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MATHEMATICAL ASPECTS OF
COMPUTERIZED TOMOGRAPHY:.
COMPRESSION AND COMPRESSED

COMPUTING
Benedikt Diederichs, Tomas Sauer and A. Michael Stock

Abstract. Modern industrial tomography can produce such huge amounts of data that
they cannot be handled any more by normal computers. To overcome this problem, the
data can be represented and even further compressed by means of a sparse representation
with thresholding, as, for example, a three dimensional tensor product wavelet represen-
tation. This approach, on the other hand, requires that all operations are realized in the
sparse basis. After introducing the basic concepts behind this approach, we show one ex-
plicit example, namely how to compute the correlation of two objects by means of sparse
representations.
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$1. Introduction

While computerized tomography (CT) is a standard method in medical diagnosis, it is less
widely known that tomography is also applied quite frequently in industrial applications.
These applications comprise metrology and reverse engineering, documentation and digital-
ization, for example of cultural heritage, as well as nondestructive testing in manufacturing
processes. In contrast to medical applications, these scans are not restricted in size, materials
and nature of the objects. A so-called XXL—CT can scan even a full size car with the help of a
particle accelerator, a micro or nano CT may scan a “normal sized” object with an extremely
high resolution and an inline CT may scan one object per second.

What all these applications have in common is the fact that they produce a huge amount
of data: large objects and high-resolution scans can easily reach one Terabyte and more of
voxel data after reconstruction, and even if the individual inline scans are usually of moderate
size, they come in a large number, typically hundreds of scans every day. Clearly, these
circumstances provide new challenges for image processing. The large variety of objects
and tasks that occur in industrial CT require advanced and extremely flexible algorithms for
segmentation, object separation and information extraction. In medical applications a lot of
a priori knowledge can be applied: for most organs, for example, location, size and shape
are roughly known and can often been modeled quite efficiently by combining geometric
primitives like ellipsoids, cylinders and cones. In industrial CT, the effort of these methods
is usually too large for complex separation tasks and methods from machine learning have
to be applied so that the system automatically extracts the relevant aspects of different parts.
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Figure 1: Cultural heritage CT bigture (Peruvian mummy, about 6th century AD, courtesy
of Lindenmuseum, Stuttgart): (Left) region of interest containing skull and corncob, (middle)
segmented corncob, (right) segmented skull.

An example for the complexity of such segmentation tasks in cultural heritage can be seen in
Fig. 1.

But the main obstacle, of course, is the sheer size of data which leads us to an important
concept.

Definition 1. An image is called a bigture (with respect to a certain representation) if it
cannot be handled in the main memory of a computer any more.

The image on the left hand side of Fig. 1 is an example of a bigture: the size of the original
image is about 170GB.

Whether an image is a bigture or not depends on two aspects: the size of the computer
memory and the representation of the image. The trivial solution of the bigture problem
would be to increase the computer memory and to rely on out of core memory techniques;
while this is possible to a certain extent, it is not really practical since even if we take the
very optimistic and somewhat unrealistic point of view that loading and access times only
scale linearly with the amount of data, there is a significant slowdown, especially if we take
into account that the amount of data scales cubically with the resolution: if we double the
resolution of the image, the data increases by a factor of eight.

The more promising approach is to another representation of the image which is sparse.
This means that we represent the same image, i.e., the same information, by a significantly
smaller amount of data. Fortunately, such bases are known in many instances and as a general
purpose tool, wavelets are still one of the best bases for sparse representation of discrete
data on a rectangular grid, especially when this data is locally constant. This is one of the
reasons why they were integrated into the JPEG2000 standard. The drawback of sparse
representations, however, is that now all operations have to be implemented in terms of the
sparse basis as reconstruction of the full image would result in a bigture and thus render
the algorithm useless. This paper will deal with some special case, namely computing the
correlation of two bigtures using only their sparse representation. Correlations are important
to register images and thus a fundamental operation in image processing.

The paper is organized as follows: we first give a short recapitulation of some of the
basic concepts of computerized tomography, then recall the basics of the discrete wavelet
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transformations, based on which we derive a method to compute the correlations depending
on different shifts.

