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A PROFILE DECOMPOSITION FOR THE
LIMITING SOBOLEV EMBEDDING

Giuseppe Devillanova and Cyril Tintarev

Abstract. For many known non-compact embeddings of two Banach spaces E ↪→ F,
every bounded sequence in E has a subsequence that takes the form of a profile decom-
position - a sum of clearly structured terms with asymptotically disjoint supports plus a
remainder that vanishes in the norm of F. In this note we construct a profile decom-
position for arbitrary sequences in the Sobolev space H1,2(M) of a compact Riemannian
manifold, relative to the embedding of H1,2(M) into L2∗ (M), generalizing the well-known
profile decomposition of Struwe [12, Proposition 2.1] to the case of arbitrary bounded
sequences.
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§1. Introduction

When the embedding of two Banach spaces E ↪→ F is continuous and not compact, the lack
of compactness can be manifested by the (behavior in F of the) difference uk − u between the
elements of a weakly convergent sequence (uk)k∈N ⊂ E and its weak limit u. Therefore one
may call defect of compactness of (uk)k∈N the (sequences of) differences uk − u taken up to a
suitable remainder that vanishes in the norm of F. (Note that, if the embedding is compact
and E is reflexive, the defect of compactness is itself infinitesimal and so it can be identified
with zero). For many embeddings there exist well-structured representations of the defect
of compactness, known as profile decompositions. Best studied are profile decompositions
relative to Sobolev embeddings, which are sums of terms with asymptotically disjoint sup-
ports, called elementary concentrations or bubbles. Profile decompositions were originally
motivated by studies of concentration phenomena in PDE in the early 1980’s by Uhlenbeck,
Brezis, Coron, Nirenberg, Aubin and Lions, and they play a significant role in the verification
process of the convergence of sequences of functions in applied analysis, particularly when
the information available via the classical concentration-compactness method is not enough
detailed.

Profile decompositions are known to exist when the embedding E ↪→ F is cocompact
relative to some group G of isometries on E, see [11]. We recall that an embedding E ↪→ F
is called cocompact relative to a group G of isometries (G-cocompact for short) if any se-
quence (uk)k∈N ⊂ E such that gk(uk) ⇀ 0 for any sequence of operators (gk)k∈N ⊂ G turns
out to be infinitesimal in the norm of F. (An elementary example due to Jaffard [7], which
is easy to verify, is cocompactness of the embedding of `∞(Z) into itself relative to the group
of shifts G := {gm := (an)n∈N 7→ (an+m)n∈N | m ∈ Z}.) Up to the authors knowledge the
first cocompactness result for functional spaces is [8, Lemma 6] by E. Lieb which expresses
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(using different terminology) that the nonhomogeneous Sobolev space H1,p(RN) is cocom-
pactly embedded into Lq(RN), when N > p and q ∈ (p, p∗) (where p∗ =

N p
N−p ), relative to

the group of shifts u 7→ u(· − y), y ∈ RN . A profile decomposition relative to a group G of
bijective isometries on a Banach space E represents defect of compactness uk − u as a sum
of elementary concentrations, or bubbles, namely

∑
n∈N\{0} g

(n)
k w(n) with some g(n)

k ∈ G and
w(n) ∈ E. Note that in the above sum the index n = 0 is not allowed since, in the existing
literature, usually w(0) represents the weak-limit u of the sequence and (g(0)

k )k∈N is the constant
sequence of constant value the identity map of the space. So, by using this convention, we
can use defect of compactness to represent the sequence (uk)k∈N as a sum of

∑
n∈N g

(n)
k w(n) and

a remainder vanishing in F. In the above sums each of the elements w(n) (for n ≥ 1), called
concentration profiles, is obtained as the weak-limit (as k → ∞) of the “deflated” sequence
((g(n)

k )−1(uk))k∈N .
Typical examples of isometry groups G, involved in profile decompositions, are the above

mentioned group of shifts u 7→ u(· − y) and the rescaling group, which is a product group of
shifts and dilations u 7→ tru(t·), t > 0, where, for instance, when u belongs to the homoge-
neous Sobolev space Ḣs,p(RN) (N/s > p ≥ 1, s > 0), r = r(p, s) =

N−ps
p .

Existence of profile decompositions for general bounded sequences in Ḣ1,p(RN) (relative
to the rescaling group) was proved by Solimini, see [10, Theorem 2], and independently, but
with a weaker form of remainder, by Gérard in [6], with an extension to the case of fractional
Sobolev spaces by Jaffard in [7]. Only in [9], for the first time, the authors observed that
profile decomposition (and thus concentration phenomena in general) can be understood in
functional-analytic terms, rather than in specific function spaces. Actually the results in [9]
where extended in [11] to uniformly convex Banach spaces with the Opial condition (without
the Opial condition profile decomposition still exists but weak convergence must be replaced
by (a less-known) Delta convergence, see [4]). Finally the result has been extended up to a
suitable class of metric spaces, see [5] and [3]. Despite the character of the statement in [11]
is rather general, profile decompositions are still true, for instance, when the space E is not
reflexive (e.g. [2]), or when one only has a semigroup of isometries (e.g. [1]), or when the
profile decomposition can be expressed without the explicit use of a group (e.g. Struwe [12])
and so when [11, Theorem 2.10] does not apply.

The present paper generalizes, in the spirit of [10, Theorem 2], Struwe’s result [12, Propo-
sition 2.1] (which provides a profile decomposition for Palais-Smale sequences of particular
functionals) to the case of general bounded sequences in Ḣ1,2(M), where M is a smooth
compact manifold in dimension N ≥ 3.

