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STATIONARY STOKES EQUATIONS WITH
FRICTION SLIP BOUNDARY CONDITIONS
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Abstract. The main purpose of this work is to study the existence and uniqueness of weak
and strong solutions of the stationary Stokes system with the Navier boundary condition
in the Hilbert case.
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§1. Introduction

Let Ω be a bounded domain in R3 with smooth boundary Γ. In this paper, we consider the
stationary Stokes equations:

−∆ u + ∇π = f and div u = 0 in Ω, (1.1)

where u denotes the velocity and π the pressure and f is the external forces.
To study this problem, it is necessary to add some boundary conditions. Note that this system
is often studied with the Dirichlet boundary condition, also called no-slip boundary condition,
which is applicable in the case where the boundary of the flow is solid. However, from a
point of view of physical applications, we often encounter situations where this condition is
not quite feasible. In this case, it is really important to introduce other boundary conditions
to describe the behavior of the fluid on the wall. For example, when a part of the flow on
the boundary is the air, it is convenient to use a slip boundary condition. In literature, Navier
[5], in 1827, was the first to propose a slip-friction boundary condition, in which there is
a stagnant layer of the fluid close to the wall allowing the fluid to slip, and the tangential
component of the strain tensor should be proportional to the tangential component of the
fluid velocity on the boundary:

u · n = 0 and 2 [D(u)n]τ + αuτ = 0, (1.2)

where D(u) = 1
2 (∇u + ∇u>) denotes the deformation tensor associated with the velocity

field u, α is a scalar friction function, n is the exterior unit normal and τ the corresponding
tangent vector. System (1.1) with (1.2) has been studied by many authors. Note that, the
first paper is due to Solonnikov and Scadilov [7] in 1973 without friction function (α = 0)
in the Hilbert case. We also refer to the paper of Beirão da Veiga [2]. We can cite the
work of Clopeau, Mikelic and Robert in two dimensions [3]. In this paper, we investigate,
on the first hand, the existence and uniqueness of weak solution and on the second hand,
we prove the regularity of these solutions. Our method consists to used the Lax-Milgram
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theorem and such Korn’s inequality to prove the existence and uniqueness of weak solutions
and exploit the relationship between slip-Navier boundary condition and the the following
boundary condition:

u · n = 0 and curl u × n = 0, (1.3)

to prove the regularity.
The outline of this paper is as follows. In the first paragraph, we will recall some preliminary
results and introduce an important framework. The second section is devoted to prove the ex-
istence and uniqueness of weak solution for Stokes problem (1.1) with (1.2). In the paragraph
3, we prove the regularity of solution.

§2. Preliminary results and functional framework

In this section we review such basic notations and definitions and collect many known results,
that will be useful for our studies.
We note that the vector-valued Laplace operator of a vector field v = (v1, v2, v3) is equivalently
defined by

∆ v = 2div D(v) − grad (div v). (2.1)

Now, we define some functional spaces.

H(div,Ω) = {v ∈ L2(Ω); div v ∈ L 2(Ω)},

H(curl,Ω) = {v ∈ L2(Ω); curl v ∈ L2(Ω)},

which equipped with the graph norm. The closure ofD(Ω) in H(div,Ω) and in H(curl,Ω are
denoted respectively by H0(div,Ω) and H0(curl,Ω) and can be respectively characterized by:

H0(div,Ω) = {v ∈ H(div,Ω); v · n = 0 on Γ},

H0(curl,Ω) = {v ∈ H(curl,Ω); v × n = 0 on Γ}.

In the sequel, we need the following Korn inequality, whose proof is given in [4].
Lemma 1. Let Ω be a bounded connected open set of R3 of class C1,1. Then there exists a
constant C = C(Ω) such that

‖v‖H1(Ω) ≤ C{‖v‖2L2(Ω) + ‖D(v)‖2L2(Ω)}
1
2 for all v in H1(Ω). (2.2)

Let’s now introduce some notation to describe a boundary Γ. We consider any point P on
Γ and choose an open neighborhood W of P on Γ small enough to allow the existence of two
families of C2-curves on W with these properties: a curve of each family passes through every
point of W and the unit tangent vectors to these curves form an orthonormal system (which
we assume to have the direct orientation) at every point of W. The lengths s1, s2 along each
family of curves, respectively, are a possible coordinate system in W. We denote by τ1, τ2
the unit tangent vectors to each family of these curves, respectively.
With this notation, we have v =

∑2
k=1 vkτk + (v · n)n where τT

k = (τk1 , τk2 , τk3 ) and vk = v · τk.
The lemma below give a relationship between the slip-Navier boundary condition and the
boundary condition given by (1.3). It will be used in the proof of existence and uniqueness
of strong solutions.
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Lemma 2. We suppose that Γ is of class C2. Then, for any v ∈ H 2(Ω), we have

