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§1. Introduction

This paper is devoted to the existence and uniqueness of weak and strong and very weak
solutions to the problem{

λu − ∆u + ∇π = f , div u = χ in Ω × (0,T ),
u · n = g, curl u × n = h × n on Γ × (0,T ), (1)

where we study the generalized resolvent of the Stokes operator with nonstandard Navier-
type boundary conditions. Up to now most research concerns the homogeneous boundary
conditions, and the case χ=0. Although the case χ ,0 has many important applications,
specially in treating more general boundary value problems and using cut-off procedure.

There exists several references on (1) when χ = 0 in Ω. This question was already studied
by Solonnikov in [12] for the homogeneous Dirichlet boundary condition (i.e. u = 0 on Γ).
In that work, the author considered the resolvent Problem when | arg λ| ≤ δ+π/2 where δ ≥ 0
is small. Later on, the resolvent of the Stokes operator with Dirichlet boundary condition
in bounded domains has been studied by Giga in [6] using the theory of pseudo-differential
operators. The results in [6] extends those in [12] in two directions. First, he consider larger
set of values of λ. More precisely λ in the sector | arg λ| ≤ π − ε, for any ε > 0. Second,
the resolvent of the Stokes operator is obtained explicitly and this enables him to describe the
domains of fractional powers of the Stokes operator with Dirichlet boundary condition.

In exterior domains, Giga and Sohr [7] approximate the resolvent of the Stokes operator
with Dirichlet boundary condition with the resolvent of the Stokes operator in the entire
space.

Farwig and Sohr [5] investigate the Problem (1) when div u , 0 in Ω and u = 0 on Γ.
Their results include bounded and unbounded domains, for the whole and the half space the
proof relies on multiplier technique. The problem is also investigated for bended half spaces
and for cones by using perturbation criterion and referring to the half space problem.

The Problem (1) is also studied with Robin boundary conditions by Saal [10], Shibata
and Shimada [11]. In [10], Saal proves that the Stokes operator with homogeneous Robin
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boundary conditions is sectorial and admits an H∞-calculus on Lp-spaces. Shibata and Shi-
mada proved in [11] a generalized resolvent estimate for the Stokes equations with non-
homogeneous Robin boundary conditions and divergence condition in Lp-framework in a
bounded or exterior domain by extending the argument of Farwig and Shor [5].

Concerning the Navier-type boundary conditions, Miyakawa [9] shows that the Laplacian
operator with homogeneous Navier-type boundary conditions generates a holomorphic semi-
group on Lp-spaces when the domain Ω is of class C∞. Mitrea and Monniaux [8] consider
the resolvent of the Stokes operator with homogeneous Navier-type boundary conditions in
Lipschitz domains using differential forms on Lipschitz sub-domains of a smooth compact
Riemannian manifold. In [1] and [2] Al Baba et al. consider the Problem (1) when χ = 0 in
Ω and g = 0, h = 0 on Γ and prove the existence of weak, strong and very weak solutions to
this problem.

This paper is organized as follows. In Section 2 we give the functional framework and
some preliminary results at the basis of our proofs. In Section 3 we prove our main results on
the existence of weak, strong and very weak solutions to Problem (1).

§2. Preliminaries

In this subsection we review some basic notations, definitions and functional framework
which are essential in our work.

In what follows, if we do not state otherwise, Ω will be considered as an open bounded
domain of R3 of class C2,1. Then a unit normal vector to the boundary can be defined almost
everywhere it will be denoted by n, n is defined everywhere because n is C1,1. The generic
point in Ω is denoted by x = (x1, x2, x3). The domain Ω is not necessarily simply-connected
and the boundary Γ is not necessarily connected.