The paper is organized as follows. In Section 2 we introduce some notation and state the
main theorem of the paper and the result on which the related proof is based. In Section 3
we prove that the embedding H1,2(M) ↪→ L2∗ (M) is cocompact with respect to a group of
suitable transformations which are depending on the atlas associated to the manifold. Section
4 is devoted to the proof of (the main) Theorem 1.

§2. Statement of the main result

Let N ≥ 3 and let (M, g) be a compact smooth Riemannian N-dimensional manifold. We
consider the Sobolev space H1,2(M) equipped with the norm defined by the quadratic form
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of the Laplace-Beltrami operator,

‖u‖2 =

∫
M

(|du|2 + u2)dvg, (1)

(vg denotes the Riemannian measure of the manifold). For every y ∈ M we shall denote by
Ty(M) the tangent space in y to M, and by expy the exponential (local) map at the point y
(defined on a suitable set Uy ⊂ Ty(M) by setting, for all v ∈ Uy, expy(v) := γv(1) where γv is
the unique geodesic, contained in M, such that γv(0) = y and γ′v(0) = v and extended to the
case v = 0 by setting expy(0) = y). Since we will not use here any property of tangent bundles
we will identify tangent spaces of M at different points with RN and, for any ρ > 0, we shall
denote by Bρ(0) the Euclidean N-dimensional ball centered at the origin with radius ρ. On
the other hand, we shall denote by Bρ(y) the open coordinate ball (i.e. the subset in M such
that exp−1

y (Bρ(y)) = Bρ(0)) with center y and radius ρ > 0. For the reader’s convenience we
recall that the injectivity radius ρy of a point y ∈ M is the radius of the largest ball about the
origin in Ty(M) that can be mapped diffeomorfically via the map expy, and that, the injectivity
radius of the mainfold M, ρM := infy∈M ρy. Since M is compact, ρM is strictly positive, so
we can fix 0 < ρ < ρM

3 , moreover, there exists a finite set of points (zi)i∈I ⊂ M such that(
Bρ(zi), exp−1

zi

)
i∈I

is a finite smooth atlas of M.
In what follows we shall fix χ ∈ C∞0 (Bρ(0)) equal 1 in a neighborhood of 0, so that, setting

for i ∈ I

χ̂i := χ̂zi = χ ◦ exp−1
zi

and χi :=
χ̂i∑
j∈I χ̂ j

, (2)

(χi)i∈I is a smooth partition of unity on M subordinated to the covering (Bρ(zi))i∈I . Then, since
‖u ◦ expzi

‖L2∗ (Bρ(0)) is bounded by the H1,2(Bρ(0))-norm of u ◦ expzi
, the Sobolev embedding

H1,2(M) ↪→ L2∗ (M) can be deduced from the corresponding one on the Euclidean space (by
the use of the fixed partition of unity (χi)i∈I). In fact, Theorem 1 below will provide a profile
decomposition for bounded sequences in H1,2(M).

Finally we recall that the scalar product associated with (1) can be written with help of
the partition of unity (χs)s∈I in the following coordinate form:

〈Φ,Ψ〉 :=
∑
s∈I

∫
Bρ(0)

N∑
i, j=1

gzs
i j∂i((χsΦ)(expzs

(ξ)))∂ j(Ψ(expzs
(ξ)))

√
det(gzs

i j)dξ

+
∑
s∈I

∫
Bρ(0)

(χsΦ)(expzs
(ξ))Ψ(expzs

(ξ))
√

det(gzs
i j)dξ.

(3)

Before stating the theorem, we warn the reader that, given a bounded sequence (vk)k∈N ⊂

H1,2(Bρ(0)) and a vanishing sequence of positive numbers (tk)k∈N, and setting r = r(2) =
N
2∗ = N−2

2 , we will say (with a slight abuse on the definition of weak convergence) that the
sequence (tr

kvk(tk·))k∈N weakly converges to v ∈ Ḣ1,2(RN) if, for any ϕ ∈ C∞0 (RN) such that
suppϕ ⊂ Bρ(0), ∫

ϕ(x) tr
kvk(tk x) dx −→

∫
ϕ(x) v(x) dx as k → ∞.
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Theorem 1. Let M be a compact smooth Riemannian N-dimensional manifold (N ≥ 3). Let
r = N

2∗ = N−2
2 , let ρ ∈ (0, ρM

3 ), let χ ∈ C∞0 (Bρ(0)), χ = 1 on B ρ
2
(0), and let (χi)i∈I , defined by

(2), be a smooth partition of unity on M subordinated to the covering (Bρ(zi))i∈I . Then, any
bounded sequence (uk)k∈N in H1,2(M) has a renamed subsequence for which there exist:
• a sequence

(
Y (n)

)
n∈N\{0}

of sequences Y (n) :=
(
y(n)

k

)
k∈N
⊂ M, y(n)

k → ȳ(n) ∈ M,

• a sequence
(
J(n)

)
n∈N\{0}

of sequences J(n) :=
(

j(n)
k

)
k∈N
⊂ R+,

• a sequence
(
w(n)

)
n∈N\{0}

of functions (profiles) w(n) ∈ Ḣ1,2(RN),

such that,
j(n)
k −→ ∞ as k → ∞ ∀n ∈ N \ {0}, (4)

| j(n)
k − j(m)

k | + 2 j(n)
k d(y(n)

k , y(m)
k )→ ∞ whenever m , n, (5)

2− j(n)
k ruk ◦ expy(n)

k
(2− j(n)

k ·)⇀w(n) in Ḣ1,2(RN) as k → ∞. (6)

