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DIFFERENTIAL EQUATIONS WITH ORDER
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Abstract. The asymptotic behavior of the solution of generalized fractional order integral
equations with order varying in time arising in image processing is investigated in this
work. It is shown here that the asymptotic behavior is extended from the corresponding
property for the scalar abstract equation u(t) = ∂−α(t)

t Au(t) + f (t), 0 ≤ t ≤ T, for a given
α : [0,T ]→ (1, 2), f defined in 0 ≤ t ≤ T , A : D(A) ⊂ X → X a bounded operator, and X
a Banach space. It is also proved that a first order time discretization inherits the behavior
of the continuous solution.
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§1. Introduction

One of the most interesting properties in time dependent partial differential equations based
models for image processing is the asymptotic behavior of the analytic solution as time goes
to infinity, but an even more important issue is if the time discretization inherits this behavior.
In fact, the asymptotic behavior allows us to predict the diffusion level of the solution as the
scale parameter t grows up, or in image processing terminology, this allows one to predict the
degree of blurring acting on the image as time tends to infinity.

The asymptotic behavior of most of local models related to image processing has been
extensively investigated, on the contrary what happens with nonlocal models. The memory
effect in nonlocal equations makes in many cases the study of the asymptotic behavior more
difficult if compared to the local models, but in spite of this the study has been carried out for
general Volterra equations [8], and in a particular and very well known kind of nonlocal mod-
els as they are the linear integro–differential equations of fractional order [1]. This behavior
has been already experienced in practical instances related to image processing (see e.g. the
pioneer work [3]).

Recently an extension of the integro–differential equations of fractional order in [3] con-
sisting in replacing the constant fractional order by fractional order varying in time has been
successfully applied in the framework of image filtering [2]. To the best of our knowledge up
to now there was no particular results on the asymptotic behavior adapted to fractional equa-
tions with order varying in time, however a recent work solves this issue. In fact, in [5] the
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authors study the asymptotic behavior of such a kind of equations, and they extend the result
to its time discretization. The well–posedness, and the regularity of the solution is studied in
[5] as well, everything done in the abstract framework of complex Banach spaces.

The main contribution of this work is the extension of these results to the case of gen-
eralized fractional equations in the sense of [2], whose main difference is that this approach
involves several varying in time integration orders in a matrix–form.

The paper is organized as follows, Section 2 is devoted to mathematical background and
model formulation, in Section 3 and 4 we present the main results of this work related to
the continuous and discrete solutions respectively, and finally in Section 5 we present some
observations and final conclusions.

§2. Mathematical background

The present work is motivated by the nonlocal in time evolution partial differential equations
based approach to image processing introduced in [2], whose formulation is given in terms of
time fractional integrals with orders varying in time. In fact, let u0 be an initial data, standing
for a J × J, perturbed sampled image, J > 0, vector–arranged as J2 × 1 vector, and intended
to be restored. The nonlocal evolutionary model proposed in [2] reads

u(t) = u0 +

∫ t

0
AhD(t − s)u(s) ds, t > 0, (1)

where u : [0,T ] → MJ2×1(R), stands for the original image evolved up to the time level
t > 0, which has been vector–arranged as a column vector with J2 entries, i.e. u = (u j)1≤ j≤J2 .
Moreover, Ah ∈ MJ2×J2 (R) is a symmetric and negative semi–definite matrix. An example
of matrix Ah is the one corresponding to the discrete Laplacian based on a second order
finite difference scheme, including discrete and homogeneous Newman boundary conditions.
Notice that most of classical spatial discretizations of the Laplacian give rise to one of these
matrices. Finally, D : [0,T ] → MJ2×J2 (R) stands for a diagonal matrix, D = diag1≤i≤J2 (k j),
where the entries k j(t), 1 ≤ j ≤ J2, coincide with the convolution kernels those define the
fractional integral with order varying in time α j(t), for each 1 ≤ j ≤ J2.