§2. Tomography basics

Tomography reconstructs objects from lower dimensional projections. Here, we focus on
X-ray tomography which is based on the attenuation of X-rays by different materials. Let
f: R? — R be the function that describes the spatial distribution of this attenuation, where
the standard cases are d = 2 and d = 3. Moreover, let L denote the straight line that connects
the radiation source and the detector pixel. Then the energy I arriving at the detector pixel
has the form

2 f Fx)dx. (1)
S L

Note that (1) is only a first order model of the physical process that does not take into account
effects like scattering and beam hardening. On the other hand, provided that the intersection
of the support of f with L is contained in the line segment between source and detector, X-ray
attenuation measures, in RZ, the value of the Radon transform

L~ Rf(L) := ff(x)dx, L=L(v,s):{x€Rd:vTx:s}e.E, )
L

where £ denotes the set of all lines in R?. In R? the situation is more intricate as the Radon
transform is then defined for planes and in the general s-dimensional case for hyperplanes.
In 2D slices the classical reconstruction is based on the filtered backprojection formula

(R'9)=f=R(g*Rf), feLiR?, geSL), 3)

where S(£) is the Schwartz space and
R'g(x) = f g(v, v” x)dv, xeR%, geSL) cSES! xR,
loll=1

stands for the dual Radon transform, where we cover £ by S' x R. For the application of (3),
one chooses g such that R*g is close to the Dirac delta functional, resulting in (R*g) * f =~ f.
Typically, g is a radial function, i.e., g(v, v” x) = g(|v” x|) and constructed such that convolving
with g acts as a low-pass filter, hence the name filtered back projection. This formula is then
discretized.

Similar inversion formulas exist in the three dimensional case. However, while in the two
dimensional case typically a rather dense sampling of all lines passing through the support
of f is available, the scanning geometries used in practice for the three dimensional case
are more limited. Specific approximate inversion formulas, tailored to different geometries,
are available. For example in the important case of the cone-beam geometry, the classical
Feldkamp algorithm is widely used. For details on analytical methods see [10, 11].

A different approach is to see (1) as a system of integral equations and to discretize those
directly. This could be done in a function as in Galerkin methods, but the standard technique
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is to discretize the region of interest Q into a voxel grid
N
Q=UV‘, Vi=laj,bjyl X X[aja,bjal,
j=1

to assume the function f to have the constant value f; on V; and to rewrite (1) as

Ip ; .
E:'yL:jeZJAL’jfj’ JL_:{ISJSn.VjﬂLi(D}. @

The values A;; is normally chosen as the length of the intersection V; N L. Using a finite set
of measurement rays, Li,..., Ly, which describe the scanning geometry, we end up with the
linear system

— M YL, fl
_ _ I L I M oo_ . N
y_Afv A_li/le,k' kzl,...,N]’ y_ . ER 7f_ N GR' (5)
YLy fN
This is the simple concept of the algebraic reconstruction technique (ART), but solving the

linear system (5) is far from trivial since it is usually huge. Nevertheless ART has some
advantages:

1. The method works in any dimensionality and with any measurement geometry. Whether
cone beam or parallel beam is used, only results in a different geometry matrix A.

2. The method works independently of dimension and the matrix is modestly sparse: if
the voxels are arranged on an n X --- X n grid, i.e., N = n?, then any equation still
involves only O(n) variables.

3. A priori knowledge like obstructions or side conditions like positivity can be easily
integrated into the approach as well as regularizers.

For more details see, for example [2, 6] and, of course, [10].

§3. Wavelet basics and definitions

Next, we briefly fix the notation for a wavelet multiresolution analysis (MRA). The starting
point is a refinable function ¢, i.e., a solution of the refinement equation

6= a2k,  acb@) ©)

keZ

where £y(Z) stands for the space of all bi—infinite sequences with finite support:
bo(Z) ={c=(ck 1k €Z) :|Icllo < oo}, licllo == #{k = ¢ # O}

In addition, ¢ is called an orthonormal scaling function if its integer translates are mutually
orthonormal, that is,

Oro = (@, d(- —k)) = L(D(x) d(x — k) dx, keZ.



Compression in tomography 83

Substituting the refinement equation (6) into this requirement, it is easily seen that the se-
quence a, called mask in the subdivision literature [1], has to satisfy the quadrature mirror
filter equation X

0k = E ]EZZ Ak-2jaj, keZ. 7)
A generic construction for finitely supported masks that satisfy (7) and give rise to L—
solutions of (6) has first been given by Daubechies [4], see also [5]. This was the starting
point for a multitude of different wavelet constructions, orthogonal as well as biorthogonal
ones, and eventually the inclusion of wavelets into the JPEG2000 standard.

