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A TRIAXIAL MODEL FOR THE
ROTO-ORBITAL COUPLING IN A BINARY

SYSTEM
Antonio Cantero, Francisco Crespo and Sebastian Ferrer
Abstract. We study the roto-orbital dynamics of a uniform sphere and a triaxial body by
means of a model which defines a 2-DOF Hamiltonian system using variables referred to
the total angular momentum. The validity and applicability of our model is been assessed
numerically. We present a classification of some relative equilibria, finding constant ra-
dius solutions filling 4-D and lower dimensional tori. These families of relative equilibria
include some of the classical ones reported in the literature and some new types show-
ing the triaxiality influence on both. For a number of scenarios the relation between the
triaxiality and the inclination connected with relative equilibria are discussed and a full
analysis in in progress [2].

Keywords: Roto-orbital dynamics, rigid body, relative equilibria, triaxiality..

§1. Introduction

We study a 2-DOF Hamiltonian model for the roto-orbital dynamics of a general binary sys-
tem made of two rigid bodies B1 and B2, with masses m1 and m2 respectively. This problem
is known as the full gravitational 2-body problem (FG2BP)[10] and usually is approximated
by means of the MacCullagh’s truncation [8], which is the second non vanishing term of the
expansion of the potential energy. That is to say, the associated Hamiltonian with the FG2BP
is obtained out of the sum of the rotational and orbital kinetic energies plus the potential en-
ergy, which is computed as a series expansion in Legendre polynomials. The first step in this
expansion leaves us with a maximally super-integrable model, the Kepler plus the free rigid
body. Nevertheless, accuracy increasing demands ask for a more realistic model. With this
purpose, the usual procedure is adding the following term (MacCullagh’s term) of the po-
tential expansion, leading us to a non-integrable system in many degrees of freedom, which
involves an extraordinary complexity. The main idea of this communication is to present a
halfway model between these two extremes. The interest of our model is twofold. On the
one hand, it allows us to identify special solutions that could become nominal trajectories in
missions design whereas it alleviates usual heavy computations. On the other hand, it can
be used to build a perturbation theory based on a new unperturbed part avoiding the degen-
erate character inherent to the classical superintegrable models. In other words, a first order
perturbed solution based on this model might be accurate enough for tracking purposes. The
benefits of a similar approach are now seen in areas such as the relative motion in formation
flights [7].

In a series of previous works and with the same idea in mind, the authors have presented
and analysed 1-DOF models [4, 3, 1]. In this work, we consider a 2-DOF model.
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Figure 1: Geometry of the variables (r, φ, ψ, θ, δ, ν,R,Φ,Ψ,Θ,∆,N). The variable r and the
angles are explicitly given in the figure, while the associated momenta are included implic-
itly through the inclinations of the planes. The conjugate variable R remains unrepresented
because of its pure dynamical sense. Note that this figure appeared first in [6]

.

§2. Variables

The variables in which the problem is posed may have a significant impact on its treatment.
Our choice is the use of the total angular momentum as the key object to define them, which
application for the roto-translatory problem was first introduced in [6] as a result of the appli-
cation of the elimination of the nodes in the n-body problem [5] to the roto-translatory model.
Nevertheless, quoting Meyer [9] “there is a saying in celestial mechanics that no set of coor-
dinates is good enough”. This claim highlights that in every choice of variables, a sacrifice
must be done. More precisely, Cartesian variables have a simple formulation, but they do not
take advance of the presence of symmetries. Conversely, by using variables referred to the
total angular momentum, we incorporate the angles associated to the symmetries allowing
for compact expressions and intuitive geometric insight of the relative equilibria. However,
this is done at the expenses of having singularities, i. e. a global study of the system requires
the use of several charts.

A complete set of canonical variables related with the angular momentum planes are
used here denoted by (r, φ, ψ, θ, δ, ν,R,Φ,Ψ,Θ,∆,N). We are not going to provide a complete
derivation of them, which may be found in [6]. Instead and with the aim of fixing notation,