Let us introduce some functional spaces.
Let Lp(Ω) denote the usual vector valued Lp-space over Ω. Let us define the spaces:

Hp(curl,Ω) = {u ∈ Lp(Ω); curl u ∈ Lp(Ω)},
Hp(div,Ω) = {u ∈ Lp(Ω); div u ∈ Lp(Ω)},

Xp(Ω) = Hp(curl,Ω) ∩ Hp(div,Ω),

equipped with their graph norms. Thanks to [4] and [3] we know that D(Ω) is dense in
Hp(curl,Ω), Hp(div,Ω) and Xp(Ω). We also define the subspaces:

Hp
0 (curl,Ω) = {u ∈ Hp(curl,Ω); u × n = 0 on Γ},
Hp

0 (div,Ω) = {u ∈ Hp(div,Ω); u · n = 0 on Γ},
Xp

N(Ω) = {u ∈ Xp(Ω); u × n = 0 on Γ},
Xp

T (Ω) = {u ∈ Xp(Ω); u · n = 0 on Γ}.

We recall that for all function u ∈ Hp(curl,Ω) (respectively u ∈ Hp(div,Ω)), the tangential
trace u × n (respectively the normal trace u · n) exists and belongs to W−1/p,p(Γ) (respectively
to W−1/p,p(Γ)). Thanks to [4] we know that D(Ω) is dense in Hp

0 (curl,Ω) and in Hp
0 (div,Ω).

Finally we denote by [Hp
0 (curl,Ω)]’ and [Hp

0 (div,Ω)]’ the dual spaces of Hp
0 (curl,Ω) and

Hp
0 (div,Ω) respectively.
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Next, we review some known results which are essential in our work. First, we recall that
the vector-valued Laplace operator of a vector field u= (v1, v2, v3) is equivalently defined by

∆ u = grad (div u) - curl curl u.
We have the following lemmas [4]

Lemma 1. The spaces Xp
N(Ω) and Xp

T (Ω) defined above are continuously embedded in
W1,p(Ω).

In order to consider the case of nonhomogeneous boundary conditions, we introduce the
following spaces:

X1,p(Ω) = {u ∈ Lp(Ω); divu ∈ Lp(Ω), curl u ∈ Lp(Ω) and u · n ∈ W1−1/p,p(Γ)},

Y1,p(Ω) = {u ∈ Lp(Ω); divu ∈ Lp(Ω), curl u ∈ Lp(Ω) and u × n ∈ W1−1/p,p(Γ)}.

Lemma 2. The spaces X1,p(Ω) and Y1,p(Ω) are continuously embedded in W1,p(Ω).

Consider as well the spaces:

X2,p(Ω) = {u ∈ Lp(Ω); divu ∈ W1,p(Ω), curl u ∈W1,p(Ω) and u · n ∈ W2−1/p,p(Γ)},

Y2,p(Ω) = {u ∈ Lp(Ω); divu ∈ W1,p(Ω), curl u ∈W1,p(Ω) and u × n ∈ W2−1/p,p(Γ)}.

Theorem 3. Assume that Ω is of class C2,1, then the spaces X2,p(Ω) and Y2,p(Ω) are contin-
uously embedded in W2,p(Ω).

Consider now the space

Ep(Ω) = {u ∈W1,p(Ω); ∆u ∈ [Hp′

0 (div,Ω)]′},

which is a Banach space for the norm ‖u‖Ep(Ω) = ‖u‖W1,p(Ω) + ‖∆u‖[Hp′
o (div,Ω)]′ . Thanks to [3,

Lemma 4.1] we know that D(Ω) is dense in Ep(Ω). Moreover, (see [3, Corollary 4.2]),
the linear mapping γ : u 7−→ curlu × n defined on D(Ω) can be extended to a linear and
continuous mapping γ : Ep(Ω) 7−→ W−1/p,p(Ω). Moreover, we have the Green formula: for
any u ∈ Ep(Ω) and ϕ ∈ Xp′

τ (Ω) such that div ϕ= 0 in Ω,

−〈∆u,ϕ〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) =

∫
Ω

curl u · curlϕ dx − 〈curl u × n,ϕ〉Γ,

where 〈·, ·〉Γ = 〈·, ·〉W−1/p,p(Γ)×W1/p,p′ (Γ).
Next, we introduce the following space

Tp(Ω) = {φ ∈ Hp
0 (div,Ω); divφ ∈ W1,p

0 (Ω)}.