Based on an orthogonal scaling function, we define the MRA as the sequence of spaces

V; := span {¢(2j -—k) ke Z}, J € Nop;

by (6), these spaces are nested in the sense that Vo C Vi C --- and the associated wavelet,
defined as

Y=Y bgp2-—h), b= (Day, keZ @®)

keZ
belongs to V| and satisfies (¢, y(- — k)) = 0, k € Z, so that
Vim=V,eW,, W; := span {zp(Z-i . —k) tke Z} s j € Np. )
Moreover, the integer shifts of the wavelet ¢ form an orthonormal basis of W, and, accord-

ingly, the functions ;4 := 24/ 2:,[/(21 - —k), k € Z, are an orthonormal basis of W;. Hence, any
function f € V,, can be written as

n—1
f=2aN$@ -k = aNet—b+ Y Y a2y (2--k),  (10)

kez kez j=0 keZ
where

dl(f) =2/ fR FO) (2 x — k) dx.
The main point in favor of wavelets, however, is that the conversion from ¢" to ¢, d’, . .., d"",

i.e., the transmission between the two representations of f in (10) can be performed very
efficiently by means of discrete filterbank operations; this is Mallat’s discrete wavelet trans-
form [8, 9], see also [13].

Wavelets are naturally related to subdivision schemes. This is an immediate consequence
of the refinement equation (6) which yields that for any f € V; we have

F=2e o= =D e PHad@ -2j-k =" [Z ey c,-(f)] 62 —h),
JEZ JkeZ keZ \ jeZ

or, in terms of (semidiscrete) convolutions,

f=c(f)xd=(Sac(f) *d(2-), (§q0); = Zaj—Zk Ck» Y

keZ
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and the subdivision operator S,. We will use this connection later.
In s variables, usually s = 2, 3, we use the respective tensor product scaling functions

$(x) = [_] o(x,).

r=1

so that, for @ € Z°,

f ¢(x) p(x — @) dx = l_[ f é(x) p(x — @) dx, = 1—[ 6(1/r,0 = 60/,0'
R r=1 YR r=1

To build wavelets, we set ¢y = ¢, 1 = ¢ and define the 2° — 1 wavelet functions
N
Yy(x) = H Y, (%), n€H:={0,11"\ {0}
r=1

and the refinement equation is given by

Uy= ) brad2--@),  neH,

a€el’
with

S
bpo = | [(A= a0, +mba),  neH aclZ
r=1

These function satisfy the orthonormality condition
f lpn(x) lpr]’(x —a)dx = 57],77’ 6(}1,0, 1, 77/ €{0,1}, a,ﬁ eZ’.
RY
Thus, with V; = span {¢(21 “—@) @€ Z“}, we again have the multiresolution analysis
Vi =V;@W;,  W;:=span {27y, 2/ - —a) i ne H, a € Z'},
and the wavelet decomposition
n—1 )
F= N —a)= Y cal HPC - ) + D da(H2 Py (2 —a). (12)
a€Z’ a€Z’ Jj=0 neH aeZ*

Remark 1. There exist orthogonal wavelet decompositions for arbitrary scaling matrices and
even a generic tensor-product like approach to construct them, see [3, 7], but the classi-
cal dyadic tensor product construction offers an extremely efficient way of localizing the
supports of scaling functions and wavelets which is useful in the implementation of a fast
decomposition and reconstruction as described in [12].
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Figure 2: Different levels of wavelet decomposition of a typical industrial piece (engine pis-
ton). (Left) One level, the different types of edge and face dectections are clearly visible,
(middle) even after two levels wavelet coefficients become almost invisible, (right) and after
three iterations, they are mainly irrelevant.

§4. Wavelets and compression

The idea behind wavelet compression is rather simple: if a function f : R® — R can be
approximated well by V; for some rather small k, then the wavelet coefficients drjy,a( f) for
j > k will be very small and can be discarded without significant loss of quality. This works
for two reasons, cf. [5, 9]:

1. Any reasonable scaling function ¢ is compactly supported and (re)produces polynomi-
als of a certain degree, but at least satisfies

Z¢(-—a)=1.

a€Z’

This means that the wavelet coefficients for locally constant functions vanish in the
regions where the function is constant.