A triaxial model for the roto-orbital coupling in a binary system 37

we provide the geometric meaning of the angles by means of Figure 1 and briefly recall
the definition of the canonical angles by following [4]: Let us consider the reference frame
S ∗ = (`, n×`, n), where ` is the unitary vector defining node of the total angular momentum
plane with the horizontal spatial plane and n is the unitary vector pointing in the direction
of the total angular momentum. In addition, S E = {E1,E2,E3} and S b = {b1,b2,b3} are
the spatial and body frames respectively, where bi corresponds with the principal moment of
inertia of B1. The orientation and center of mass of the body are referred to the new frame by
means of (r, φ, ψ, θ, δ, ν), see Figure 1. These angles are determined by the nodes; `µδ defined
by the rotational angular momentum and the spatial plane, `r = −`o given by the intersection
of the total, rotational and orbital angular momentum planes and `θ generated by the orbital
and spatial planes intersection. Precisely, we have that φ = (Ê1, `), ψ = (̂̀, `I), θ = (̂̀o, r),
δ = (`̂r, `I) and ν = ( ̂`I ,b1). Moreover, there are three more auxiliary angles which are
not among the canonical variables but we will use them later on; λ = (Ê1, `), µ = ( ̂`µδ, `I),
σ = (Π̂r,Πb) and h = (Ê1, `θ). In addition, the conjugate momenta of the variables read as
follows

R, Φ = G · E3, Ψ = G · n = G, Θ = Go, ∆ = Gr, N = Gr · b3,

where G is the total angular momentum vector, Gr is the angular momentum of the sec-
ondary body in the body frame and Go is the orbital angular momentum. Thus, we have the
following interpretation of the momenta: (R) Radial velocity of the center of mass. (Φ) Third
component of the total angular momentum in space frame. (Ψ) Magnitude of the total angular
momentum. (Θ) Magnitude of the angular momentum of the center of mass. (∆) Magnitude
of the angular momentum of the rigid body. (N) Third component of the angular momentum
of the rigid body in the body frame (principal axes of inertia).

§3. Hamiltonian formulation of the triaxial model

The formulation of the triaxial model follows the same derivation as the one made in Crespo et
al. [4], which is based in six simplifying assumptions. More specifically, the following set of
simplifications are assumed in order to define our modelization: (i) Barycentric coordinates.
The inertial frame is chosen to be moving with the total center of mass. (ii) Shape and mass
distribution of B2. The main body B2 (mass m2) is endowed with spherical symmetry. (iii)
Size ratios. Dimensions of the secondary body B1 are small when compared to the distance
between the centers of mass of the two bodies. (iv) Shape and mass distribution of B1. The
secondary body may be approximated by an homogeneous triaxial ellipsoid with total mass
m1. (v) Eccentricity. Only small eccentricity orbits are considered. (vi) Resonances. The case
of spin-orbit resonances is not considered.

The Hamiltonian of the roto-orbital model is obtained from the mechanic energy func-
tion. Thus, denoting TO, TR the orbital and rotational kinetic energies and P the potential,
the Hamiltonian function is defined in the cotangent bundle of the special Euclidean group
T ∗S E(3)

H = TO + TR + P = TO + TR −
GM

r
+V = HK +HR +V,
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in other words, the potential is usually split in two parts: a term which depends only on 1/r
andV, called the perturbing potential, depending on the rest of the variables of the problem.
As a result, we have that HK = TO − GM/r is the Keplerian part of the system, where G
is the gravitational constant and HR = TR is referred as the Euler system (or the free rigid
body).More explicitly, we obtain the following expression forH in the B1-body frame

H(r,A,p,Π) =
|p|2

2m
+

1
2

Π·I−1·Π − Gm2

∫
B1

dm1(x1)
|r − x1|

,

where m = m1m2/(m1 + m2), r is the vector joining the center of mass of the bodies, A is the
rotation matrix transforming a vector in the body-fixed frame into the inertial frame and p and
Π are the linear and angular momenta. In addition, the assumption (iii) allows us to consider
the approximation of the gravitational potential P given by −GM/r and the MacCullagh’s
term [8]

U = −
κm

2 m1 r3

[
(A3 − A2)(1 − 3γ2

3) − (A2 − A1)(1 − 3γ2
1)
]
, (1)

where κ = GM, M = m1 + m2 is the total mass of the system, A1 ≤ A2 ≤ A3 are the principal
moments of inertia associated to the secondary body and (γ1, γ2, γ3) are the director cosines
of r.

