) · grad ρ̄) dxdτ. (24)

Setting ϕ(t) = Et(ρ,u|ρ̄, ū) = 1
2

∫
Ω
|u(t)− ū(t)|2 dx+

∫
Ω

(ρ(t)− ρ̄(t))2 dx, using Cauchy-Schwarz
Inequality for the last term, we obtain from (24), since div ū ∈ L1(]0,T [, L∞(Ω)) and grad ρ̄ ∈
L1(]0,T [, L∞(Ω)),

ϕ(t) ≤ C
∫ t

0
a(τ)ϕ(τ)dτ for all t ∈ [0,T ],

with some a ∈ L1(]0,T [). This gives, by Gronwall Inequality, ϕ(t) ≤ ϕ(0)e
∫ t

0 a(τ)dτ and then,
since ϕ(0) = 0, ϕ(t) = 0 for all t ∈ [0,T ]. The weak-strong uniqueness principle is then
proven for this simple case (compressible Stokes equations with γ = 2 and f = 0).
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2.3. Error estimate for the compressible Navier Stokes equations
We consider here the compressible Navier Stokes system (1)-(5) with f = 0, γ > 3/2 and a
domain Ω adapted to the MAC scheme (for instance, Ω =]0, 1[3). Mimicking the previous
proof of uniqueness (given in Sec. 2.2) at the discrete level it is possible to obtain error esti-
mates, that is an estimate between a strong solution (we assume existence of such a solution)
and the approximate solution given by a numerical scheme (roughly speaking it is not so far
of a weak solution with some errors due to the discretization). Instead of a suitable weak
solution (ρ, u), we use now the solution of the scheme (that is the solution obtained with a
space discretization using the MAC scheme and an Euler-backward discretiztation in time).
This numerical solution is denoted by (u, ρ) and the strong solution is denoted by (u, ρ̄). The
energy is now

Et(u, ρ | ū, ρ̄) =

∫
Ω

(
1
2
ρ|u(t) − ū(t)|2 + e(ρ(t)|ρ̄(t))) dx,

with e(ρ|ρ̄) = ργ − ρ̄γ−1γ(ρ − ρ̄) − ρ̄γ. Note that e(ρ|ρ̄) = 0 if and only if ρ = ρ̄.
If h is the mesh size and k the time step, the error estimate given in [12] is

Et(ρ, u|ρ̄, ū) ≤ C(hα + k1/2) for all 0 ≤ t ≤ T,

where C depends only on the strong solution and on the regularity of the mesh and α =

min( 2γ−3
γ
, 1

2 ). For γ = 2, one has α = 1/2 and Et is the L2-norm of (ρ − ρ̄) plus the L2-norm
of (u − ū) weighted by ρ (and we have ρ > 0 a.e.).

2.4. For the stationary compressible Navier-Stokes problem
We are not able to give error estimates for the stationary compressible Navier-Stokes problem
(that is problem (7)-(11)) as we did for the compressible Navier-Stokes problem in Sec. 2.3.
The proof in Sec. 2.3 follows closely the proof of the weak-strong uniqueness principle.
A crucial tool in the proof of weak-strong uniqueness principle is the use of the Gronwall
inequality. Then a natural question is “What can play the role of Gronwall Inequality for
stationary problems” ?

We present below a very simple example where uniqueness in the unsteady case follows
easily from the Gronwall inequality and uniqueness is also true in the stationary case, with a
trick which has some similarity with the Gronwall inequality. Unfortunately, we are not able
to adapt the same trick in the case of the stationary compressible Navier-Stokes problem.

Let Ω be a bounded open set of R3, T > 0, w ∈ L∞(Ω)3, f ∈ L2(]0,T [, L2(Ω)), u0 ∈ L2(Ω)
and ϕ be Lipschitz continuous function from R to R. We consider the following problem,

∂tu + div(wϕ(u)) − ∆u = f in Ω×]0,T [,
u(·, t) = 0 on ∂Ω for all t ∈]0,T [,

u(·, 0) = u0 on ∂Ω.