The spaceD(Ω) is dense in Tp(Ω) and for all χ ∈ W−1,p(Ω) and φ ∈ Tp′ (Ω), we have:

〈∇χ,φ〉(Tp′ (Ω))′×Tp′ (Ω) = −〈χ, divφ〉W−1,p(Ω)×W1,p′
0 (Ω). (2)

A distribution f belongs to (Tp(Ω))′ if and only if there exist ψ ∈ Lp′ (Ω) and f0 ∈W−1,p′ (Ω),
such that f = ψ + ∇ f0. Moreover, we have the estimate

‖ψ‖Lp′ (Ω) + ‖ f0‖W−1,p′ (Ω) ≤ C‖ f‖(Tp(Ω))′ .
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We will need also the following space

Hp(∆; Ω) = {u ∈ Lp(Ω); ∆u ∈ (Tp′ (Ω))′},

which is a Banach space for the norm ‖u‖Hp(∆;Ω) = ‖u‖Lp(Ω) + ‖∆u‖(Tp′ (Ω))′ . The space D(Ω)
is dense in Hp(∆; Ω) and The mapping γ: u 7−→ curl u × n defined on D(Ω) can be extended
by continuity to a linear and continuous mapping γ : Hp(∆; Ω) 7−→W−1−1/p,p(Ω). Moreover,
we have the Green formula: for any u ∈ Hp(∆; Ω) and φ ∈ Yp′

τ (Ω),

〈∆u,φ〉(Tp′ (Ω))′×Tp′ (Ω) =

∫
Ω

u · ∆φ dx + 〈curlu × n,φ〉Γ, (3)

where 〈·, ·〉Γ = 〈·, ·〉W−1−1/p,p(Γ)×W1+1/p,p′ (Γ) and

Yp
τ (Ω) = {φ ∈W2,p(Ω); φ · n = 0, divφ = 0, curlφ × n = 0 on Γ}.

§3. Generalized resolvent problem

In this section we consider the generalized resolvent Problem (1) and we prove the existence
and uniqueness of weak, strong and very weak solution to this problem.

3.1. Weak solution

Consider the problem{
λu − ∆u + ∇π = f , div u = 0 in Ω × (0,T ),

u · n = 0, curl u × n = h × n on Γ × (0,T ), (4)

We start by the existence and uniqueness of weak solution to (4).

Theorem 4. Let ε ∈]0, π[ be fixed and λ ∈ Σε. Let p ≥ 2, f ∈ (Hp′

0 (div,Ω))′ and h × n ∈
W−1/p,p(Γ). Then the problem (4) has a unique solution (u, π) ∈W1,p(Ω)×Lp(Ω)/R satisfying
the following estimate

‖u‖W1,p(Ω) ≤ C(Ω, p)
(
‖ f‖(Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)

)
. (5)

Proof. Step 1 : Existence and uniqueness. We can easily verify that problem (4) is equiva-
lent to the variational problem: Find u ∈ Vp

τ (Ω) such that for all u ∈ Vp′
τ (Ω)

λ

∫
Ω

u · u dx +

∫
Ω

curl u · curl u dx = 〈 f , u〉Ω + 〈h × n, u〉Γ, (6)

where 〈·, ·〉Ω = 〈·, ·〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) and 〈·, ·〉Γ = 〈·, ·〉W−1/p,p(Γ)×W−1/p,p′ (Γ).
The proof is done in two steps:
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i) Case 2 ≤ p ≤ 6. The case p = 2 can be directly obtained using Lax-Milgram theorem.
Suppose that 2 < p ≤ 6, then Problem (4) has a unique solution (u, π) ∈ H1(Ω) ×
L2(Ω)/R. We write (4) in the form:{

−∆u + ∇π = f − λu = F, div u = 0 in Ω

u · n = 0, curl u × n = h × n on Γ
. (7)

As H1(Ω) ↪→ Lp(Ω), we have F ∈ (Hp′

0 (div; Ω))′ and

∀ u ∈ Kp′
τ (Ω), 〈F, u〉Ω + 〈h × n, u〉Γ = 0. (8)

Theorem 4.4 of [3] implies that u ∈W1,p(Ω) and π ∈ Lp(Ω).
Let u ∈ Kp′

τ (Ω), using the variational formulation we have

〈F, u〉Ω + 〈h × n, u〉Γ = 0.