The direction cosines appearing in (1) may be expressed in the body frame by means of
the following composition of rotations:

γ = R3(ν) R1(σ) R3(δ) R1(ι) R3(π − θ) e1

where γ = (γ1, γ2, γ3) and e1 = (1, 0, 0). Finally, taking into account that γ2
1 + γ2

2 + γ2
3 = 1

and after some calculations, we are allowed to express the MacCullagh’s term (1) as follows

U =
κm

32m1r3

[
(2A3 − A2 − A1)V1 +

3
2

(A2 − A1)V2

]
, (2)

where
V1 = −2(1 − 3c2

ι )(1 − 3c2
σ)

−3s2
σ

[
(1 − cι)2C2,2,0 + (1 + cι)2C−2,2,0

]
−6s2

ι

[
s2
σC0,2,0 − (1 − 3c2

σ)C2,0,0

]
+12cσsιsσ

[
(1 − cι)C2,1,0 + 2cιC0,1,0 − (1 + cι)C−2,1,0

] (3)

which is independent of ν, and V2, the “triaxiality part” given by

V2 = −(1 − cσ)2
[
(1 − cι)2C2,2,−2 + (1 + cι)2C−2,2,−2 + 2s2

ι C0,2,−2

]
−(1 + cσ)2

[
(1 − cι)2C2,2,2 + (1 + cι)2C−2,2,2 + 2s2

ι C0,2,2

]
−6s2

ι s2
σ

[
C2,0,2 + C2,0,−2

]
+ 4s2

σ(1 − 3c2
ι )C0,0,2

+4sιsσ(1 − cσ)
[
(1 − cι)C2,1,−2 + 2cιC0,1,−2 − (1 + cι)C−2,1,−2

]
+4sιsσ(1 + cσ)

[
− (1 − cι)C2,1,2 − 2cιC0,1,2 + (1 + cι)C−2,1,2

]
,

(4)

and the notation has been abbreviated by writing Ci, j,k ≡ cos(iθ + jδ + kν) and cx ≡ cos x and
sx ≡ sin x.
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3.1. A model for roto-orbital dynamics.
Facing a non-integrable Hamiltonian system of 4-DOF requires the development of a pertur-
bation theory. A usual way to proceed is to expand the Hamiltonian function in power series
and truncate it at a certain order; this procedure gives in general an approximation. However
a different approach to the problem is based in a simplification of the original Hamiltonian
considering a related Hamiltonian of less degrees of freedom. In fact in this search for a
simplified model a radial of 2 separable DOF has been proposed. Indeed, in [4], the authors
proposed an axis-symmetric integrable model, whose accuracy was tested by comparing with
the MacCullagh’s truncation and showing a good performance in the numerical experiments.
Here, we continue this previous study by investigating a triaxial case. One of our aims is to
analyze the physical-parametric families of relative equilibria asociated. Keeping this mo-
tivation in mind, we propose our model following exactly the same procedure than in [4],
except for the triaxial parameter. That is to say, we only take into account the first line of
V1 in (3) and in V2 (4) the only terms that depends exclusively on ν . Then, the perturbing
potential of the model is given by

V =
κm

32m1r3

[
−2(2A3 − A2 − A1)(1 − 3c2

ι )(1 − 3c2
σ) +

3
2

(A2 − A1)4s2
σ(1 − 3c2

ι ) cos(2ν)
]
,

which leads us to the final expression of the model Hamiltonian

H =
1
2

(
R2 +

Θ2

r2

)
−
κ

r
+

q
2

[(
sin2(ν)

A1
+

cos2(ν)
A2

)
(∆2 − N2) +

1
A3

N2
]

−
κ(1 − 3c2

ι )
16r3

[
(2A3 − A2 − A1)(1 − 3c2

σ) + 3(A1 − A2)s2
σ cos(2ν)

]
,

(5)

where q = m/m1. Furthermore, with the aim of alleviate formulas, we have considered the
Hamiltonian per unit of mass by scaling the system and inertia momenta as follows:

H ′ = H/m; R′ = R/m; Θ′ = Θ/m; ∆′ = ∆/m; N′ = N/m; Ψ′ = Ψ/m;
Φ′ = Φ/m; A′1 = A1/m1; A′2 = A2/m1; A′3 = A3/m1.