Recall that several definitions for non integer integrals (or derivatives) with order varying
in time can be found in the literature, and the convenience of using one vs. the others has been
largely discussed, and basically depends on the purposes of the model. For the shortness of
the presentation, we do not include such a discussion here, we just adopt the same definition
as in [5] and we refer there the reader for a more precise motivation of this choice. Before
recalling this definition let us denote L and L−1 the Laplace transform operator and the
inverse Laplace transform operator, respectively. In that manner, let α : [0,T ] → (1, 2) be a
piecewise continuous function then, for f ∈ L1(0,+∞), the fractional integral of order α(t) is
defined as

∂−α(t)
t f (t) =

∫ t

0
k(t − s) f (s) ds, t > 0, (2)

where,

k(t) := L−1(K)(t), and K(z) :=
1

zzα̃(z) , (3)
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and
α̃(z) = L(α)(z), (4)

for z ∈ D(K) ⊂ C. Simply observe that, if the fractional order turns out to be constant, then
α̃(z) = α/z for certain constant α, and the definition (2)–(4) coincides with the very well
known Riemann–Liouville one [9]. We refer the reader to [5] for a deeper discussion on this
matter.

The underlying idea behind the use of this model in image filtering is that the diffusion
in the original image u0 applies pixel–by–pixel by setting different viscosity parameters (or
diffusion coefficients) α j(t) for each single pixel, which evolves in time according to some
criteria (edge–preserving, texture–preserving, among others). This fact gives rise to the con-
volution kernels k j(t), 1 ≤ j ≤ J2 of the type mentioned above. This approach extends many
other previous fractional approaches whose diffusion orders keep constant along the whole
time interval.

§3. Main result

In this section we present the main theorem of the paper related to the continuous solution,
but we previously recall the result on which this is based on.

Let (Y, ‖ · ‖) be a complex Banach space, α : [0,T ] → (1, 2) a piecewise continuous
function, and consider the abstract integral equation

u(t) = u0 + ∂−α(t)
t (Au)(t), t > 0, (5)

where A : D(A) ⊂ Y → Y is a linear, closed, and θ–sectorial operator in Y , 0 < θ < π/2,
u0 ∈ Y stands for the initial data, and ∂−α(t)

t defines the fractional integral according the
definition (2)–(4).

Recall that a linear and closed operator is θ–sectorial, 0 < θ < π/2, if there exist w ∈ R
and L > 0 such that

• The resolvent (zI − A)−1 is analytic, and

• It satisfies

‖(zI − A)−1‖Y→Y ≤
L

|z − w|
,

for z ∈ C, with Arg(z − w) > π − θ.
Notice that, since we are assuming that α(t) is piecewise continuous in [0,T ], α(t) admits

Laplace transform in a complex domain Re(z) ≥ Cα, for some Cα > 0. In addition assume
that there exist 1 < m < M < 2, C > 0, and 0 < ε < 1, such that, for z ∈ C, Re(z) ≥ Cα,

(A1) m ≤ Re(zα̃(z)) ≤ M, and
Mπ

2
< ε(π − θ).

(A2) |Im(zα̃(z))| ≤ C, and ∣∣∣log (|z|Im(zα̃(z)))
∣∣∣ < (1 − ε)(π − θ),

where ε is expected to be close to 1.
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Assume also that
0 < θ < π −

Mπ

2
−max

r≥R

log(r)
rε

,

for R > 0 large enough.
Under these assumptions, equation (5) can be written in terms of the Laplace transform

as
U(z) =

H(z)
z

(H(z)I − A)−1u0, (6)

where
H(z) := zzα̃(z), and U(z) = L(u)(z),

for Re(z) ≥ Cα. Therefore there exists an evolution operator E(t), t > 0, such that the mild
solution of (5) can be written as

u(t) = E(t)u0, t > 0. (7)

In addition the evolution operator E(t) can be expressed by means of the Bromwich formula
as

E(t) =
1

2π i

∫
Γ

etz H(z)
z

(H(z)I − A)−1 dz, (8)

where Γ is a convenient complex path running from − i∞ to + i∞ within the analyticity do-
main of the resolvent of A, and positively oriented, i.e. with increasing imaginary part (see
[5] for more details).

The asymptotic behavior of the solution of (5) is stated in [5, Theorem 5.1], in fact it is
proved that there exists C > 0 such that

‖E(t)‖Y→Y ≤
CL

1 + |w|tm , as t → +∞. (9)

The first contribution of this work consists of extending the asymptotic behavior of the
solution of (5) to the solution of (1). To this end denote the Banach space Y = L1((0,T ),R)
normed as usual by ‖ · ‖L1 and denoted by simplicity as ‖ · ‖.