Moreover, setting for all k ∈ N

Sk(x) :=
∑

n∈N\{0}

2 j(n)
k r χ ◦ exp−1

y(n)
k

(x) w(n)
(
2 j(n)

k exp−1
y(n)

k
(x)

)
, x ∈ M, (7)

for each k ∈ N the series Sk is unconditionally convergent (with respect to n) in Ḣ1,2(M) and
the sequence (Sk)k∈N is uniformly convergent (with respect to k) in Ḣ1,2(M), and in addition

uk − u − Sk → 0 in L2∗ (M) . (8)

Finally the following energy bound holds∑
n∈N\{0}

∥∥∥∇w(n)
∥∥∥2

L2(RN ) + ‖u‖2H1,2(M) ≤ lim inf
k→∞

‖uk‖
2
H1,2(M) . (9)

We want to emphasize that (8) states that, modulo subsequence, the defect of compactness
uk − u of the bounded sequence (uk)k∈N (which, modulo subsequence, weakly converges to u)
has a representation given (up to a remainder which vanishes in the norm of L2∗ (M)) by the
clearly structured terms in Sk.

The proof of this theorem is based on the following easy corollary to Solimini’s profile
decomposition [10, Theorem 2].
Theorem 2. Given m ∈ N\ {0} and 1 < p < N

m let r = N
p∗(m) =

N−mp
p . Let (vk)k∈N be a bounded

sequence in the homogeneous Sobolev space Ḣm,p(RN) supported on a compact set K ⊂ RN .
Then, there exists a (renamed) subsequence (s.t. vk ⇀ v) whose defect of compactness vk − v
has the form

S k =
∑

n∈N\{0}

2 j(n)
k rw(n)(2 j(n)

k (· − ξ(n)
k )), (10)

where, for any n ∈ N \ {0}, Ξ(n) := (ξ(n)
k )k∈N, ξ(n)

k → ξn ∈ K, and J(n) := ( j(n)
k )k∈N ⊂ R are such

that j(n)
k →+∞ as k → ∞ and w(n) is the weak limit of the sequence

(
2− j(n)

k rvk(2− j(n)
k · +ξ(n)

k )
)

k∈N
.

Moreover the addenda are asymptotically mutually orthogonal, i.e.

| j(n)
k − j(m)

k | + 2 j(n)
k |ξ(n)

k − ξ
(m)
k | → ∞ whenever m , n. (11)
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Proof. We shall assume, without restrictions, that uk ⇀ 0. According to the profile decom-
position result [10, Theorem 2], modulo the extraction of a subsequence, each term vk has
concentration terms (depending on n) of the following shape

cn
k := 2 j(n)

k rw(n)(2 j(n)
k (· − ξ(n)

k )) (12)

for some ξ(n)
k ∈ RN , j(n)

k ∈ R where w(n) is obtained as the weak limit of the sequence(
2− j(n)

k rvk(2− j(n)
k · +ξ(n)

k )
)

k∈N
. We claim that the sequence J(n) := ( j(n)

k )k∈N is bounded from

below. Indeed, on the contrary, the assumption j(n)
k → − ∞ as k → ∞ would imply, since vk

has a bounded support, that∥∥∥∥∥2− j(n)
k rvk

(
2− j(n)

k · +ξ(n)
k

)∥∥∥∥∥
p
→0 as k → ∞,

and so that w(n) = 0.
Note that J(n) cannot have any bounded subsequence, since otherwise (vk)k∈N should have

a nonzero weak limit, in contradiction to our assumptions. By passing to convergent subse-
quences and subsequent diagonalization we easily get ξ(n)

k → ξn ∈ K.
Finally, condition (11) is the condition of asymptotic orthogonality (decoupling) of bub-

bles from [10]. �

§3. Cocompactness in Sobolev spaces of compact manifolds

The Sobolev embedding H1,2(M) ↪→ L2∗ (M) has the following property of cocompactness
type.

Theorem 3. Let M be a compact smooth Riemannian N-dimensional manifold (N ≥ 3), and
0 < ρ < ρM

3 . Let
(
Bρ(zi), exp−1

zi

)
i∈I

be a finite smooth atlas of M and let χ ∈ C∞0 (Bρ(0)) so
that (χi)i∈I , defined by (2), is a smooth partition of unity on M subordinated to the covering
(Bρ(zi))i∈I . Set r = r(2) = N

2∗ = N−2
2 . If (uk)k∈N is any bounded sequence in H1,2(M) such that

for every i ∈ I, (yk)k∈N ⊂ Bρ(zi), and for every ( jk)k∈N ⊂ N such that jk → +∞

2− jkr(χiuk) ◦ expyk
(2− jk ·)⇀0 as k → ∞, (13)

then uk→0 in L2∗ (M).

Proof. We claim that for all sequences (ξk)k∈N ⊂ R
N and ( jk)k∈N ⊂ N such that jk → +∞ and

for every i ∈ I we have

2− jkr(χiuk) ◦ expzi
(2− jk · +ξk)⇀0 as k → ∞. (14)

Since (14) is obviously true when |ξk | ≥ ρ, (indeed the terms in (14) are identically zero for k
large enough), we shall assume ξk ∈ Bρ(0) for all k ∈ N. Given i ∈ I, we set yk := expzi

(ξk) ∈
M and denote by ψk the transition map between the charts (Bρ(zi), exp−1

zi
) and (Bρ(yk), exp−1

yk
)

i.e. we set ψk := exp−1
yk
◦ expzi

(so that expzi
= expyk

◦ψk and ψk(ξk) = 0). Therefore, for k
large enough, by using Taylor expansion of the first order at ξk (where, for a lighter notation,
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we denote by ψ′k(ξk) the Jacobi matrix of ψk at ξk (ψ′k(ξk))−1 its inverse and by |(ψ′k(ξk))−1| the
corresponding Jacobian, and drop the dot symbol for the rows-by-columns product) we get,
since jk → +∞, that

2− jkr(χiuk)(expzi
(2− jkξ + ξk)) = 2− jkr(χiuk)(expyk

◦ψk)(2− jkξ + ξk)

= 2− jkr(χiuk)(expyk
(2− jk (ψ′k(ξk) + o(1))ξ)).