[2D(v)n]τ = ∇τ(v · n) +
( ∂v
∂n

)
τ −

2∑
k=1

(
vτ ·

∂n
∂sk

)
τk (2.3)

and

curl v × n = ∇τ(v · n) −
( ∂v
∂n

)
τ −

2∑
k=1

(
vτ ·

∂n
∂sk

)
τk. (2.4)

Remark 1. In the particular case v · n = 0, we have the following equality:

[2D(v)n]τ =
( ∂v
∂n

)
τ −

2∑
k=1

(
vτ ·

∂n
∂sk

)
τk

and

curl v × n = −
( ∂v
∂n

)
τ −

2∑
k=1

(
vτ ·

∂n
∂sk

)
τk

implying

[2D(v)n]τ = −curl v × n − 2
2∑

k=1

(
vτ ·

∂n
∂sk

)
τk. (2.5)

Remark 2. We note that, if Ω is of class C2,1, then slip-Navier boundary condition differs

from (1.3) only by the term −2
∑2

k=1
(
vτ ·

∂n
∂sk

)
τk. This term vanishes on the flat boundary,

consequently, we have (1.2) and (1.3) are identical.
Now, we define the following space:

KN(Ω) = {v ∈ L 2(Ω), div v = 0, curl v = 0 in Ω and v × n = 0 on Γ}.

We also recall the following result which will be useful in sequel.(cf. [1]).

Lemma 3. Let β such that β × n ∈ H
1
2 (Γ) and f ∈ [H0(curl,Ω)]′ with div f = 0 in Ω and

satisfying the compatibility condition:

∀v ∈ KN(Ω), 〈f, v〉[H0(curl,Ω)]′×H0(curl,Ω) = 0. (2.6)

Then, the following problem 
−∆ u = f in Ω,
div u = 0 in Ω,
u × n = β × n on Γ,

has a unique solution in H 1(Ω) and we have:

‖u‖H 1(Ω) ≤ C
(
‖ f ‖[H0(curl,Ω)]′ + ‖β × n‖

H
1
2 (Γ)

)
.
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§3. Weak solutions

In this section we will study the following Stokes problem.

(ST )


−∆ u + ∇π = f in Ω,

div u = χ in Ω,
u · n = g on Γ,

2 [D(u)n]τ + αuτ = h on Γ.

The aim of this section is to give a variational formulation of the problem (ST ) and prove
a theorem of existence and uniqueness of weak solutions. We set α by a positive function
such that α belongs to L∞(Γ).
Let us introduce the following space:

V = {v ∈ H 1(Ω); div v = 0 in Ω and v · n = 0 on Γ},

E(Ω) = {v ∈ H 1(Ω); ∆v ∈ [H0(div,Ω)]′}.

E(Ω) is a Banach space for the norm

‖v‖E(Ω) = (‖v‖2H 1(Ω) + ‖∆v‖2[H0(div,Ω)]′ )
1
2 .

We give the following result where the proof can be found in [6].

Lemma 4. The spaceD(Ω) is dense in E(Ω).

We can now deduce the following result.

Corollary 5. The linear mapping Θ : v −−−−−→ [D(v)n]τ |Γ defined onD(Ω) can be extended
by continuity to a linear and continuous mapping

Θ : E(Ω) −−−−−→ H−
1
2 (Γ).

Moreover, we have the Green formula: for any v ∈ E(Ω) and ϕ ∈ V,

− 〈∆v, ϕ〉[H0(div,Ω)]′×H0(div,Ω) = 2
∫

Ω

D(v) : D(ϕ) dx − 2〈[D(v)n]τ,ϕ〉H− 1
2 (Γ)×H

1
2 (Γ)

. (3.1)

Proof. For any ϕ in V and for any v ∈D(Ω) we have

− 〈∆v,ϕ〉[H0(div,Ω)]′×H0(div,Ω) = 2
∫

Ω

D(v) : D(ϕ) dx − 2
∫

Γ

ϕ · D(v)n dσ. (3.2)

We know also, for all ϕ ∈ V we have∫
Γ

ϕ · D(v)n dσ =

∫
Γ

ϕ ·
{
[D(v)n]n n + [D(v)n]τ

}
dσ

=

∫
Γ

ϕ · [D(v)n]τ dσ,
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where [D(u)n]n is the component of D(u)n in the direction of n and [D(u)n]τ is the projection
of D(u)n on the tangent hyperplane of Γ.
Now, let µ be any element of H

1
2 (Γ), then there exists an element ϕ of H 1(Ω) such that

divϕ = 0 in Ω and ϕ = µτ on Γ with

‖ϕ‖H 1(Ω) ≤ C‖µτ‖H 1
2 (Γ)
≤ C‖µ‖

H
1
2 (Γ)

.