Then our solution (u, π) belongs to W1,p(Ω) × Lp(Ω)/R.

ii) Case p ≥ 6. Observe that (Hp′

0 (div,Ω))′ ↪→ (H6/5
0 (div,Ω))′ and W−1/p,p(Γ) ↪→W−1/6,6(Γ).

Then Problem (7) has a unique solution (u, π) ∈ W1,6(Ω) × L6(Ω)/R. Thanks to the
embedding W1,6(Ω) ↪→ L∞(Ω) we deduce that F = f − λu ∈ (Hp′

0 (div,Ω))′. More-
over, F satisfies the compatibility condition (8), then we conclude that (u, π) belongs
to W1,p(Ω) × Lp(Ω)/R.

Step 2: Estimate. Let B ∈ L(Vp
τ (Ω), (Vp′

τ (Ω))′) be the operator defined by

∀u ∈ Vp
τ (Ω),∀ u ∈ Vp′

τ (Ω), 〈Bu, u〉(Vp′
τ (Ω))′×Vp

τ (Ω) = λ

∫
Ω

u · u dx +

∫
Ω

curl u · curl u dx.

For all p ≥ 2, the operator B is an isomorphism from Vp
τ (Ω) into (Vp′

τ (Ω))′ and ‖u‖Xp
τ
≈

‖Bu‖(Vp′
τ (Ω))′ for all u ∈ Vp

τ (Ω). Moreover using the continuous embedding Xp
τ (Ω) ↪→W1,p(Ω)

we have for every u ∈ Vp
τ (Ω) solution of problem (6),

‖u‖W1,p(Ω) ≤ C(Ω, p)‖u‖Xp
τ (Ω) ≤ C(Ω, p)‖Bu‖(Vp′

τ (Ω))′

and

‖Bu‖(Vp′
τ (Ω))′ = sup

u∈Vp′
τ (Ω)
u,0

|〈Bu, u〉|
‖u‖Xp′

τ (Ω)

= sup
u∈Vp′

τ (Ω)
u,0

|〈 f , u〉Ω + 〈h × n, u〉Γ|
‖u‖Xp′

τ (Ω)

≤ C(Ω, p)
(
‖ f‖(Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)

)
,

which is estimate (5). �

Theorem 5. Let λ ∈ Σε. Let p ≥ 2. Let f ∈ (Hp′

0 (div,Ω))′ , h×n∈W−1/p,p(Γ) , g ∈W1−1/p,p(Γ)
and χ ∈ Lp(Ω) verifying the following compatibility condition∫

Ω

χ dx =

∫
Γ

g dσ. (9)
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Then problem (1) has a unique solution (u, π) ∈W1,p(Ω) × Lp(Ω)/R satisfying the following
estimate

‖u‖W1,p(Ω) + ‖π‖Lp(Ω)/R ≤ C(Ω, p, λ)(‖ f‖(Hp′
0 (div,Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

+ ‖h × n‖W−1/p,p(Γ)). (10)

Proof. i) Existence and uniqueness. Consider the following Neumann problem

∆θ = χ in Ω and
∂θ

∂n
= g on Γ. (11)

Since g ∈ W1−1/p,p(Γ) and χ ∈ Lp(Ω) verifying the compatibility condition (9) this
problem has a unique solution θ ∈ W2,p(Ω)/R such that

‖θ‖W2,p(Ω)/R ≤ C
(
‖g‖W1−1/p,p(Γ) + ‖χ‖Lp(Ω)

)
. (12)

Set F = f − λ∇θ + ∇χ and observe that F ∈ (Hp′

0 (div,Ω))′. Then using Theorem 4 we
deduce that the problem{

λz − ∆z + ∇π = F, div z = 0 in Ω

z · n = 0, curl z × n = h × n on Γ
(13)

has a unique solution (z, π) ∈W1,p(Ω) × Lp(Ω)/R satisfying the following estimate