(15)

(we are using the Landau symbol o(1) to denote any (matrix valued) function uniformly
convergent to zero). In correspondence to any test function ϕ ∈ C∞0 (RN),∫

B2ρ(0)
ϕ(ξ)2− jkr

[
(χiuk) ◦ expzi

(2− jkξ + ξk) − (χiuk) ◦ expyk
(2− jkψ′k(ξk)ξ)

]
dξ

=

∫
B2ρ(0)

ϕ(ξ)2− jkr
[
(χiuk) ◦ expyk

◦ψk(2− jkξ + ξk) − (χiuk) ◦ expyk
(2− jkψ′k(ξk)ξ)

]
dξ

= |(ψ′k(ξk))−1|2 jk N+2
2

∫
|η|<C2− jk

ϕ(2 jk (ψ′k(ξk))−1η)

×
[
(χiuk) ◦ expyk

(
ψk((ψ′k(ξk))−1η + ξk

)
− (χiuk) ◦ expy(η)

]
dη

= |(ψ′k(ξk))−1|2 jk N+2
2

∫ 1

0
ds

∫
|η|<C2− jk

ϕ(2 jk (ψ′k(ξk))−1η)

× ∇

(
(χiuk) ◦ expyk

(sψk

(
(ψ′k(ξk))−1η + ξk) + (1 − s)η

))
· (ψk((ψ′k(ξk))−1η + ξk) − η)dη,

(the second equality holds by integrating with respect to the variable η = 2− jkψ′k(ξk)ξ). Set,
for each s ∈ [0, 1], ζ := sψk

(
(ψ′k(ξk))−1η + ξk

)
+ (1− s)η, since for η→ 0, ζ = η+ O(|η|2) and

since the Jacobian of the transformation is close to 1 in the domain of integration, the modulus
of the last expression is bounded by the following one, which, in turn, can be estimated by
Cauchy inequality, so we have

C2 jk N+2
2

∫
|ζ |<C2− jk

ϕ(2 jk (ψ′k(ξk))−1η(ζ))|∇(χiuk) ◦ expyk
(ζ)||ζ |2dζ

≤ C2 jk N+2
2 ‖∇(χiuk) ◦ expyk

‖2

(∫
|ζ |<C2− jk

|ϕ(2 jk (ψ′k(ξk))−1η(ζ))|2|ζ |4dζ
) 1

2

≤ C2 jk N+2
2 ‖uk‖H1,2(M)

(∫
|ξ|<C
|ϕ(ξ)|22−4 jk |ξ|42− jk Ndξ

) 1
2

≤ C2− jk−→0.

Therefore, by taking into account (15), we deduce that both sequences
(
2− jkr(χiuk)(expyk

(2− jk ·))
)

k∈N

and
(
2− jkr(χiuk)(expzi

(2− jk · +ξk))
)

k∈N
have the same weak limit and, since (13) holds true,

(14) holds too.
Consequently, from the cocompactness of the embedding Ḣ1,2(RN) ↪→ L2∗ (RN) ([10,

Theorem 1]), it follows that, for every i ∈ I,

(χiuk) ◦ expzi
→0 in L2∗ (RN) as k → ∞, (16)
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and therefore, since (χi)i∈I is a partition of unity subordinated to the atlas
(
Bρ(zi), exp−1

zi

)
i∈I

,
we deduce that∫

M
|uk |

2∗dvg =

∫
M

∣∣∣∣∣∣∣∑i∈I

χiuk

∣∣∣∣∣∣∣
2∗

dvg ≤ C
∑
i∈I

∫
Bρ(zi)

|χiuk |
2∗dvg

≤ C
∑
i∈I

∫
Bρ(0)
|uk ◦ expzi

(ξ)|2
∗

dξ → 0,

which proves the statement of the theorem. �

§4. Proof of Theorem 1 (profile decomposition)

1. Without loss of generality we may assume (by replacing uk with uk − u) that uk ⇀ 0.
Then, setting for all i ∈ I

vk,i := (χiuk) ◦ expzi
(17)

we get that the sequence (vk,i)k∈N is bounded in H1,2
0 (Bρ(0)) (and weakly converges to zero),

and so we can consider a profile decomposition of (vk,i)k∈N given by Theorem 2 when m =

1 and r = N−2
2 . An iterated extraction allows to find a subsequence which has a profile

decomposition for every i ∈ I i.e. such that for all i ∈ I the defect of compactness of vk,i has
the following form

S k,i =
∑

n∈N\{0}

2 j(n)
k,i rw(n)

i

(
2 j(n)

k,i

(
· − ξ(n)

k,i

))
=:

∑
n∈N\{0}

c(n)
k,i . (18)

By taking into account (17) we will be able to get concentration terms of χiuk by com-
posing each concentration term c(n)

k,i of vk,i with exp−1
zi

. In more detail, we consider for all i ∈ I
the term, defined on Bρ(zi),

C
(n)
k,i := c(n)

k,i ◦ exp−1
zi

= 2 j(n)
k,i rw(n)

i

(
2 j(n)

k,i

(
exp−1

zi
(·) − ξ(n)

k,i

))
. (19)