(6)

Nevertheless, for the sake of simplicity, we keep the original notation without primes on the
variables. Then, the 2-DOF Hamiltonian system of differential equations associated with (5)
is given by the following expressions:

ṙ = R

Ṙ =
Θ2

r3 −
κ

r2 −
3κ

(
1 − 3c2

ι

)
16r4

[
α
(
1 − 3c2

σ

)
− 3(A2 − A1)(1 − c2

σ) cos(2ν)
]

ν̇ = q
[

1
A3
−

(
sin2(ν)

A1
+

cos2(ν)
A2

)
+

3κ
8∆2qr3

(
1 − 3c2

ι

)
(α − (A2 − A1) cos(2ν))

]
N

Ṅ = q(A1 − A2)
(
1 − c2

σ

)
∆2

 1
2 A1A2

−
3κ

(
1 − 3cι2

)
8∆2qr3

 sin(2ν)

θ̇ =
Θ

r2 −
3κ
8r3

(
cι
∆

+
c2
ι

Θ

) [
α
(
1 − 3c2

σ

)
− 3(A2 − A1)(1 − c2

σ) cos(2ν)
]



40 Antonio Cantero, Francisco Crespo and Sebastian Ferrer

ψ̇ =
3κΨ

8r3∆Θ
cι

[
α
(
1 − 3c2

σ

)
− 3(A2 − A1)

(
1 − c2

σ

)
cos(2ν)

]
δ̇ = q

[(
sin2(ν)

A1
+

cos2(ν)
A2

)
−

3κ
8∆2qr3

(
1 − 3c2

ι

)
c2
σ (α − (A2 − A1) cos(2ν))

−
3κ

8∆2qr3 cι

(
cι +

∆

Θ

) (
α
(
1 − 3c2

σ

)
− 3(A2 − A1)

(
1 − c2

σ

)
cos(2ν)

)]
∆

where α = 2A3 − A2 − A1 together with the integrals φ̇ = Φ̇ = Θ̇ = Ψ̇ = ∆̇ = 0. In other
words the 2-DOF system is made of the (r, ν) subsystem and three quadrature associated to θ,
ψ and δ.

Note that, in general, a 2-DOF system is not integrable. Thus, in the triaxial case, the
analytical integration is not provided and the integrability of the system remains as an open
question, which is not in the scope of the present paper.

§4. Numerical assessment of our model.

We assess the validity of our model by carrying out a simulation comparing our model versus
the MacCullagh’s approximation [8]. The expansion of the gravitational potential truncated to
the third term known as the MacCullagh’s term is commonly used as a good approximation to
the potential because considering the next term lead to expressions with r5 in the denominator.
For situations where the term with r5 is required a new model should be provided. However
this is out the scope of this paper.

Numerical simulations have been carried out by using the Mathematica 11 software [11]
running on the platform macOS Sierra, 3.1 GHz Intel Core i5 (64-bit), 8 GB RAM.

There are several details to bear in mind through this section in order to proceed with the
numerical experiment. Firstly, in what follows it is convenient to use the triaxiality parameter
defined in [3] ρ = (A2−A1)/(2A3−A2−A1), noticing that due to the constrains of the principal
moments of inertia ρ ∈ (0, 1). Secondly, we have considered the Hamiltonian per unit of
mass and the canonical and inertia momenta have been scaled, see (6). Furthermore, we have
changed internally the units for longitudes by choosing the radius of the spherical body Rp as
the new one. However, we set these units back to Km when we present our results. Regarding
the initial conditions, the radius and angles (radians) are given directly. In our simulations we
consider the scenario of a massive spherical primary body and an arbitrary triaxial secondary
body. More precisely, the two bodies are described as follows. Main body B2: a sphere with
radius 500 Km and mean density d = 2.8 g/cm3, and mass m2 = 1.47 · 1021 Kg. Secondary
body B1: an ellipsoid with mean density d = 1.4 g/cm3 while the principal axes and the
triaxiality parameter are: A1 = 1.069 · 1021, A2 = 1.18 · 1021, A3 = 1.28 · 1021, ρ =

0.353. Initial distance between the center of masses is 2060 Km and we also assume the
secondary body in a slow rotating regime. Solutions are evaluated for three orbital periods,
see Figure 2, where we show the evolution of variables which are not constant for the model
we are presenting.

We would like to highlight that, after three orbital periods, the differences between the
slow variables r,R, ψ, θ,N are always in the order of thousandth or less. For the case of the
fast variables δ, ν, we have a competitive performance for 4 hours, which represent 1/4 orbital
periods, see Figure 3.



A triaxial model for the roto-orbital coupling in a binary system 41

0 0.75 1.5 2.25 3

-6

-4

-2

0

10
3
D
In
t1
[r
]

0 0.75 1.5 2.25 3

-5

0

5

10
8
D
In
t1
[R

]

0 0.75 1.5 2.25 3
-4

-3

-2

-1

0

10
4
·
D
In
t1
[ψ

]

0 0.75 1.5 2.25 3

0

1

2

3

4

10
4
·
D
In
t1
[θ
]

0 0.75 1.5 2.25 3

-2

-1

0

1

2

10
3
·D
In
t1
[Ν

]

Figure 2: Slow variables: Differences between the 2-DOF model versus the MacCullagh’s
approximation. Abscissas are orbital periods and angles are given in radians. The orbital
period is 16.5 hours and the rotation regime for each orbital period is 1-100.