‖z‖W1,p(Ω) ≤ C(Ω, p)
(
‖F‖(Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)

)
. (14)

Set u = z + ∇θ. Then (u, π) solve (1).

ii) Estimate. Observe that

‖u‖W1,p(Ω) ≤ C(Ω, p)(‖ f‖(Hp′
0 (div,Ω))′ + |λ|‖∇θ‖(Hp′

0 (div,Ω))′ + ‖∇χ‖(Hp′
0 (div,Ω))′

+ ‖h × n‖W−1/p,p(Γ)) + ‖∇θ‖W1,p(Ω).

Then using estimate (12) one gets

‖u‖W1,p(Ω) ≤ C(Ω, p, λ)(‖ f‖(Hp′
0 (div,Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

+ ‖h × n‖W−1/p,p(Γ)). (15)

Moreover ‖π‖Lp(Ω)/R ≤ C(Ω, p) ‖∇π‖(Hp′
0 (div,Ω))′ = ‖ f − λu + ∆u‖(Hp′

0 (div,Ω))′ . Thus

‖π‖Lp(Ω)/R ≤ C(Ω, p, λ)(‖ f‖(Hp′
0 (div,Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W1−1/p,p(Γ) + ‖h× n‖W−1/p,p(Γ)). (16)

Combining (15) together with (16) we obtain estimate (10).
�
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Theorem 6. Let 1 < p < 2, f ∈ (Hp′

0 (div,Ω))′ and h× n ∈W−1/p,p(Γ), g ∈W1−1/p,p(Γ) and χ
∈ Lp(Ω) verifying the following compatibility condition (9). Then Problem (1) has a unique
solution (u, π) ∈W1,p(Ω) × Lp(Ω)/R.

Proof. Step 1: We suppose that g = 0. The problem{
λu − ∆u + ∇π = f , div u = χ, in Ω,

u · n = 0, curl u × n = h × n, on Γ,
(17)

has the following equivalent variational formulation: Find (u, π) ∈ W1,p(Ω) × Lp(Ω)/R sat-
isfying u · n = 0 on Γ, such that ∀ w ∈ W1,p′ satisfying w · n = 0 and curl w × n=0 on
Γ

λ

∫
Ω

u · w dx +

∫
Ω

curl u · curlw dx −
∫

Ω

π · divw dx = 〈 f ,w〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω)

+ 〈h × n,w〉W−1/p,p(Γ)×W−1/p,p′ (Γ) −

∫
Ω

χ · divw dx.

According to theorem 5, for any (F, ϕ) in (Hp
0 (div,Ω))′×Lp′

0 (Ω) there exists a unique solution
(w, η) ∈W1,p′ (Ω) × Lp′ (Ω)/R solution to{

λw − ∆w + ∇η = F, divw = ϕ, in Ω,
w · n = 0, curlw × n = 0, on Γ,

(18)

and satisfying

‖w‖W1,p′ (Ω) + ‖η‖Lp′ (Ω)/R ≤ C(Ω, p′, λ)(‖F‖(Hp
0 (div,Ω))′ + ‖ϕ‖Lp′ (Ω)).

Let T be a linear form defined from (Hp
0 (div,Ω))′ × Lp′

0 (Ω) onto C by

T : (F, ϕ) 7−→ 〈 f ,w〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) + 〈h × n,w〉Γ −
∫

Ω

χ · η dx.

Observe that

|T (F, ϕ)| ≤ ‖ f‖(Hp′
0 (div,Ω))′‖w‖Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)‖w‖W1/p,p′ (Γ) + ‖ϕ‖Lp′ (Ω).

Then T is continuous on (Hp
0 (div,Ω))′ × Lp′ (Ω) and we deduce that there exists a unique

(u, π) ∈ Hp
0 (div,Ω) × Lp(Ω)/R such that

T (F, ϕ) = 〈u, F〉Hp
0 (div,Ω)×(Hp

0 (div,Ω))′ −

∫
Ω

π · ϕ dx.

