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ADAPTIVE AUGMENTED MIXED FEM
FOR THE OSEEN PROBLEM WITH MIXED

BOUNDARY CONDITIONS
Tomás P. Barrios, José Manuel Cascón and María González

Abstract. We present an adaptive augmented dual-mixed method for the Oseen problem
with mixed boundary conditions in the pseudostress-velocity variables. The new varia-
tional formulation and the corresponding Galerkin scheme are well-posed for appropriate
values of the stabilization parameters. We provide the rate of convergence when each
row of the pseudostress is approximated by Raviart-Thomas elements and the velocity
is approximated by continuous piecewise polynomials. Moreover, we give an a poste-
riori error indicator and show the performance of the corresponding adaptive algorithm
through a numerical example.
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§1. Introduction

The problem of computing the flow of a viscous and incompressible fluid at small Reynolds
numbers is described by the Oseen equations. In the recent paper [4], we introduced a new
augmented variational formulation for this problem in the pseudostress-velocity variables
under homogeneous Dirichlet boundary conditions for the velocity, and developed a simple a
posteriori error analysis.

Now, we propose a related method for the case when mixed boundary conditions are
considered. We remark that the new method is not an extension of the one proposed in [4]
since here the Dirichlet boundary condition is imposed weakly.

The paper is organized as follows. In Section 2 we describe a new augmented dual-
mixed variational formulation for the Oseen problem in the pseudostress-velocity variables
with mixed boundary conditions. Then, in Section 3 we analyze the stabilized mixed finite
element method. In Section 4 we present an a posteriori error indicator that is reliable and
locally efficient. Finally, numerical experiments are reported in Section 5.

§2. The augmented dual-mixed variational formulation

Assume that the fluid at hand occupies the region Ω, a polygonal domain in R2 with boundary
Γ. We assume that Γ = ΓD ∪ ΓN , where ΓD is a closed part of Γ with positive measure and
ΓN = Γ \ ΓD. Let ν > 0 be the kinematic viscosity of the fluid, and let a , 0 denote the
advective velocity. We assume that a is solenoidal in Ω. Let f be an external body force, and
denote by uD a prescribed velocity on ΓD and by g the Neumann data.



26 Tomás P. Barrios, José Manuel Cascón and María González

We consider the following Oseen problem: find the velocity field u and the pressure p
such that 

−ν∆u + a · ∇u + ∇p = f in Ω ,

div(u) = 0 in Ω,

u =uD on ΓD ,

−p n + ν
∂u
∂n

= g on ΓN ,

(1)

where n is the unit outward normal to ΓN .
Let I be the identity matrix in R2×2 and denote by σ := ν∇u − p I the pseudostress.

Proceeding similarly as in [4], problem (1) can be stated equivalently in terms of σ and u,
and the pressure can be recovered as p = − 1

2 tr(σ).
For simplicity, we consider the following decomposition ofσ: σ = σ0+σg, withσ0n = 0

and σgn = g on ΓN . Moreover, given a tensor τ, we denote by τd := τ − 1
2 tr(τ) I the deviator

of τ. Then, problem (1) is equivalent to the following problem:

−div(σ0) + a · ∇u = f̃ in Ω ,

1
ν
σd0 =∇u + ζ in Ω ,

u = uD on ΓD ,

σ0n = 0 on ΓN ,

(2)

where f̃ := f + div(σg) and ζ := − 1
ν
σdg.

Throughout this paper, we will use the standard notations for Sobolev spaces and norms.
In particular, we denote by H(div,Ω) := {τ ∈ [L2(Ω)]2×2 : div(τ) ∈ [L2(Ω)]2} and H0 :=
{τ ∈ H(div,Ω) : τn = 0 on ΓN}.

Let us define now the bilinear forms a : H0 × H0 → R, b : [H1(Ω)]2 × H0 → R and
c : [H1(Ω)]2 × [H1(Ω)]2 → R as follows:

a(σ, τ) :=
1
ν

∫
Ω

σd : τd , b(u, τ) :=
∫

Ω

u · div(τ) , c(u, v) :=
∫

Ω

(a · ∇u) · v ,

for any σ, τ ∈ H0 and u, v ∈ [H1(Ω)]2.
We also define the linear functionals l : [L2(Ω)]2 → R and m : H0 → R as follows:

l(v) := −
∫

Ω

f̃ · v, ∀ v ∈ [L2(Ω)]2 ,

m(τ) :=
∫

Ω

ζ : τ +

∫
Γ

uD · τn, ∀ τ ∈ H0 .