For this problem, one has existence of the solution in the space L2(]0,T [,H1
0(Ω)) and the

solution is continuous with value in L2(Ω). Uniqueness easily follows from a Gronwall in-
equality.
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We now consider the stationary case, that is f ∈ L2(Ω) (and still w ∈ L∞(Ω)3, ϕ Lipschitz
continuous) and the stationary problem reads

div(wϕ(u)) − ∆u = f in Ω,

u(·, t) = 0 on ∂Ω.

Note that we do not have any hypothesis on div(w). Then, we may have a non-coercive
differential operator.

For this problem, it is possible to prove existence in the space H1
0(Ω) (for instance cf. [8],

Exercice 3.5). But, for this problem, it is also possible to prove uniqueness. If u and ū
are two solutions, the idea is to take Tε(u − ū) (ε > 0) as test function, where Tε(s) =

max(−ε,min(s, ε)) for s ∈ R.
Using in particular Sobolev Injection of W1,1

0 (Ω) in L1? (Ω) (with 1? = 3/2 since Ω ⊂ R3)
and letting ε→ 0 allows us to conclude u = ū a.e.. (for instance, cf. [1] or [8] Exercice 3.6.)

§3. Convergence results

3.1. For the stationary compressible Navier-Stokes problem
For the stationary compressible Navier-Stokes equations (7)-(11) discretized with a MAC
scheme (of course, we assume that Ω is adapted to the MAC scheme), we prove (cf. [10])
convergence of the approximate solution (up to a subsequence) to a weak solution, in the
case γ > 3 (and f ∈ L2(Ω)3, M > 0) following the idea of P.L. Lions (cf. [18]) for proving
existence of a solution.

Let (un, pn, ρn)n∈N be a sequence a approximate solutions obtained with the MAC scheme
(existence of such an approximate solution is proven, cf. [10]). We assume limn→+∞ hn = 0,
where hn is the mesh size. The steps for proving the convergence result are

1. Estimates on the approximate solution (un, pn, ρn);

2. Compactness result (convergence of the approximate solution, up to a subsequence);

3. Passage to the limit in the approximate equations.

The main difficulty is in the passage to the limit in the EOS (p = ργ) since the EOS is a non
linear function and Step 2 only leads to weak convergences of pn and ρn.

The estimate on un is with a norm which mimic (at the discrete level) the H1
0(Ω)3-norm.

The estimate on pn is in L2(Ω)-norm (thanks to γ ≥ 3) and the estimate on ρn is in L2γ(Ω)-
norm. Thanks to these estimates on un, pn, ρn, it is possible to assume (up to a subsequence)
that, as n→ +∞,

un → u in Lq(Ω)3 for q < 6 and weakly in L6(Ω)3, u ∈ H1
0(Ω)3,

pn → p weakly in L2(Ω), ρn → ρ weakly in L2γ(Ω).

We show now how to pass to the limit in the equations. For simplicity we will asume that
(un, pn, ρn) is a weak solution of (7)-(11) with fn instead of f, and fn → f weakly in L2(Ω)3

as n → +∞. The passage to the limit in the equation when (un, pn, ρn) is an approximate
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solution given by MAC scheme follows the same lines, with some modifications that we
indicate when there are interesting.

For the mass equation, let v ∈ C∞c (R3), one has∫
Ω

ρnun · grad v = 0, (25)

Since ρn → ρ weakly in L2γ(Ω), with 2γ > 6/5, and un → u in Lq(Ω)3 for all q < 6. Then
ρnun → ρu weakly in L1(Ω)3. This gives

∫
Ω
ρu · grad v = 0. Indeed, at the discrete level, in

Equation (25), there is an additional term which allows us to prove
∫

Ω
ρn dx = M. This term

vanishes as n→ +∞ since it is of ordre hαn , where α ∈]0, 1[ is a given parameter (cf. [10]).
The L1-weak convergence of ρn gives non negativity of ρ and convergence of the total

mass, that is ρ ≥ 0 a.e. in Ω,
∫

Ω
ρ(x)dx = M. For the momentum equation, let v ∈ C∞c (Ω)3,∫

Ω

grad un : grad v dx −
∫

Ω

ρnun ⊗ un : grad v dx −
∫

Ω

pn div(v)dx =

∫
Ω

fn · u dx (26)