Setting
y(n)

k,i := expzi
(ξ(n)

k,i ), (20)

we have that
C

(n)
k,i = 2 j(n)

k,i rw(n)
i

(
2 j(n)

k,i

(
exp−1

zi
(·) − exp−1

zi
(y(n)

k,i )
))
. (21)

Since for all i ∈ I and n ∈ N \ {0}

w(n)
i := w-lim

k→∞
2− j(n)

k,i r(χiuk) ◦ expzi

(
2− j(n)

k,i · +ξ(n)
k,i

)
, (22)

we can see that w(n)
i “evaluates” χiuk on points belonging to Bρ(zi) which are mapped by

exp−1
zi

in subsets of Bρ(0) which are (for large k) concentrated around the points ξ(n)
k,i . So, due

to (20), it is sufficient to evaluate w(n)
i on points which belong also to Bρ(y

(n)
k,i ). So, setting

Bi,k,n := exp−1
y(n)

k,i
(Bρ(y

(n)
k,i ) ∩ Bρ(zi)) ⊂ Bρ(0), (23)
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we shall consider the transition map between the charts (Bρ(y
(n)
k,i ), exp−1

y(n)
k,i

) and (Bρ(zi), exp−1
zi

),

i.e. the map
ψi,k,n := exp−1

zi
◦ expy(n)

k,i
(24)

defined on Bi,k,n. Note that ψi,k,n(0) = ξ(n)
k,i , moreover, by setting for any x ∈ Bi,k,n

η := 2 j(n)
k,i exp−1

y(n)
k,i

(x), (25)

we have exp−1
zi

(x) = ψi,k,n(2− j(n)
k,i η) for all x ∈ Bi,k,n. Therefore (by using Taylor expansion of

the first order of the transition map ψi,k,n at 0, where, to use a lighter notation we denote by
ψ′i,k,n(0) the Jacobi matrix of ψi,k,n at zero, (ψ′i,k,n(0))−1 its inverse and omit the dot symbol for
the rows-by-columns product) we deduce

2 j(n)
k,i

(
exp−1

zi
(x) − ξ(n)

k,i

)
= 2 j(n)

k,i

(
ψi,k,n(2− j(n)

k,i η) − ξ(n)
k,i

)
= 2 j(n)

k,i

(
ψi,k,n(2− j(n)

k,i η) − ψi,k,n(0)
)

= ψ′i,k,n(0)η + O(2− j(n)
k,i η2) = 2 j(n)

k,i ψ′i,k,n(0) exp−1
y(n)

k,i
(x) + O

(
2 j(n)

k,i

(
exp−1

y(n)
k,i

(x)
)2

)
.

(26)

Without loss of generality, applying Arzelà-Ascoli theorem and passing to a suitable subse-
quence, we can assume that

(
ψi,k,n

)
k∈N converges in the norm of C1(RN) as k → ∞ to some

function ψi,n. We claim that, under a suitable renaming of the profile w(n)
i , namely by renam-

ing w(n)
i (ψ′i,n(0) ·) as w(n)

i , concentration terms C(n)
k,i (of χiuk) in (19) (which we now extend

to functions on the whole manifold by multiplying with a cut-off function, cf. (2)) take the
following form:

C̃
(n)
k,i := 2 j(n)

k,i r χ ◦ expy(n)
k,i
w(n)

i

(
2 j(n)

k,i exp−1
y(n)

k,i
(·)

)
. (27)

For this purpose we show that, as k → ∞,∫
Bρ(y(n)

k,i )∩Bρ(zi)

∣∣∣∣∣2 j(n)
k,i rd

(
w(n)

i

(
2 j(n)

k,i (exp−1
zi

(x) − ξ(n)
k,i )

)
− w(n)

i

(
2 j(n)

k,i ψ′i,n(0) exp−1
y(n)

k,i
(x)

))∣∣∣∣∣2 dvg→0. (28)

Indeed, the previous relation written under the coordinate map expy(n)
k,i

, i.e. by setting ξ =

exp−1
y(n)

k,i

(x) becomes (by taking into account (24) and (23))

∫
Bi,k,n

∣∣∣∣∣2 j(n)
k,i r
∇

(
w(n)

i

(
2 j(n)

k,i (ψi,k,n(ξ) − ξ(n)
k,i )

)
− w(n)

i

(
2 j(n)

k,i ψ′i,n(0)ξ
))∣∣∣∣∣2 dξ→0 as k → ∞,

and, by taking into account (25) (and by a null extension to whole of RN of the involved
functions), the claim will follow if, as k → ∞,

2− j(n)
k,i

N+2
2

∫
RN

∣∣∣∣∣ψ′i,k,n(2− j(n)
k,i η)∇w(n)

i

(
2 j(n)

k,i (ψi,k,n(2− j(n)
k,i η) − ξ(n)

k,i )
)
− ψ′i,n(0)∇w(n)

i (ψ′i,n(0)η)
∣∣∣∣∣2 dη→0.