Let (X, ‖ · ‖X) be the Banach space defined by

X :=
J2∏
j=1

Y normed by ‖v‖X := sup
1≤ j≤J2

‖v j‖, (10)

for v = (v j)1≤ j≤J2 ∈ X.
It is straightforward to prove that the operator AhD(t) in (1), and described in Section 2,

is on the one hand commutative, i.e. AhD(t) = D(t)Ah, and on the other hand θ0–sectorial for
certain 0 < θ0 < π/2, and w ∈ R−.

Assume that the diffusion coefficients α j(t) involved in the definition of kernels in the
matrix D, admit Laplace transform in a complex domain Re(z) ≥ Cα, for some Cα > 0, and
in addition we assume (A1) and (A2) for each one. In fact assume that there exist 1 < m j <
M j < 2, C j > 0 and 0 < ε j < 1, for 1 ≤ j ≤ J2, such that, for z ∈ C, Re(z) ≥ Cα,

(B1) m j ≤ Re(zα̃ j(z)) ≤ M j, and
M jπ

2
< ε j(π − θ0).
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(B2) |Im(zα̃ j(z))| ≤ C, and

| log
(
|z|Im(zα̃ j(z))

)
| < (1 − ε j)(π − θ0)

where all ε j are expected to be close to 1.

Assume also that

(C) 0 < θ0 < π −

max
1≤ j≤J2

{M j} · π

2
−max

r≥R

log(r)
rε

,

for R > 0 large enough, and
ε = max

1≤ j≤J2
ε j. (11)

The well–posedness, and the regularity of the solution stated in [5] can be straightfor-
wardly extended to (1) under the assumptions (B1), (B2), and (C). Therefore, in order to not
extend unnecessarily this work we will focus solely on the asymptotic behavior of the solu-
tion of (1). On the other hand, the mild solution u(t) of (1) can be writen as u(t) = E(t)u0
where the evolution operator E : X → X admits the expression

E(t) :=
1

2π i

∫
Γ0

etz

z
(I − D̃(z)Ah)−1 dz, t > 0, (12)

where D̃(z) stands for the componentwise Laplace transform of D(t), and Γ0 is once again a
convenient complex path connecting − i∞ and + i∞ with increasing imaginary part.

The theorem below represents the main contribution of this section.

Theorem 1. Let E(t) be the evolution operator (12) corresponding to the mild solution of (1)
under assumptions (B1), (B2), and (C).

If zero does not belong to the spectrum of Ah, then there exists C > 0 independent on t,
such that

‖E(t)‖X→X ≤
C

1 + |λ|tm , as t → +∞, (13)

where m = min
1≤ j≤J2

{m j}, and λ is the spectral value of Ah corresponding to same index as m.

If zero belongs to the spectrum on Ah, then E(t) is merely bounded, i.e. there exists C > 0
independent on t, such that

‖E(t)‖X→X ≤ C, t > 0.

Proof. Since Ah stands for a symmetric and negative semi–definite matrix, there exists an
orthogonal matrix P, and a diagonal matrix DA with non positive diagonal entries such that
Ah = PDAPT .

On the one hand, we can write E(t) as follows

E(t) =
1

2π i

∫
Γ0

etzPT H(z)
z

(H(z) − DA)−1P dz, t > 0,

where H(z) = PD̃−1(z)PT is a bounded operator in X along the complex path Γ0. On the other
hand

‖E(t)u0‖X ≤
1

2π

∫
Γ0

∣∣∣∣∣∣ etz

z

∣∣∣∣∣∣ ‖H(z)‖X→X‖(H(z) − DA)−1u0‖X dz,
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for t > 0.
Moreover, ‖H(z)‖X→X = ‖D̃−1(z)‖X→X , for z ∈ Γ0, and the resolvent (H(z) − DA)−1 cor-

responds to a system of scalar equations where the diagonal matrix DA plays the role of the
operator A in (5), and the convolution kernel associated in (5) is here replaced by a linear
combination of kernels of the same type.