As a result

λ

∫
Ω

u · w dx +

∫
Ω

curl u · curlw dx −
∫

Ω

π · divw dx

= 〈 f ,w〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) + 〈h × n,w〉W−1/p,p(Γ)×W−1/p,p′ (Γ) −

∫
Ω

χ · divw dx.
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To finish, we shall prove that u belongs to W1,p(Ω). To this end we write our problem in the
form (7) where F = f −λu belongs to (Hp′

0 (div,Ω))′ and satisfies (8). Then using [3, Remark
4.6] our solution (u, π) ∈W1,p(Ω) × Lp(Ω).
Step 2 : g , 0. Let θ ∈W2,p(Ω)/R be the unique solution of the Neumann problem (11) with
χ ∈ Lp(Ω) and g ∈W1−1/p,p(Γ) satisfying (9). Let F = f + ∇χ − λ∇θ ∈ (Hp′

0 (div,Ω))′. Then
there exists (z, π) ∈W1,p(Ω) × Lp(Ω)/R solution of (13). Set u=z + ∇θ. We can easily verify
that (u, π) solves (1). �

3.2. Strong solution
Theorem 7. Let 1 < p < ∞. Let f ∈ Lp(Ω) and h × n ∈W1−1/p,p(Γ). Then the problem (4)
has a unique solution (u, π) ∈W2,p(Ω) ×W1,p(Ω)/R satisfying the following estimate

‖u‖W2,p(Ω) + ‖π‖W1,p(Ω)/R ≤ C(λ, p,Ω)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)). (19)

Proof. We know that problem (4) has a unique solution (u, π) ∈W1,p(Ω) × Lp(Ω)/R .
Moreover π satisfies

div(∇π − f ) = 0 in Ω, (∇π − f ) · n = −divΓ(h × n) on Γ.

Since h × n ∈W1−1/p,p(Γ) we deduce that that π ∈ W1,p(Ω).
Set z = curl u. Notice that z verify the following problem:{

λz − ∆z = curl f , div z = 0, in Ω,
z × n = h × n, on Γ,

(20)

where curl f ∈ (Hp′

0 (curl,Ω))′ and h × n ∈W1−1/p,p(Γ). Then z ∈W1,p(Ω) and satisfies

‖z‖W1,p(Ω) ≤ C(Ω)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)).

Thus u ∈ Lp(Ω), div u =0 ∈W1,p(Ω), curl u = z ∈W1,p(Ω) and u · n = 0 ∈W1−1/p,p(Γ). Then
u ∈W2,p(Ω) and

‖u‖W2,p(Ω) ≤ C(λ, p,Ω)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)).

Finally proceeding as in step 2 of the proof of theorem 5 , we obtain that the solution (u, π)
satisfies the estimation (19) which ends the proof. �

Corollary 8. Let 1 < p < ∞. Let f ∈ Lp(Ω) , h × n ∈W1−1/p,p(Γ), g ∈ W2−1/p,p(Γ) and χ ∈
W1,p(Ω) verifying the following compatibility condition (9). Then problem (1) has a unique
solution (u, π) ∈W2,p(Ω) ×W1,p(Ω)/R satisfying

‖u‖W2,p(Ω) + ‖π‖W1,p(Ω)/R ≤ C(Ω, p, λ)(‖ f‖Lp(Ω) + ‖χ‖W1,p(Ω) + ‖g‖W2−1/p,p(Γ)

+ ‖h × n‖W1−1/p,p(Γ)). (21)

Proof. Let θ ∈ W2,p(Ω) be the unique solution of the Neumann problem (11).
Set F = f − λ∇θ + ∇χ and observe that F ∈ Lp(Ω). Thanks to Theorem 7, the Problem (13)
has a unique solution (z, π) ∈W2,p(Ω) ×W1,p(Ω)/R satisfying

‖u‖W2,p(Ω) + ‖π‖W1,p(Ω)/R ≤ C(Ω, p, λ)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)).