0

-5

0

5

10
5
·
D
In
t1
[δ
]

0

-1.5

-1.0

-0.5

0.0

1
0
2
·
D
In
t1
[ν
]

Figure 3: Fast variables: Differences between the 2-DOF model versus the MacCullagh’s
approximation. Abscissas represent 1/4 of the orbital period and angles are given in radians.
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§5. Constant radius solutions. Some relative equilibria.

The system of differential equations defined by the Hamiltonian (5) is endowed with several
distinguish and physical parameters. Thus, bifurcations occur in several directions in the
parametric space [2].

With the aim of simplifying this scenario and provide a geometric interpretation of our
equilibria, we organize our families of relative equilibria according to the inclinations of
pairs of fundamental planes (orbital, rotational and body planes) due to the fact that the
associated momenta of (θ), (ψ), (δ) and (ν) are included through the inclinations of the planes.
More precisely, we consider the relative inclination between orbital and rotational planes (ι)
and the one determined by the rotational and body planes (σ). For that reason cos ι and
cosσ are the key objects to present the analysis of the relative equilibria and allowed us to
classify the relative equilibria on the following families: critical inclination equilibria when
(1 − 3c2

ι ) = 0, body-inclined equilibria when cσ , 0 and body-perpendicular equilibria when
cσ = 0. Each of these families of relative equilibria contains different orbits of constant
radius filling different tori depending on the fixed angles. Note that ρ = 1/3 is equivalent to
A3 − A2 = A2 − A1 leading to the maximum triaxiality case. Below we show two particular
cases of these families of relative equilibria found in this problem [2].

Case 1: Body-Inclined equilibria cσ , 0 with ν and ψ fixed.

This particular case shows a family of relative equilibria filling a 2-tori manifold T2(θ, δ). On
one hand the orbital variables behave as a keplerian "circular" orbit, however on the other
hand the rotational part shows the triaxiality influence and introduce several novelties with
respect to the classical scheme of the free rigid body. More precisely imposing the following
initial conditions and relations between the momenta and physical parameters:

r =
Θ2

κ
, R = 0, c2

ι =
1
3
−

4qΘ6∆2

9κ4A2A3
, ν = 0, π, c2

σ =
A1 − 2A2 + A3

3(A3 − A2)

we get a relative equilibria with the following mean motions:

θ̇ =
κ2

Θ3 δ̇ = q∆

(
−A1 + 2(A2 + A3)

3A2A3

)
Note that the values ν = 0, π are related to well-known equilibria of the free rigid body. It is
worth noticing that in general cσ , 0 which is a notorious difference from the classical case.
Nevertheless for the particular value ρ = 1/3 we get cσ = 0 and therefore we recover the
Euler equilibria and obtain a simplified form of the mean motion δ̇ = q∆/A2

Case 2: Body-perpendicular equilibria cσ = 0 with ν and ψ fixed.

This case shows also a relative equilibria filling a 2-tori manifold T2(θ, δ) where the orbital
variables behave as a keplerian "circular". As it happens with the previous case the rotational
part shows a triaxiality influence and introduce several novelties with respect to the classical
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scheme of the free rigid body. In particular imposing the following initial conditions and
relations between the momenta and physical parameters:

r =
Θ2

κ
, R = 0, c2

ι =
1
3
−

4qΘ6∆2

9κ4A1A2
, cos(2ν) =

2A3 − A1 − A2

3(A2 − A1)
, cσ = 0,

we get that a relative equilibria with the following mean motions:

θ̇ =
κ2

Θ3 δ̇ =
q∆

3

(
2A1 + 2A2 − A3

A1A2

)
Note that for this relative equilibria being cσ = 0 we get cos(2ν) , 0 which is also a

difference from the classical. It is worth mentioning that for the particular value ρ = 1/3 we

get cos(2ν) = 1 and δ̇ =
q∆

A2
which is a particular relative equilibria of our model and it is

work in progress [2].

Observe, on both cases shown, that conditions for periodic orbits are easily obtained since
expression for mean motions are explicitly given.The reader should also take into account that
bounds among the integrals and physical parameters have to be added to the formulas given
above.
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