Then, we have the following dual-mixed variational formulation of problem (2): find
(σ0,u) ∈ H0 × [H1(Ω)]2 such thata(σ0, τ) + b(u, τ) =m(τ) , ∀ τ ∈ H0 ,

b(v,σ0) − c(u, v) = l(v) , ∀ v ∈ [H1(Ω)]2 .
(3)
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We remark that the variational formulation (3) exhibits a generalized saddle-point struc-
ture, with a non-symmetric bilinear form c(·, ·). According to [5], to ensure that problem
(3) has a unique solution, we require, among other conditions, that the bilinear form a(·, ·)
be coercive on H0. However, it is well-known that a(·, ·) is coercive in the divergence free
subspace of H0 (see, for instance, the proof of Theorem 2.3 in [6]) but not on H0. We also
require that the bilinear form b(·, ·) satisfies an inf-sup condition in H0 × [H1(Ω)]2. These
facts motivated us to consider an augmented formulation of problem (2).

Combining ideas from [4] and [9], we subtract the second equation in (3) from the first
one and then, add the following least-squares type terms, that arise from the equilibrium and
constitutive equations in (2) and from the Dirichlet boundary condition:

κ1

∫
Ω

(div(σ0) − a · ∇u) · (div(τ) + a · ∇v) = −κ1

∫
Ω

f̃ · (div(τ) + a · ∇v)

κ2

∫
Ω

(∇u −
1
ν
σd0) : (∇v +

1
ν
τd) = −κ2

∫
Ω

ζ : (∇v +
1
ν
τd) ,

and

κ3

∫
ΓD

u · v = κ3

∫
ΓD

uD · v

where (σ0,u) ∈ H0×[H1(Ω)]2 is a solution of (2) and (τ, v) ∈ H0×[H1(Ω)]2 is a test function.
The parameters κ1, κ2 and κ3 are positive constants to be chosen so that the augmented bilinear
form

A((σ,u), (τ, v)) :=
1
ν

∫
Ω

σd : τd +

∫
Ω

u · div(τ) −
∫

Ω

div(σ) · v +

∫
Ω

(a · ∇u) · v

+ κ1

∫
Ω

(div(σ) − a · ∇u) · (div(τ) + a · ∇v) + κ2

∫
Ω

(∇u −
1
ν
σd) : (∇v +

1
ν
τd) + κ3

∫
ΓD

u · v

be coercive in the whole space H0 × [H1(Ω)]2.
Let us define the linear functional F : H0 × [H1(Ω)]2 → R by

F(τ, v) :=
∫

Ω

ζ : τ +

∫
ΓD

uD · τn +

∫
Ω

f̃ · v − κ1

∫
Ω

f̃ · (div(τ) + a · ∇v)

− κ2

∫
Ω

ζ : (∇v +
1
ν
τd) + κ3

∫
ΓD

uD · v , ∀ (τ, v) ∈ H0 × [H1(Ω)]2 .

Then, the augmented variational formulation of problem (2) reads: find (σ0,u) ∈ H0 ×

[H1(Ω)]2 such that

A((σ0,u), (τ, v)) = F(τ, v) , ∀ (τ, v) ∈ H0 × [H1(Ω)]2 . (4)

Remark 1. In case of homogeneous Dirichlet boundary conditions, that is, when ΓD = Γ,
ΓN = ∅ and uD = 0 on Γ, we obtain the same linear functional F as in [4]. However, the
variational formulation is not equivalent, since here we look for u ∈ [H1(Ω)]2.
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In what follows, we assume that a ∈ [L∞(Ω)]2, a · n ≥ 0 on ΓN , and f ∈ [L2(Ω)]2.
Moreover, we assume that

0 < κ1 <
κ2

2 ‖a‖2[L∞(Ω)]2

, 0 < κ2 < ν , and κ3 >
1
2
‖a · n‖L∞(Ω) .