This last convergence easily follows by Lebesgue dominated convergence theorem, indeed
(for all n and for all i) ∇w(n)

i ∈ L2(RN), and when k → ∞, we have j(n)
k,i→ +∞, and (by taking
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into account that convergence of
(
ψi,k,n

)
k∈N and

(
ψ′i,k,n

)
k∈N

to ψi,n and ψ′i,n respectively is uni-

form) the pointwise convergence of ψ′i,k,n(2− j(n)
k,i η)→ψ′i,n(0), 2 j(n)

k,i

(
ψi,k,n(2− j(n)

k,i η) − ξ(n)
i

)
→ψ′i,n(0)η

(as easily follows by (26) and (25)).
It is easy to see now that the renamed profiles w(n)

i are obtained as pointwise limits (and
thus also as weak limits)

w(n)
i (ξ) = lim

k→∞
2− j(n)

k,i r(χiuk) ◦ expy(n)
k,i

(
2− j(n)

k,i ξ
)
, for a.e. ξ ∈ RN . (29)

2. Since each Bρ(zi) ⊂ B2ρ(zi) ⊂ M and M is compact, we may assume that for all
n ∈ N \ {0} and for all i ∈ I, there exist, up to subsequences, points of concentration

y(n)
i := lim

k→∞
y(n)

k,i . (30)

In order to achieve the orthogonality relation (5) we shall introduce the following equiv-
alence relation on the set of sequences in M × R. Namely given (yk, jk)k∈N and

(
y′k, j′k

)
k∈N

in
M × Z we shall write

(yk, jk)k∈N '
(
y′k, j′k

)
k∈N

when
(
| jk − j′k | + 2 jk d(yk, y

′
k)
)

k∈N
is a bounded sequence. (R)

Since the set I is a finite set, the number of sequences
(
y(n)

k,i , j(n)
k,i

)
k∈N

which can be equivalent

to a fixed sequence
(
y(n̄)

k,ı̄ , j(n̄)
k,ı̄

)
k∈N

is finite. Therefore we can exploit the unconditional conver-
gence with respect to the indexes (n) of the series S k,i and synchronize them by replacing n̄
and all the indexes m in the finite set

Nn̄ :=
{
m ∈ N \ {0} | ∃i ∈ I s.t.

(
y(n)

k,i , j(n)
k,i

)
k∈N
'

(
y(n̄)

k,ı̄ , j(n̄)
k,ı̄

)
k∈N

}
(31)

with, say, the smallest integer in Nn̄.
Thanks to this synchronization procedure the following property(

y(n)
k,i1
, j(n)

k,i1

)
k∈N
'

(
y(m)

k,i2
, j(m)

k,i2

)
k∈N

⇐⇒ m = n, (32)

holds true for all i1, i2 ∈ I and m, n ∈ N \ {0}.

Note also that when
(
y(n)

k,i1
, j(n)

k,i1

)
k∈N
'

(
y(n)

k,i2
, j(n)

k,i2

)
, since

(∣∣∣∣ j(n)
k,i2
− j(n)

k,i1

∣∣∣∣)
k∈N

is bounded, we

can set, modulo subsequences

j(i1, i2, n) := lim
k→+∞

j(n)
k,i2
− j(n)

k,i1
∈ R, (33)

so that, by redefining w(n)
i2

(2− j(i1,i2,n)·) as (the corresponding profile) w(n)
i2

, we can assume that(
j(n)
k,i2

)
k∈N

=
(

j(n)
k,i1

)
k∈N

. Moreover, since also
(
2 j(n)

k,i1 d
(
y(n)

k,i1
, y(n)

k,i2

))
k∈N

is bounded, we get (by (4))

that (see (30))
ȳ(n)

i1
= ȳ(n)

i2
for all

(
y(n)

k,i1
, j(n)

k,i1

)
k∈N
'

(
y(n)

k,i2
, j(n)

k,i2

)
k∈N

. (34)
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Finally, we show that the elementary concentrations terms C(n)
k,i do not change (up to a

vanishing term) by varying
(
y(n)

k,i , j(n)
k,i

)
k∈N

in the same equivalence class. Namely the following
property holds true(

y(n)
k,i1
, j(n)

k,i1

)
k∈N
'

(
y(n)

k,i2
, j(n)

k,i2

)
k∈N

⇒

∥∥∥∥C(n)
k,i1
−C(n)

k,i2

∥∥∥∥→ 0, (35)

for all i1, i2 ∈ I. Since, as shown above, we can assume, without restrictions, that
(

j(n)
k,i1

)
k∈N

=(
j(n)
k,i2

)
k∈N

(and we shall denote, to shorten notation, their common value as
(

j(n)
k

)
k∈N

) it will

suffice to prove that, set ξ̄(n)
k,i1

= exp−1
zi1
y(n)

k,i1
and ξ̄(n)

k,i2
= exp−1

zi1
y(n)

k,i2
, we have∫

Bρ(zi1 )

∣∣∣∣∣2 j(n)
k rd

(
w(n)

i1

(
2 j(n)

k (exp−1
zi1

(x) − ξ̄(n)
k,i2

)
)
− w(n)

i1

(
2 j(n)

k (exp−1
zi1

(x) − ξ̄(n)
k,i1

)
))∣∣∣∣∣2 dvg→0 as k → ∞.

(36)
Indeed, by (20), we get, modulo subsequences, that

2 j(n)
k |ξ̄(n)

k,i2
− ξ̄(n)

k,i1
| = 2 j(n)

k | exp−1
zi1
y(n)

k,i2
− exp−1

zi1
y(n)

k,i1
|

= 2 j(n)
k |d(y(n)

k,i2
, zi1 ) − d(y(n)

k,i1
, zi1 )| ≤ 2 j(n)

k d(y(n)
k,i2
, y(n)

k,i1
)→ 0.

Then, (5) follows directly from (34).