This is also true at the discrete level with an error term (vanishing as n → +∞) and a discret
operator gradn (acting on un) mimicking grad. One has, as n→ +∞, grad un → grad u weakly
in L2(Ω)3 (this is also true at the discrete level with gradn isntead of grad). Furthemore,
using ρn → ρ weakly in L2γ(Ω), with 2γ > 3/2, and un → u in Lq(Ω)3 for all q < 6 (and
2
3 + 1

6 + 1
6 = 1), ρnun ⊗ un → ρu ⊗ u weakly in L1(Ω)3×3. It remains to remark that pn → p

weakly in L2(Ω) and fn → f weakly in L2(Ω)3. Then, we can pass to the limit in (26), it gives∫
Ω

grad u : grad v dx −
∫

Ω

ρu ⊗ u : grad v dx −
∫

Ω

p div(v) dx =

∫
Ω

f · v dx.

For the moment, we proved that (un, pn, ρn) is solution of the momentum equation and of
the mass equation. We also proved non negativity of ρ and

∫
Ω
ρdx = M. It remains to prove

p = ργ. This is not easy since pn and ρn converge only weakly. . . and γ > 1.
In order to prove p = ργ a.e. in Ω, the main step is to prove that

lim inf
n→+∞

∫
Ω

pnρn dx ≤
∫

Ω

pρ dx. (27)

(Then, we deduce the a.e. convergence of pn and ρn and p = ργ using the fact that the function
y 7→ yγ is increasing and a variant of the Minty trick.) Note that for γ < 3 the natural spaces
given in Sec. 1 are L3(γ−1) for p and L3(γ−1)/γ fro ρ. Then, we need here γ ≥ 2, in order to
have pρ ∈ L1(Ω).

In order to prove (27), we first remark that, for all ū, v̄ in H1
0(Ω)3,∫

Ω

grad ū : grad v̄ dx =

∫
Ω

div(ū) div(v̄) dx +

∫
Ω

curl(ū) · curl(v̄) dx. (28)

A similar equality is true at the discrete level with the MAC scheme and the natural discrete
operators gradn and divn (acting on discrete functions), cf. [3] (this is the first “miracle” with
the Mac scheme). With other schemes, it seems that there is not a similar equality and this
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introduces an additional difficulty, needing, for instance, a “regularization” term for proving
the convergence of the scheme, cf. [4].

Using (28), the momentum equation is, for all v̄ in H1
0(Ω)3,∫

Ω

div(un) div(v̄) dx +

∫
Ω

curl(un) · curl(v̄) dx −
∫

Ω

(ρnun ⊗ un) : grad v̄ dx

−

∫
Ω

pn div(v̄) dx =

∫
Ω

fn · v̄ dx (29)

Our aim is now to choose v̄ = v̄n with curl(v̄n) = 0, div(v̄n) = ρn and (v̄n)n∈N bounded
in H1

0(Ω)3. Unfortunately, it is possible to choose such a v̄n in H1(Ω)3 (as we will below)
but not in H1

0(Ω)3. Assuming anyway that we can have such a v̄n in H1
0(Ω)3, then, up to a

subsequence,

v̄n → v in L2(Ω)3 and weakly in H1
0(Ω)3, curl(v) = 0, div(v) = ρ,

and (29) becomes∫
Ω

(div(un) − pn)ρn dx =

∫
Ω

ρnun ⊗ un : grad v̄n dx +

∫
Ω

fn · v̄n dx.

If we prove that
∫

Ω
ρnun ⊗ un : grad v̄n dx→

∫
Ω
ρu ⊗ u : grad v dx then

lim
n→+∞

∫
Ω

(div(un) − pn)ρn dx =

∫
Ω

ρu ⊗ u : grad v dx +

∫
Ω

f · v dx.