Then, there exists Cell > 0 such that

A((τ, v), (τ, v)) ≥ Cell ‖(τ, v)‖2H0×[H1(Ω)]2 , ∀ (τ, v) ∈ H0 × [H1(Ω)]2 ,

with

Cell = min(
1
ν

(
1 −

κ2

ν

)
c1,

κ1

2
c1,

κ1

2
,
(
κ2 − 2 κ1 ‖a‖2[L∞(Ω)]2

)
c2, (κ3 −

1
2
‖a · n‖L∞(Ω)) c2) ,

where c1 and c2 are the positive constants in Lemma 3.1 in [2] and in Lemma 3.3 in [8],
respectively.

Theorem 1. Under the previous hypotheses, problem (4) has a unique solution (σ0,u) ∈
H0 × [H1(Ω)]2 and

‖(σ0,u)‖H0×[H1(Ω)]2 ≤ C−1
ell M (‖f‖[L2(Ω)]2 + ‖uD‖[H1/2(ΓD)]2 + ‖σg‖H(div;Ω)) ,

where M := max(1 + κ1 (1 +
√

2 ‖a‖[L∞(Ω)]2 ), 1
ν
(1 + κ2(1 + 1

ν
)), 1 + κ3) .

Proof. It follows from the Lax-Milgram Lemma. �

§3. Augmented mixed finite element method

Let {Th}h>0 be a family of shape-regular meshes of Ω̄ made up of triangles. We denote by hT

the diameter of an element T ∈ Th and define h := maxT∈Th hT .
Let H0,h and Vh be any finite element subspaces of H0 and [H1(Ω)]2, respectively. Then,

the Galerkin scheme associated to problem (4) reads: find (σ0,h,uh) ∈ H0,h × Vh such that

A((σ0,h,uh), (τh, vh)) = F(τh, vh) , ∀ (τh, vh) ∈ H0,h × Vh . (5)

Under the same hypotheses as for the continuous problem (4), problem (5) has a unique
solution (σ0,h,uh) ∈ H0,h × Vh. Moreover, there exists a constant CCea > 0, independent of h,
such that

||(σ0 − σ0,h,u − uh)||H0×[H1(Ω)]2 ≤ CCea inf
(τh,vh)∈H0,h×Vh

||(σ0 − τh,u − vh)||H0×[H1(Ω)]2 . (6)

In order to establish a rate of convergence result, we consider specific finite element
subspaces H0,h and Vh. Hereafter, given T ∈ Th and an integer l ≥ 0, we denote by Pl(T ) the
space of polynomials of total degree at most l on T and, given an integer r ≥ 0, we denote by
RT r(T ) the local Raviart-Thomas space of order r + 1 (cf. [12]),

RT r(T ) := [Pr(T )]2 ⊕ [x]Pr(T ) ⊂ [Pr+1(T )]2 ,
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where x is a generic vector of R2.
Let r ≥ 0 and m ≥ 1. Then, we let H0,h be

H0,h := [RT tr ]2 =
{
τh ∈ H0 : τh

∣∣∣
T ∈ [RT r(T )t]2, ∀T ∈ Th

}
,

and define

Vh := [Lm]2 =
{
vh ∈ [C(Ω)]2 : vh

∣∣∣
T ∈ [Pm(T )]2, ∀T ∈ Th

}
.

The corresponding rate of convergence is given in the next theorem.

Theorem 2. Assume σ0 ∈ [Ht(Ω)]2×2, div(σ0) ∈ [Ht(Ω)]2 and u ∈ [Ht+1(Ω)]2. Then, there
exists C = O(CCea) > 0, independent of h, such that

||(σ0 − σ0,h,u − uh)||H0×[H1(Ω)]2 ≤ C hα
(
||σ0||[Ht(Ω)]d×d + ||div(σ0)||[Ht(Ω)]2 + ||u||[Ht+1(Ω)]2

)
,
(7)

where α := min{t,m, r + 1}.

Proof. It follows straightforwardly from inequality (6) and the approximation properties of
the corresponding finite element subspaces. �

§4. A posteriori error analysis

The a posteriori error analysis of the Oseen equations is very important for the numerical
solution of the stationary incompressible Navier-Stokes equations. The incompressibility
condition and the presence of a non-selfadjoint operator in the momentum equations are the
main difficulties to obtain a posteriori error estimates for the Oseen problem.