3. Consider now the sum
∑

n∈N\{0}
∑

i∈I C̃
(n)
k,i , with the sequences (y(n)

k,i )k∈N and ( j(n)
k,i )k∈N,

which are synchronized at the Step 2 as (y(n)
k )k∈N and ( j(n)

k )k∈N with y(n)
k → ȳ(n), and (29) takes

form
w(n)

i (ξ) = lim
k→∞

2− j(n)
k r(χiuk) ◦ expy(n)

k

(
2− j(n)

k ξ
)
, for a.e. ξ ∈ RN . (37)

Since j(n)
k → ∞ implies expy(n)

k

(
2− j(n)

k ξ
)
→ ȳ(n) in M, the latter equality yields

w(n)
i (ξ) = χi(ȳ(n)) lim

k→∞
2− j(n)

k ruk ◦ expy(n)
k

(
2− j(n)

k ξ
)
, for a.e. ξ ∈ RN , (38)

Then, setting
w(n) :=

∑
i∈I

w(n)
i . (39)

we get relation (6) immediately from (38), w(n)
i = χi(ȳ(n))w(n), and since, by Step 1, defect of

compactness of χiuk is an unconditionally convergent series, we have

∑
i∈I

∑
n∈N\{0}

C̃
(n)
k,i (x) =

∑
n∈N\{0}

∑
i∈I

C̃
(n)
k,i (x) =

∑
n∈N\{0}

∑
i∈I

2 j(n)
k r χ ◦ expy(n)

k
w(n)

i

(
2 j(n)

k exp−1
y(n)

k
(x)

)
=

∑
n∈N\{0}

2 j(n)
k r χ ◦ expy(n)

k
w(n)

(
2 j(n)

k exp−1
y(n)

k
(x)

)
, x ∈ M,

which gives (7).
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4. In order to prove the “energy” estimate (9), assume, without loss of generality, that
the sum in (7) is finite and that all w(n) have compact support, and expand by bilinearity the
trivial inequality ‖u − uk +Sk‖

2
H1,2(M) ≥ 0. Then, by using the norm (1) and the representation

(3) of the scalar product in H1,2(M), we have

0 ≤ ‖uk‖
2 + ‖u‖2 − 2〈uk, u〉 + 2〈u − uk,Sk〉

+
∑

n

‖2 j(n)
k r χ ◦ exp−1

y(n)
k
w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)
‖2

−
∑
m,n

〈
2 j(m)

k r χ ◦ exp−1
y(m)

k
w(m)

(
2 j(m)

k exp−1
y(m)

k
(·)

)
, 2 j(n)

k r χ ◦ exp−1
y(n)

k
w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)〉
.

(40)

The first line of (40) can be evaluated taking into account that uk ⇀ u, Sk ⇀ 0, that (6)
defines profiles w(n), and that r = N−2

2 :

‖uk‖
2 + ‖u‖2 − 2〈uk, u〉 + 2〈u − uk,Sk〉

= ‖u2
k‖ + ‖u2‖ − 2‖u‖2 + o(1) − 2

∑
n

〈
uk, 2 j(n)

k r χ ◦ exp−1
y(n)

k
w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)〉
= ‖uk‖

2 − ‖u‖2 + o(1)

− 2
∑

n

2 j(n)
k r

∫
|ξ|<ρ

N∑
i, j=1

g
y(n)

k
i j ∂i

(
uk(expy(n)

k
(ξ))

)
∂ j

(
χ(ξ)w(n)(2 j(n)

k ξ)
) √

det g
y(n)

k
i j (ξ)dξ

− 2
∑

n

2 j(n)
k r

∫
|ξ|<ρ

uk(expy(n)
k

(ξ))χ(ξ)w(n)(2 j(n)
k ξ)

√
det g

y(n)
k

i j (ξ)dξ

= ‖uk‖
2 − ‖u‖2 + o(1)

− 2
∑

n

∫
|η|<ρ2 j(n)

k

N∑
i, j=1

g
y(n)

k
i j ∂i

(
2− j(n)

k ruk ◦ expy(n)
k

(2− j(n)
k η)

)
∂ j

(
χ(2− j(n)

k η)w(n)(η)
)

·

√
det g

y(n)
k

i j (2− j(n)
k η) dη

− 2
∑

n

2−2 j(n)
k

∫
|η|<ρ2 j(n)

k

2− j(n)
k ruk ◦ expy(n)

k
(2− j(n)

k η)χ(2− j(n)
k η)w(n)(η)

√
det g

y(n)
k

i j (2− j(n)
k η)dη

= ‖uk‖
2 − ‖u‖2 + o(1) − 2

∑
n

∫
RN

N∑
i

|∂iw
(n)(η)|2dη − 2

∑
n

2−2 j(n)
k

∫
RN
|w(n)(η)|2dη

= ‖uk‖
2 − ‖u‖2 − 2

∑
n

‖∇w(n)‖22 + o(1).

(In the third equality we have set η = 2 j(n)
k ξ, while in the fourth we have used the fact, due to

(6) that 2− j(n)
k χ(2− j(n)

k ·)(uk◦expy(n)
k

)(2− j(n)
k ·)⇀χ(0)w(n) = w(n) as k → ∞ (in our slightly modified

sense of weak convergence). Note that we have still denoted by ∂i (resp. ∂ j) the derivative
with respect to the ith (resp jth) component of η = 2 j(n)

k ξ. Finally, in the last equality, we have
used (1)).
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In order to estimate the second line of (40) we shall split (according to (1)) the H1,2(M)-
norm into the L2-norm of the gradient (gradient part) and the L2-norm of the function (L2

part) and consider first the latter. Since

∑
n

∥∥∥∥∥2 j(n)
k

N−2
2 χ ◦ exp−1

y(n)
k
w(n)(2 j(n)

k exp−1
y(n)

k
(·))