But, since we already know that −∆u + div(ρu ⊗ u) + grad p = f,∫
Ω

div(u) div(v) dx+

∫
Ω

curl(u) ·curl(v) dx−
∫

Ω

p div(v) =

∫
Ω

ρu⊗u : grad v dx+

∫
Ω

f ·v dx,

which gives (using div v = ρ and curl v = 0)∫
Ω

(div(u) − p)ρ dx =

∫
Ω

ρu ⊗ u : grad v dx +

∫
Ω

f · v dx,

Then, limn→+∞

∫
Ω

(pn − div(un))ρn dx =
∫

Ω
(p − div(u))ρ dx.

Finally, thanks to the mass equations, we can prove
∫

Ω
ρn div(un) dx = 0 and

∫
Ω
ρ div(u) dx =

0. Then, limn→+∞

∫
Ω

pnρn dx =
∫

Ω
pρ dx.

Indeed, at the discrete level, one has only
∫

Ω
ρn div(un) dx ≤ 0 and (27) is proven (even

with lim sup instead of lim inf). It remains to prove∫
Ω

ρnun ⊗ un : grad v̄n dx→
∫

Ω

ρu ⊗ u : grad v dx. (30)

We remark that (since div(ρnun) = 0)∫
Ω

ρnun ⊗ un : grad v̄n dx =

∫
Ω

(ρnun · grad)un · v̄n dx,
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and the sequence ((ρnun · grad)un)n∈N is bounded in Lr(Ω)3 with 1
r = 1

2 + 1
6 + 1

2γ , and r > 6
5

since γ > 3. Then, up to a subsequence, (ρnun · grad)un → G weakly in Lr(Ω)3. and (since
v̄n → v̄ in Lr(Ω)3 for all r < 6),∫

Ω

(ρnun · grad)un · v̄n dx→
∫

Ω

G · v̄ dx.

But, G = (ρu · grad)u, since for a fixed w ∈ H1
0(Ω)3,∫

Ω

(ρnun · grad)un · w dx =

∫
Ω

ρnun ⊗ un : grad w dx→
∫

Ω

ρu ⊗ u : grad w dx.

Then, (30) is proven and this gives (27) except that there is a mistake in the previous proof
since it is not possible to have such a v̄n in H1

0(Ω)3 such that curl v̄n = 0, div v̄n = ρn and
(v̄n)n∈N bounded in H1

0(Ω)3. In order to correct to proof, we will use such a v̄n in H1(Ω)3 but
not in H1

0(Ω)3.
Let wn ∈ H1

0(Ω), −∆wn = ρn, It is well known that wn ∈ H2
loc(Ω) (equivalent to say here,

since wn ∈ H1(Ω), ∆(wnϕ) ∈ L2(Ω) for all ϕ ∈ C∞c (Ω)). An easy way to prove this regularity
result is to remark that, for ϕ ∈ C∞c (Ω), with Cϕ depending only on ϕ and of the bound of the
L2-norm of ρn,

3∑
i, j=1

∫
Ω

∂i∂ j(wnϕ) ∂i∂ j(wnϕ) dx =

3∑
i, j=1

∫
Ω

∂i∂i(wnϕ) ∂ j∂ j(wnϕ) dx

=

∫
Ω

(∆(wnϕ))2 dx = Cϕ < +∞.

The main interest of this way to prove he H2
loc-regularity of wn is that it is possible to prove a

discrete version of this result with the corresponding discrete problem obtained on the primal
mesh of the MAC discretization. Namely, we obtain an H2

loc-discrete estimate on wn in term
of the L2-norm of ρn when wn is the solution of the discrete problem (it is the second miracle
for the MAC scheme).

To continue our proof of (27), we take vn = gradwn so that div vn = ρn and curl vn = 0
a.e. in Ω. Furthermore, thanks to the H2

loc-discrete estimate, the sequence (vn)n∈N is bounded
in (H1

loc(Ω))3. Then, up to a subsequence, as n → +∞, vn → v in L2
loc(Ω) and weakly in

H1
loc(Ω), curl(v) = 0, div(v) = ρ.

Let ϕ ∈ C∞c (Ω) (so that vnϕ ∈ H1
0(Ω)3)). Taking v̄ = vnϕ in (29) gives∫

Ω

div(un) div(vnϕ) dx +

∫
Ω

curl(un) · curl(vnϕ) dx −
∫

Ω

pn div(vnϕ) dx

=

∫
Ω

ρnun ⊗ un : grad(vnϕ) dx +

∫
Ω

fn · (vnϕ) dx.