By setting u = z + ∇θ, we can easily verify that (u, π) solves (1) and verifies (21). �
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3.3. Very weak solution
In this subsection we prove the existence of very week solution to Problem (1).

Theorem 9. Let f ∈ (Tp′ (Ω))′, χ ∈ Lp(Ω), g ∈W−1/p,p(Γ) and h× n ∈W−1−1/p,p(Γ) verifying
the compatibility condition (9). Then problem (1) has a unique solution (u, π) ∈ Lp(Ω) ×
W−1,p(Ω)/R. Moreover the following estimate holds

‖u‖Lp(Ω) + ‖π‖W−1,p(Ω)/R ≤ C(Ω, p, λ)(‖ f‖(Tp′ (Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W−1/p,p(Γ)

+ ‖h × n‖W−1−1/p,p(Γ)). (22)

Proof. Step 1. Problem (1) is equivalent to the variational formulation: find (u, π) ∈ Lp(Ω)×
W−1,p(Ω)/R such that for any φ ∈ Yp′

τ (Ω), and for any q ∈ W1,p′ (Ω),

λ

∫
Ω

u · φ dx −
∫

Ω

u · ∆φ dx − 〈π, divφ〉W−1,p(Ω)×W1,p′
0 (Ω) = 〈 f ,φ〉Ω + 〈h × n,φ〉Γ (23)

∫
Ω

u · ∇q dx = −

∫
Ω

χq dx + 〈g, q〉W−1/p,p(Γ)×W1/p,p′ (Γ), (24)

where 〈·, ·〉Ω = 〈·, ·〉(Tp′ (Ω))′×Tp′ (Ω) and 〈·, ·〉Γ = 〈·, ·〉W−1−1/p,p(Γ)×W1+1/p,p′ (Γ).
Indeed, using the Green formula (3), we can verify that every (u, π) ∈ Lp(Ω) × W−1,p(Ω)
solution to (1) solves (23)-(24). Conversely, let (u, π) ∈ Lp(Ω) × W−1,p(Ω) be a solution to
(23)-(24). Clearly, −∆u + ∇π = f and div u = χ in Ω.
Consequently, u ∈ Lp(Ω) and since ∇π ∈ (Tp′ (Ω))′, we have ∆u = − f + λu +∇π ∈ (Tp′ (Ω))′.
Then u ∈ Hp(∆,Ω). Using (2) and (3), we obtain that for any φ ∈ Yp′

τ (Ω):

λ

∫
Ω

u · φ dx −
∫

Ω

u · ∆φ dx − 〈curlu × n,φ〉Γ − 〈π, divφ〉W−1,p(Ω)×W1,p′
0 (Ω) = 〈 f ,φ〉Ω.

Thus 〈curlu × n,φ〉Γ = 〈h × n,φ〉Γ. Let µ ∈W1+1/p,p′ (Γ), there exists a function φ ∈W2,p(Ω)
satisfying

φτ = µτ and
∂φ

∂n
= −ndivΓµτ +

2∑
j=1

(∂µτ
∂s j
× T j

)
× n on Γ.

It is clear that φ ∈ Yp′
τ (Ω) and

〈curlu × n,µ〉Γ − 〈h × n,µ〉Γ = 〈curlu × n,φτ〉Γ − 〈h × n,φτ〉Γ = 0.

Thus curl u × n = h × n on Γ. Next using that div u=χ in Ω, we deduce that for any q ∈
W1,p′ (Ω), we have
〈u · n, q〉W−1/p,p(Γ)×W1/p,p′ (Γ) = 〈g, q〉W−1/p,p(Γ)×W1/p,p′ (Γ). Consequently, u · n = g ∈ W−1/p,p(Γ).