2. The spaces V; usually have good approximation properties for smooth function which
implies that in smooth regions the absolute values 'd,’,,c,( f)| of the wavelet coefficients
decay very fast with respect to j.

Starting from the high resolution ¢"(f) of

Fr )N -a),

a€Z’

one computes the wavelet coefficients d,';‘l( ), d"2( )y, d,? (f) and the scaling coefficients
c"(f) by means of a fast wavelet transform. Note that the index 7 also has an intuitive ge-
ometric meaning for the wavelet coefficient. Indeed, if || = 1, it detects faces parallel to
the coordinate planes, if |r7| = 2 the coefficients correspond to edges parallel to the axes and
n = (1,1, 1) detects some “diagonal” feature, see Fig. 2.

While the originally sampled data c¢"(f) is usually dense, the wavelet transform is sparse
if the underlying image is piecewise constant which is the case in most technical applications,
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see again Fig. 2. In addition to deleting zero coefficients, lossy compression is obtained by
thresholding the wavelet coefficients and replacing them by

dA%];,QZIG(er%.a)a neH aeZ’, j=0,...,n-1,

by means of threshold function z,.

Definition 2. For a threshold level & the hard threshold and the soft threshold use the func-
tions

0, x| < &

w0, Xl <e, s S

t(x) = (x)=qx—¢g, x2>g,
x, |x|>e,

xX+eg x< -—e&

respectively.

While soft thresholding is known to perform a denoising operation, popular as wavelet shrink-
age, hard threshold is more contrast and edge preserving. The choice of the threshold level
can be made according to several strategies, for example

1. absolute choice of threshold level,

2. best N—term approximation: the threshold is chosen in such a way that only the N
largest coefficients remain,

3. overall precision: € is chosen such that

does not exceed a certain bound. Since these are the coefficients in an orthonormal
expansion, this is also the norm of the L,—error, hence a certain PSNR can be prescribed
for the compression.

Recall also that after transformation and thresholding, the array of coefficients is encoded in
an efficient way using a more or less standard entropy encoder, cf. [12] for details. We will
not dwell on these issues here though they are of course important for the overall compression
rates.

Definition 3. For a function f with a thresholded wavelet decomposition we define

N(f) = #{a: &, 0} +ZZ @ d)y # 0}

j=0 neH

as the number of nonzero coefficients in the representation.

§5. Wavelet correlation

The correlation between two functions f, g is defined as

£ gly) = fR F@grrpds, yeR,
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Figure 3: Two images with a PSNR value of 0, i.e., of maximal disparity, while o°(f,g) = 1.

and measures the best fit between f and a shifted version of g. It is useful for image compar-
ison by using

o(f,g) = max |f * g(y)|

1
A2 Mgl yer:

as a translation invariant similarity measure for images. An extremal example in this respect
can be seen in Fig. 3. Moreover, local correlations are needed in order to stitch images to-
gether by finding a proper offset of one of the images such that the overlapping areas coincide
as much as possible.

Taking into account that in many cases a complete reconstruction of a bigture is impos-
sible due to memory limitations, we need an algorithm that computes the correlation entirely
from the wavelet decomposition. We will develop such a method in this section. To that end,
we set up some terminology first.

Definition 4. The correlation of two sequences c,d € Z° is defined as

(cxd), = Z Co+p dg, aeZ
BEZS

and the translation operator as
o— s
(Tyc)a 1= Catys aeZ’.

We start with f, g € V,,, written as

n—1
F=2 DOt =)+ 3 2NNl (F g2 —a),

a€Zf Jj=0 neH a€Z’
n—1
EDNOL SRS I IP IR OIACEEN
a€Z? Jj=0 neH a€Z’

and first observe that the integer correlations can be easily computed as shifted correlations
of the discrete sequences.
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Lemma 1. Fory € Z* we have that

n—1
FHg) =7 (c(f) > clg) + D > T2 (1) * di(9)). (13)

j=0 neH

The number of arithmetic operations is bounded by min{N(f), N(g)} and hence subadditive
in the number of nonzero coefficients in the expansion of f or g, respectively.