Using a proof similar to that given if ϕ = 1 (with additional terms involving ϕ), we obtain, as
n→ +∞,

lim
n→+∞

∫
Ω

(pn − div(un))ρnϕ dx =

∫
Ω

(p − div(u))ρϕ dx for all ϕ ∈ C∞c (Ω),
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that is Fn = (pn−div(un))ρn)→ F = (p−div(u))ρ in the distribution sense. But since (Fn)n∈N

bounded in Lq for some q > 1 (this is due to the fact that pn − div(un) is bounded in L2(Ω)
and ρn is bounded in Lr(Ω) with some r > 2, here we use γ > 5/3), one has also Fn → F
weakly in L1(Ω) and therefore∫

Ω

(pn − div(un))ρn dx→
∫

Ω

(p − div(u))ρ dx.

Finally, thanks to the mass equations,
∫

Ω
div(u)ρ dx = 0 and

∫
Ω

div(un)ρn dx = 0 (or ≤ in the
case of the discrete setting) and one obtains (27), that is lim infn→+∞

∫
Ω

pnρn dx ≤
∫

Ω
pρ dx.

We prove now the a.e. convergence of ρn and pn. Let Gn = (ργn − ργ)(ρn − ρ) so that
Gn ∈ L1(Ω) and Gn ≥ 0 a.e. in Ω. Futhermore Gn = (pn−ρ

γ)(ρn−ρ) = pnρn−pnρ−ρ
γρn +ργρ

and: ∫
Ω

Gn dx =

∫
Ω

pnρn dx −
∫

Ω

pnρ dx −
∫

Ω

ργρn dx +

∫
Ω

ργρ dx.

Using the weak convergence in L2(Ω) of pn and ρn and (27), lim infn→+∞

∫
Ω

Gn = 0. Then
(up to a subsequence), Gn → 0 a.e. and then ρn → ρ a.e. (since y 7→ yγ is an increasing
function on R+). Finally, ρn → ρ in Lq(Ω) for all 1 ≤ q < 2γ, pn = ρ

γ
n → ργ in Lq(Ω) for all

1 ≤ q < 2 and p = ργ a.e. in Ω.
It is possible to adapt this proof of convergence when (un, ρn, pn) is the approximate

solution given by the MAC scheme as it is done in [10]. As we said before, two main tools
are interesting with the MAC scheme:

1. There exists a discrete counterpart of∫
Ω

grad u : grad v dx =

∫
Ω

(div u div v + curl u · curl v) dx.

2. If wn, belonging to a discrete equivalent of the H1
0(Ω)-space, is the solution of −∆nwn =

ρn where −∆n is the natural discretization of −∆ on the primal mesh of the MAC-
discretization, then one has an estimate on wn in the “discrete local H2-norm” of wn in
term of the L2-norm of ρn.
If γ < 3, a new difficulty appears since we have to work with the local Lp-norm of the
second dicrete derivatives of wn for some p > 2.

In order to conclude this section, we recall that the convergence of approximate solutions
(given by the MAC scheme) if 3/2 < γ ≤ 3 is, to our knowledge, still an open problem.

3.2. For the compressible Navier-Stokes problem
We consider in the section the compressible Navier-Stokes problem discretized with the MAC
scheme and the Euler backward discretization in time, as in Sec. 2.3 (with T > 0, γ > 3/2
and f ∈ L2(]0,T [, L2(Ω))). For n ∈ N, the approximate solution (un, ρn, pn) is solution of the
discretization of Problem (1)-(5). We assume that limn→+∞ hn = limn→+∞ kn = 0, where hn

and kn are the mesh size and the time step of the discretization. Our objective is to prove that
the approximate solution converges, in an appropriate sense, up to a subsequence, to a weak
solution of (1)-(5).
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As usual, the first step, for proving such a convergence result, is to obtain estimates
on the approximate solution. A quite easy estimate is in L∞(]0,T [, Lγ(Ω)) for ρn and in
L2(]0,T [,Hn) for un where the norm in Hn is a discrete counterpart of the H1

0(Ω)-norm (this
gives also an L2(]0,T [, L6(Ω)) estimate on un).