We let Eh be the set of all the edges induced by the triangulation Th and write Eh =

EI ∪ EΓD ∪ EΓN , where EI := {e ∈ Eh : e ⊆ Ω}, EΓD := {e ∈ Eh : e ⊆ ΓD} and EΓN := {e ∈
Eh : e ⊆ ΓN}. Also, for each edge e ∈ Eh, we denote by he the length of edge e and fix a unit
normal vector ne := (n1, n2)t; finally, we let te := (−n2, n1)t be the corresponding fixed unit
tangential vector along e.

We define the local a posteriori error indicator

θ2
T := ||f̃ + div(σ0,h) − a · ∇uh||

2
[L2(T )]2 + ||ζ + ∇uh −

1
ν
σd0,h||

2
[L2(T )]2×2

+
∑

e∈EΓD∩∂T

he

(
‖uD − uh‖

2
[L2(e)]2 + ‖∇(uD − uh)te‖

2
[L2(e)]2

)
and the global a posteriori error indicator

θ :=
( ∑

T∈Th

θ2
T

)1/2

The following theorem establishes the reliability of the a posteriori error indicator.
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Theorem 3. Assume uD ∈ [H1(ΓD)]2. Then, there exists Crel > 0, independent of h, such
that

‖(σ0 − σ0,h,u − uh)‖H0×[H1(Ω)]2 ≤ Crel θ

Proof. We proceed as in [4] to bound the error in terms of residuals, but use a quasi-Helm-
holtz decomposition [7] instead of the usual Helmholtz decomposition. �

The next theorem establishes the local efficiency of the a posteriori error indicator.

Theorem 4. Assume uD ∈ [H1(Γ)]2 is component-piecewise polynomial on ΓD. Then, there
exists Ceff = C(ν, κ1, κ2, , κ3, a) > 0, independent of h, such that for all T ∈ Th we have

Ceff θT ≤ ‖(σ0 − σ0,h,u − uh)‖H0(T )×[H1(T )]2 ∀T ∈ Th

Proof. We proceed with the first two terms of θT as usual. The second term is bounded using
a discrete trace inequality [1, Theorem 3.10]. Finally, the last term is bounded similarly as in
Lemma 3.9 in [3]. �

§5. Numerical experiments

We performed numerical experiments with the finite spaces H0,h and Vh defined in Section 3,
with r = 0 and m = 1. We implemented the standard adaptive finite element method (AFEM)
based on the loop

SOLVE → ESTIMATE → MARK → REFINE

(see, for instance, [11]). For the numerical experiments, we used the finite element toolbox
ALBERTA [13]. This toolbox employs the Kossaczky refinement algoritm, that uses recursive
bisection [10]. The corresponding linear systems are solved using MATLAB (UMFPACK).

We consider an example in which Ω = (0, 1) × (0, 1) is the unit square, ΓN = {0} × [0, 1]
and ΓD = Γ \ ΓN . We take the kinematic viscosity ν = 1 and the advective velocity a = (1, 0).
Then, we let

φ(x, y) = 10x2y2(1 − y)2 tanh
(
100(x −

1
2

)
)
,

and choose f and uD so that the exact solution is

u = curl φ =

(
∂φ

∂y
,−
∂φ

∂x

)
, p(x, y) = exp

(
−(x −

1
2

)2
)
.

We remark that the velocity u exhibits an inner layer around the line x = 1
2 .

In Figure 1 we show the individual errors in the velocity and the pseudostress for the
uniform (U) and adaptive (A) refinements with respect to the number of degrees of freedom
(DOFs). We can observe that the adaptive refinement performs better than the uniform re-
finement. In Figure 2 we show the total error and the estimator vs. the DOFs for the uniform
and adaptive refinements. In this case, we can observe that the estimator fits the total er-
ror. Accordingly, in this example the efficiency indices are almost one for both refinements
(see Figure 3).
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Figure 1: Individual errors in the velocity and the pseudostress.
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Figure 2: Total error and estimator vs. the DOFs.
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Figure 3: Efficiency indices for the uniform and adaptive refinements.
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Figure 4: Initial mesh and corresponding velocity module.

In Figures 4-6 we show, respectively, the initial mesh, an intermediary mesh and the final
mesh (after 8 iterations) obtained with the AFEM algorithm, together with the corresponding
velocity modules. We can observe that the AFEM algorithm is able to locate the inner layer
of the solution, since the refinement is essentially concentrated around the line x = 1

2 .
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