Proof. We compute

frxg9®)
= "l p(@) (G- — ), 9 = B+))

,BeZ’

n—1
+ Z(; 272NN (cal N dl4(9) + calg) & 4(N) (B = @),y (27 - =B + 27y))
=

neH a BeZ’

n—1
£ IR (N dy s(9) (W (2 )y (2 B+ 29))

Jk=0 n.y €H a,BeZs

n—1
= > @ bapy+ D D > dhal) (@000 p2s0n

a,BEL’ J.k=0ny€H a LeZs

n—1
=Y D@+ ). Y DA (Hdl49),

BEZS Jj=0 neH BeZ*

which gives (13). Since any contribution to the sum requests a nonzero coefficient of the
expansion of f and g, the number of arithmetic operations is bounded by min (N(f), N(g)).
O

For the general case, we define the bi—infinite matrix valued function

Oy) == [(¢(- — @), (- =B+ y) 1 a.BEZ’], yeR’, (14)

which represents the correlation for f,g € Vy in the sense that f x g(y) = c(f)T (y) c(g).
Lemma 2. If ¢ € Ly(R®) is a compactly supported orthonormal scaling function, then
1. the matrix ®(y) is a banded Toeplitz matrix,
2. ®(y) is almost 1-periodic: Py +7y) = D(y)T, = 7_,D(y), y € Z°,
3. y v DO(y) is continuous with ®(0) = I, in the sense that the coefficients form a uni-
Sformly equicontinuous family.

Proof. For 1) we note that

CWap = (- =), (- =B+ 1)) = (P (- = (@ =), ¢( +y)),
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hence depends only on @ — 8. Bandedness results from the compact support of ¢: if ||a — S|
is large enough, then the supports of ¢ (- — (@ — 8)) and ¢(- + y) are disjoint and the integral
is zero. For 2) we consider

(@@ + 7)) = D (B =), (= B=Y)+ycg =y (D= @), ¢ = B+ )iy

BEZ* BEZS

and

("D +7), = D@ =@ +1). ¢ =B+ e = (t,c" D)), .

a€eZ®

To prove 3) we first note that due to 1) the matrix ®(y) only contains finitely many nonzero
entries of the form

GC—@9C+y),  aeZ’,
For each a € Z°® and 6 € R® we then have that
Kp(- — @), ¢(- + y + 6)) = (B — @), ¢(- + Y < [IBll2 lp(- + 6) — ¢lI,
which tends to zero for [|6]] — O uniformly in @ and y, as ¢ € L,(R*). |

Example 1. In the simple case of Haar wavelets where ¢ = y = x[o,175» the entries of O(y)
can easily be computed explicitly, namely, for y € (0, 1)* as

s 1
CD(y)(,,ﬁzf /\{(x+a—,8+y)dx=l_lf/\{(x+a/r—,3r+y,)dx.
[0,17¢ =1 YO0

Now, [0,1] + @, =B, +y, N[0, 1] # O only if 5, = @, + 1 or B, = @,, where

1
LX(x+ar_ﬁr+yr)dx=fOX(x+yr):yr
-1

in the first case and

1 1
f/\/(x+ar_ﬁr+yr)dx:fX(x+.’/r):1_yr
0 0

in the latter. Therefore, every row of ®(y) contains exactly 2* nonzero values, namely

OWaarn = | [0+ A =n)A=y)),  @eZ', ne{o,1),
r=1

For arbitrary y € R, we apply Lemma 2. Note however that there is a shift in the matrices in
this case:

11m (I)(y) = T(l ,,,, H = hm (I)(y)T(l ’’’’’ -
y—(1,...,1) y—0

,,,,,

Since the finely sampled data c"(f) corresponds to evaluation of a function on the grid
27"7Z*, even if the sequence is indexed by integers, we have to be able to compute correlations
at least for dyadic values 27"y, ¥y € Z°, 0 < m < n. The next result shows that also in this
case, correlations can be computed from wavelet coefficients by means of ®(y).
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Theorem 3. Fory € Z° and 0 < m < n we have that

m—1
Frg@my) = O elg)+27 > S (Sdi(H) @ (2 (Sh,dl(9)
Jj=0 n.n’eH
o 3 2l N (s, i) @ @) (S5, dk(9)
0<j<k<m—1 nneH
o 3 2 EE N (5,di00) @@ (S5, b (9)
0<k<j<m—1 n.y€eH
n-1
0 ey () * di(g)). (15)
Jj=m neH

Proof. As all levels at least as fine as m are still orthogonal, we obtain
f*g2™y)
= > calDeplg) (B — @), ¢ = f+27"))

@ BeZ*
m—1

+ 202NN (D g 9) (g (27 =)y (2 B+ 2My))  16)
jk—() n.'€eH a BeZ’

DI IW AT
j=m neH PeZ’

= () ®2™"y) clg) + Z DDy (N9
j=m neH BeZ’

m—1

+ Z 2=(j+k)s/2 Z Z d]a(f) ﬁ(g)<2”‘/’n( —a) , ZkSl//n/ (2k =B+ 2k_m7)>,
Jik=0 n.n €H a,feZ’

which already gives the first and the last term in the right hand side of (15). We are left with
calculating the correlations of all levels from zero to m — 1.