Then, in order to pass to the limit in the equations (as n→ +∞), a new difficulty appears
(with respect to the stationary case) for passing to the limit on the non linear terms, namely
ρnun and ρnun⊗un. For instance, in the stationary case (Sec. 3.1), we pass to the limit on ρnun

(up to a subsequence) using the (strong) convergence of un in a Lebesgue space Lq(Ω)3 for
some q < 6 and the weak convergence of ρn in the dual space Lq′ (Ω), q′ = q/(q − 1) > 6/5.
It gives convergence of ρnun in L1(Ω). This method does not work in the unsteady case since
we do not have relative (strong) compactness of the sequence (un)n in a Lebesgue space.
However, we can also conclude in the stationary case by changing the roles of un and ρn.
Assuming, for simplicity that (un)n∈N is bounded in H1

0(Ω)3, one has, up to subsequence,
un → u weakly in H1

0(Ω)3, ρn → ρ in H−1(Ω) (thanks to the compact embedding of Lq′ (Ω) in
H−1(Ω)) and then, for all ψ ∈ C∞c (R)3,∫

Ω

ρnun · ψ dx = 〈ρn,un · ψ〉H−1,H1
0
→ 〈ρ,u · ψ〉H−1,H1

0
=

∫
Ω

ρu · ψ dx.

For the discrete setting, we also have to replace the H1
0(Ω)-norm by the so-called discrete-

H1
0-norm (which depends on n), cf. [7] for a complete proof.

The main interest of this new proof for passing to the limit on ρnun is that it works also for
the unsteady case. Assuming also for simplicity that (un)n∈N is bounded in L2(]0,T [,H1

0(Ω)3)
(cf. [7] for the discrete case), one has (up to a subsequence) un → u weakly in L2(]0,T [,
H1

0(Ω)3). We also know that (ρn)n in L2(]0,T [, Lq′ (Ω)) for some q′ > 6/5 and the mass equa-
tion (1) (together with the fact that un is bounded in L6(Ω)) gives that the sequence (∂tρn)n

is bounded in L2(]0,T [,W−1,1(Ω)). Then (ρn)n∈N is relatively compact in L2(]0,T [,H−1(Ω))
(thanks to Aubin-Lions-Simon compactness results, since Lq′ (Ω) is compactly embedded
in H−1(Ω)). Then, up to a subsequence ρn → ρ in L2(]0,T [,H−1(Ω)) and finally, for all
ψ ∈ C∞c (R × R3)3,

∫ T

0

∫
Ω

ρnun · ψ dxdt =

∫ T

0
〈ρn,un · ψ〉H−1,H1

0
→=

∫ T

0

∫
Ω

ρu · ψ dxdt.

The difficulty is similar for the term ρu ⊗ u. In Sec. 3.1 we pass to the limit on this
term using un → u in Lq(Ω)3 for all q < 6 and ρnun → ρu weakly in Lq′ (Ω)3, with some
q′ > 6

5 . It gives ρnun ⊗ un → ρu ⊗ u weakly in L1(Ω)3×3. But an other method is possible.
One can use un → u weakly in H1

0(Ω)3 and ρnun → ρu in H−1(Ω)3 (thanks to the compact
embedding of Lq′ (Ω) in H−1(Ω)). It also gives convergence of ρnun ⊗un to ρu⊗u, that is, for
all ψ ∈ C∞c (R)3×3,

∫
Ω
ρnun ⊗ un : ψ dx →

∫
Ω
ρu ⊗ u : ψ dx. Here also, the generalization of

this second method is possible for the unsteady case cf. [7].
This does not conclude the convergence (as n→ +∞, up to a subsequence) of the approx-

imate solution to a weak solution of Problem (1)-(5). It remains to pass to the limit on pn and
on the EOS pn = ρ

γ
n. It is an ongoing work.
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scheme for the compressible Stokes equations. SIAM J. Numer. Anal. 48, 6 (2010),
2218–2246. Available from: http://dx.doi.org/10.1137/090779863, doi:10.
1137/090779863.
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