∥∥∥∥∥2

2

=
∑

n

2 j(n)
k (N−2)

∫
Bρ(yn)

|χ ◦ exp−1
y(n)

k
(x)w(n)(2 j(n)

k exp−1
y(n)

k
(x))|2dvg

=
∑

n

2 j(n)
k (N−2)

∫
|ξ|<ρ

|χ(ξ)(w(n)(2 j(n)
k ξ)|2

√
det g

y(n)
k

i j (ξ)dξ

=
∑

n

2−2 j(n)
k

∫
|η|<ρ2 j(n)

k

|χ(2− j(n)
k η)w(n)(η)|2

√
det g

y(n)
k

i j (2− j(n)
k η)dη→0 as k → ∞,

(since j(n)
k →∞) as k → ∞, the second line of (40) is evaluated in the limit by the sum of the

gradient terms as follows:

∑
n

2 j(n)
k (N−2)

∫
Bρ(y(n)

k )

∣∣∣∣∣d (
χ ◦ exp−1

y(n)
k

(x)w(n)(2 j(n)
k exp−1

y(n)
k

(x))
)∣∣∣∣∣2 dvg

=
∑

n

2 j(n)
k (N−2)

∫
|ξ|<ρ

N∑
i, j=1

g
y(n)

k
i j (ξ)∂i

(
χ(ξ)w(n)(2 j(n)

k ξ)
)
∂ j

(
χ(ξ)w(n)(2 j(n)

k ξ)
) √

det g
y(n)

k
i j (ξ)dξ

=
∑

n

∫
|η|<ρ2 j(n)

k

N∑
i, j=1

g
y(n)

k
i j ∂i

(
χ(2− j(n)

k η)w(n)(η)
)
∂ j

(
χ(2− j(n)

k η)w(n)(η)
) √

det g
y(n)

k
i j (2− j(n)

k η) dη

−→
∑

n

∫
RN
|∇w(n)(η)|2 dη =

∑
n

∥∥∥∇w(n)
∥∥∥2

as k → ∞.

Consider now the terms in the sum in third line of (40). Note that the L2-part of the scalar
product converges to zero by Cauchy inequality and by the calculations for the first line of
(40). At the light of the orthogonality condition (5) we have to face two cases.

Case 1: The sequence ( j(n)
k − j(m)

k )k∈N is unbounded. Assume without loss of generality
that j(n)

k − j(m)
k →+∞ as k → ∞. Then, using changes of variables ξ = exp−1

y(n)
k

(x) and η = 2 j(n)
k ξ,

〈
2 j(m)

k r χ ◦ exp−1
y(m)

k
(x)w(m)

(
2 j(m)

k exp−1
y(m)

k
(·)

)
, 2 j(n)

k r χ ◦ exp−1
y(n)

k
(x)w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)〉
= 2 j(n)

k r2 j(m)
k r

∫
Bρ(y(m)

k )∩Bρ(y(n)
k )

d
(
χ ◦ exp−1

y(m)
k

(x)w(m)
(
2 j(m)

k exp−1
y(m)

k
(x)

))
· d

(
χ ◦ exp−1

y(n)
k

(x)w(n)
(
2 j(n)

k exp−1
y(n)

k
(x)

))
dvg + o(1)
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= 2 j(n)
k r2 j(m)

k r
∫
|ξ|<ρ

N∑
i, j=1

g
y(n)

k
i j (ξ)∂i

(
χ(ξ)w(n)(2 j(n)

k ξ)
)

· ∂ j

(
χ(exp−1

y(m)
k

(expy(n)
k

(ξ)))w(m)(2 j(m)
k exp−1

y(m)
k

(expy(n)
k

(ξ)))
) √

det g
y(n)

k
i j (ξ)dξ

= 2− j(n)
k r2 j(m)

k r
∫
|η|<ρ2 j(n)

k

N∑
i, j=1

g
y(n)

k
i j (2− j(n)

k η)∂i

(
(1 + o(1))w(n)(η)

)
· ∂ j

(
(1 + o(1))w(m)(2 j(m)

k exp−1
y(m)

k
(expy(n)

k
(2− j(n)

k η)))
)

(1 + o(1))dη + o(1)→ 0,

since, by (6),

w-lim
k→∞

2− j(n)
k r2 j(m)

k rw(m)(2 j(m)
k (exp−1

y(m)
k
◦ expy(n)

k
)(2− j(n)

k ·)) = w-lim
k→∞

2− j(n)
k ruk(·) = 0.

Case 2: 2 j(n)
k d(y(n)

k , y(m)
k ) → ∞ as k → ∞. Since case 1 has been ruled out, we can assume

without restrictions that the sequence j(m)
k − j(n)

k = j ∈ R for all large k. Then, by arguing
as above (and in particular by taking into account that the L2-part of the scalar product is
negligible), we get that, as k → ∞,〈

2 j(m)
k r χ ◦ exp−1

y(m)
k
w(m)(2 j(m)

k exp−1
y(m)

k
(·)), 2 j(n)

k r χ ◦ exp−1
y(n)

k
w(n)(2 j(n)

k exp−1
y(n)

k
(·))

〉
→ 0,

since the values of w(m) and of w(n) are set to concentrate at sufficiently separated points,
indeed d(2 j(n)

k y(n)
k , 2 j(m)

k y(m)
k ) = 2 j(n)

k d(y(n)
k , 2 jy(m)

k ) ≥ 2 j(n)
k d(y(n)

k , y(m)
k )→ ∞.

Then, by applying the estimates obtained for the three lines of inequality (40) we finally
deduce (9) concluding the proof of Theorem 1.
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