Recalling that
Uy = buad--a)  neH,
a€Z®
we obtain for j < n — 1 that
Zzl 1oy (2 —a) = Zz: & o () ;Z] bypd (277! - =20 - )
= (Z by p-a d£<f>] (27" =p) = 3 (S5,4i(), 8 (2" =5).
BEZS \a€eZ’ Bezs

and the refinement equation (6) for ¢ yields in the same way for k > j that

> (2 =) = 3 (S8, i), 0 (2 5).

a€”Z’ BEZS
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With these formulas at hand, we split the sum from (16) into its diagonal

m—1

203N Aol @)y (2 - —a) gy (27C + 27) - B))

Jj=0 n.n' €H a,LeZ’

m—

S0 S S (i), (51,40), (92" - —a).0 27+ 27 -g)

Jj=0 n.y €H o [eZ’

m—1

=SS (Sud) 0 () (50,00

Jj=0 n.ed

the lower triangle

D, 2T dia(Ddl @)y (- —a)uy (256 +27) - B))

0<j<k<m-1 n.n' €H a,BeZs
- 3 RS S (), (Su o),
0<j<k<m-1 n'€H a BeZ’

(o (2" - —a). 0 (2 +27y) - B))

= Y R NN (skIsudh), (Snd)@),

0<j<k<m-1 nn'€H a BeZ’

. <¢ (2k+1 . _a,) , ¢(2k+1(. + 2—my) _:8)>

= S aAF S (558, () @247 (Sh, (@)

0<j<k<m-1 nayeH
and the upper triangle
(SN RY. e - A
a2 Y 2AF N (s4,d000) @ (271 (5170, 4)(9)
m—1>j>k>0 m—12>j>k>0 nn€H
that is obtained in the same way. O

Correlation is a standard tool for matching objects whose mutual displacement is due to shifts.
This goal can often be achieved by aligning calibrated reference objects which are first used
to compensate rotational effects. After that, maximizing the correlation means finding the

best alignment between the two objects f and g. For this purpose we propose the following
hierarchical algorithm:

1. Determine the best integer shift ° by computing the correlations with the formula (13)
from Lemma 1.

2. Form = 1,2,...,n determine the best dyadic shift 27"y among the 3° — 1 neighbors
21=mym=l L =mp k€ {—1,1, 1} \ {0} of 21"y,

Note that for m = 1 the iteration only requires to apply the subdivision operator S, to d,? H
and d}] (g9) and the matrices O 'y)and O(y) = I 7, to compute

m—=1 n-l1
o271y e@+27 D0 DT T (Shds() * Su, dh@)+ D D Tarmy (di() * d(9)).

Jj=0 n.n'eH j=1 neH
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If we store the level correlations seperately for j = 0, ...,n, we only need to recompute the
first two sums of the above expression. This technique can in general be extended to later
iterations, but the two middle sums in (15) also necessitate the application of the subdivision
S, to the low level wavelet coefficient vectors. Of course, the finer the resolution becomes,
the effort increases, but keep in mind that also then, due to the hierarchical procedure, only
3% — 1 correlations have to be computed which even for s = 3 is still the relatively moderate
value of 26.

§6. Conclusions

Tomography is much more than a medical diagnosis tool, and the technology available for
industrial tomography enables us to generate spectacular measurements with very high reso-
Iution or of very large objects. The resulting amount of data, however, is no more tractable
on even well-equipped computer systems without switching to sparse representations. This
provides a lot of mathematical challenges starting from an efficient creation of such sparse
representations, requiring the development of compression and storage strategies that allow
fast access to full resolution data in certain regions of interest and leading to a redefinition of
standard operations in terms of the sparse representation — the sparse perspective only makes
sense if it is respected in all steps of computations and manipulations.

The example of correlation shows that this is doable, even efficiently, but requires some
non-straightforward mathematical operations.
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