First of all recall that the spectrum of DA is located in the negative real line. Therefore,
in order to accomplish the bounds of the resolvent (H(z) − DA)−1 and the term H(z), we
make use, as in [5], of a suitable choice of the complex path Γ0 in (12), now under the
restrictions imposed by (B1), (B2), and (C). In particular, define the complex paths Γ

(1)
0 and

Γ
(2)
0 respectively by

γ(1)
0 (φ) :=

1
tm + ρ0 e iφ, −ε(π − θ) ≤ φ ≤ ε(π − θ),

and
γ(2)

0 (ρ) := ρ e± iε(π−θ), ρ ≥ ρ0,

where ε is defined in (11), ± in γ(2)
0 represents the upper and lower branches (positive and

negative imaginary parts respectively), and ρ0 stands for the distance from the origin to the
intersection point of γ(1)

0 and γ(2)
0 . Therefore,

Γ0 := Γ
(1,1/m)
0 ∪ Γ

(2,1/m)
0 , (14)

where Γ
(1,1/m)
0 and Γ

(2,1/m)
0 come parametrized by (γ(1)

0 (φ))1/m and (γ(2)
0 (ρ))1/m respectively.

So, from the bounds along Γ0 of all terms involved in the integral (12) the proof follows.
�

§4. Time discretization

The time discretization considered in [5] is based on the backward Euler convolution quadra-
ture (see [4, 6, 7]). Now we extend the formulation to the non–scalar case,

Un = u0 +

n∑
j=0

Qn− jAhU j, 0 ≤ n ≤ N, (15)

where the J2 × J2 quadrature weights {Qn}n≥0, come out from the evaluation

D̃
(

1 − ζ
τ

)
=

+∞∑
n=0

Qnζ,

τ = T/N, and D(t) is the matrix–valued function in (1). In order to not extend unnecessarily
this presentation we refer again the reader for more details on the convolution quadratures to
[6, 7], and in fact for the one based on the backward Euler method see [4].

The key point here is that the numerical solution can be written in terms of discrete evo-
lution operators {En}n≥0.
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Un = Enu0, 0 ≤ n ≤ N, (16)

and that the Bromwich formula in vectorial form allows us to write

En =
1

2π i

∫
Γ0

rn(tz)
z

(I − D̃(z)Ah)−1 dz, n ≥ 0,

where Γ0 is the complex path stated in (14), and rn(z) := 1/(1 − z)n. Notice that rn(z) stands
for the characteristic function of the backward Euler method.

What follows is the main results of this section.

Theorem 2. Let {En}n≥0 be the discrete evolution operators (16) associated to the numerical
solution (15) under assumptions (B1), (B2), and (C).

If zero does not belong to the spectrum of Ah, then there exists C > 0, independent on t,
such that

‖En‖X→X ≤
C

1 + |λ|tm
n
, as t → +∞, (17)

where m = min
1≤ j≤J2

{m j}, and λ is the spectral value of Ah corresponding to same index as m.

If zero belongs to the spectrum on Ah, then E is merely bounded, i.e. there exists C > 0
independent on t, such that

‖En‖X→X ≤ C, t > 0.

The proof of Theorem 2 follows the same steps as the one of the Theorem 1, now replac-
ing the exponential etz by the rational function rn(z).

§5. Observations and final conclusions

The first to be observed is that the numerical solution inherits the behavior as t goes to infinity
of the analytic solution. Observe also that the asymptotic behavior turns out to be indepen-
dent of the initial data u0 and its regularity since the proofs of both, Theorem 1 and 2, are
done merely for the continuous and discrete evolution operators respectively. In other words,
the regularity of the initial data does not affect the asymptotic behavior nor of the analytic so-
lution neither the numerical one. This fact is a crucial issue specially in the context of image
processing because this proves that the blurring is the same whatever the original image one
has.

Observe also that if the matrix DA has a null eigenvalue, the evolution operator is merely
bounded and the decrease is not longer guaranteed. This confirms what happens in the case
of abstract infinitesimal semigroup generators when w = 0 (according the notation in Section
2). The reason is that the evolution operators do not longer admit analytic extension to the
left hand side complex plane.

Moreover, if λ , 0 in Theorems 1 and 2, then the decrease of u is limited by the slowest
decrease along all components, or in other words it is limited by the lowest diffusion along
every single pixels of the image represented by u.
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