Step 2. Let us now solve Problem (23)-(24). We suppose that

g = 0 on Γ and
∫

Ω

χ dx = 0.
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Thanks to Theorem 8, for any pair (F, ξ) ∈ Lp′ (Ω)× (W1,p′

0 (Ω)∩ Lp′

0 (Ω)) there exists a unique
(φ, q) ∈W2,p′ (Ω) ×W1,p′ (Ω)/R satisfying:{

λφ − ∆φ + ∇q = F, divφ = ξ, in Ω,
φ · n = 0, curlφ × n = 0, on Γ,

(25)

with the estimate

‖φ‖W2,p′ (Ω) + ‖q‖W1,p′ (Ω)/R ≤ C(λ,Ω, p′)(‖F‖Lp′ (Ω) + ‖ξ‖W1,p′ (Ω)).

Let T be a linear form defined from Lp′ (Ω) × (W1,p′

0 (Ω) ∩ Lp′

0 (Ω)) onto C by

T : (F, ξ) 7−→ 〈 f ,φ〉Ω + 〈h × n,φ〉Γ −
∫

Ω

χq dx.

An easy computation shows that

|T (F, ξ)| ≤ C(Ω, p′, λ)(‖ f‖(Tp′ (Ω))′ + ‖h × n‖W−1−1/p,p(Γ) + ‖χ‖Lp(Ω))(‖F‖Lp′ (Ω) + ‖ξ‖W1,p′ (Ω)).

This means that T defines an element of the dual space of Lp′ (Ω) × (W1,p′

0 (Ω) ∩ Lp′

0 (Ω))
and according to the Riesz’s representation theorem, there exists a unique (u, π) ∈ Lp(Ω) ×
W−1,p(Ω)/R such that

T (F, ξ) = 〈u, F〉Tp′ (Ω)×(Tp′ (Ω))′ −

∫
Ω

πξ dx.

Then (u, π) is a solution to (23)-(24) and satisfies (22).
Step 3. Suppose that g , 0 and the compatibility condition (9) holds. The Neumann problem
(11) has a unique solution θ ∈ W1,p(Ω)/R satisfying the estimate:

‖θ‖W1,p(Ω)/R ≤ C(‖χ‖Lp(Ω) + ‖g‖W−1/p,p(Γ)).

Set F = f − λ∇θ + ∇χ. Then F ∈ (Tp′ (Ω))′ and the Problem (13) has a unique solution (z, π)
∈ Lp(Ω) ×W−1,p(Ω)/R satisfying the following estimate

‖z‖Lp(Ω) + ‖π‖W−1,p(Ω)/R ≤ C(λ,Ω, p)
(
‖F‖(Tp′ (Ω))′ + ‖h × n‖W−1−1/p,p(Γ)

)
. (26)

Then (u, π) with u = z + ∇θ solves (1) and satisfies (22). �

Remark 1. i) Consider the Problem (1) with χ ∈ W1,p(Ω) such that
∫

Ω
χ d x = 0, g = 0 and

h = 0 on Γ. As in [7] we can prove that the solution (u, π) satisfies the following estimate

|λ| ‖u‖Lp(Ω) + ‖∇π‖Lp(Ω) ≤ C (‖ f‖Lp(Ω) + ‖∇χ‖Lp(Ω) + |λ| ‖χ‖W−1,p(Ω)). (27)

Indeed, let θ ∈ W2,p(Ω)/R solution to ∆ θ = χ in Ω, ∂θ
∂n = 0 on Γ and satisfying ‖θ‖W2,p(Ω) ≤

C ‖χ‖W1,p(Ω). Set F = f − λ∇θ + ∇χ, then F ∈ Lp(Ω)) and the problem{
λz − ∆z + ∇π = F, div z = 0 in Ω

z · n = 0, curl z × n = 0 on Γ

has a unique solution (z, π) ∈W1,p(Ω) × Lp(Ω)/R satisfying the following estimate

|λ| ‖z‖W1,p(Ω) + ‖∇π‖Lp(Ω) ≤ C(Ω, p)
(
‖ f‖Lp(Ω)) + ‖∇χ‖Lp(Ω)) + |λ|‖∇θ‖Lp(Ω))

)
Set u = z + ∇θ. Then (u, π) is a solution to (1) and satisfies (27).
ii) Notice that when χ = 0 we recover the resolvent estimate established in [1] and [2].
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