Consequently,∣∣∣∣〈[D(v)n]τ ,µ
〉

H −
1
2 (Γ)×H

1
2 (Γ)

∣∣∣∣ =
∣∣∣∣〈[D(v)n]τ ,µτ

〉
H −

1
2 (Γ)×H

1
2 (Γ)

∣∣∣∣
=

∣∣∣∣〈[D(v)n]τ ,ϕ
〉

H −
1
2 (Γ)×H

1
2 (Γ)

∣∣∣∣
≤ ‖∆v‖[H0(div,Ω)]′‖ϕ‖H0(div,Ω) + ‖D(v)‖L2(Ω)‖D(ϕ)‖L 2(Ω)∣∣∣∣〈[D(v)n]τ ,µ

〉
H −

1
2 (Γ)×H

1
2 (Γ)

∣∣∣∣ ≤ {‖∆v‖2[H0(div,Ω)]′ + ‖D(v)‖2L 2(Ω)}
1
2 {‖ϕ‖2L2(Ω) + ‖D(ϕ)‖2L 2(Ω)}

1
2 .

It follows from Korn’s Inequality, we have∣∣∣∣〈[D(v)n]τ ,µ
〉

H −
1
2 (Γ)×H

1
2 (Γ)

∣∣∣∣ ≤ C‖v‖E(Ω)‖ϕ‖H 1(Ω).

Thus,
‖ [D(v)n]τ ‖H − 1

2 (Γ)
≤ C‖v‖E(Ω).

Therefore, the linear mapping Θ : v −−−−−→ [D(v)n]τ |Γ defined onD(Ω) is continuous for the
norm of E(Ω). SinceD(Ω) is dense in E(Ω),Θ can be extended by continuity to a mapping
still called Θ ∈ L(E(Ω),H − 1

2 (Γ)) and Formula (3.2) holds for all v ∈ E(Ω) and ϕ ∈ V. �

The following proposition will help us to solve the problem (ST ).

Proposition 6. We suppose that χ = 0, g = 0. Let f ∈ [H0(div,Ω)]′,h ∈ H−
1
2 (Γ) such that

h · n = 0 on Γ.

Then, the problem: Find (u, π) ∈ H 1(Ω) satisfying (ST ) is equivalent to the following varia-
tional problem:


Find u ∈ V such that,

∀ϕ ∈ V, 2
∫

Ω
D(u) : D(ϕ) dx +

∫
Γ
α(x)ϕτuτ dσ = 〈f,ϕ〉[H0(div,Ω)]′×H0(div,Ω)

− 〈h,ϕ〉
H−

1
2 (Γ)×H

1
2 (Γ)

.

(3.3)

Proof. Using the Green formula (3.1), we deduce that every solution of (ST ) also solves
(3.3). Conversely, let u be a solution of the problem (3.1). Let us take a function ϕ ∈ D(Ω)
such that divϕ = 0 as a test function in (3.3). It is clear that a second term in the left-hand
side of (3.3) vanishes because ϕ ∈D(Ω). Now the first term in the left-hand side is
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2
∫

Ω

D(u) : D(ϕ) dx = 〈−∆u,ϕ〉
D
′ (Ω)×D(Ω). (3.4)

As a consequence,

∀ϕ ∈Dσ(Ω) 〈−∆u − f ,ϕ〉
D
′ (Ω)×D(Ω) = 0.

So, by the De Rham’s Theorem, there exists a distribution π inD
′

(Ω) defined uniquely up to
an additive constant such that

−∆u + ∇π = f . (3.5)

Moreover, by the fact that u belonging to the space V, we have div u = 0 in Ω and u ·n = 0 on
Γ. It remains to prove the Navier boundary condition 2 [D(u)n]τ+αuτ = h on Γ. We multiply
the equation (3.5) by ϕ ∈ V and we integrate on Ω we obtain

2
∫

Ω

D(u) : D(ϕ) dx − 2
∫

Γ

ϕ · [D(u)n]τ dσ = 〈f ,ϕ〉[H0(div,Ω)]′×H0(div,Ω) . (3.6)

Using (3.3) and (3.6), we deduce that

∀ϕ ∈ V,
∫

Γ

{
2 [D(u)n]τ + αuτ − h

}
· ϕ dσ = 0. (3.7)

Let now µ be any element of the space H
1
2 (Γ). So, there exists ϕ ∈ H1(Ω) such that divϕ = 0

in Ω and ϕ = µτ on Γ. It is clear that ϕ ∈ V and

〈
[D(u)n]τ + αuτ − h, µ

〉
H−

1
2 (Γ)×H

1
2 (Γ)

=
〈
[D(u)n]τ + αuτ − h, µτ

〉
H−

1
2 (Γ)×H

1
2 (Γ)

=
〈
[D(u)n]τ + αuτ − h, ϕ

〉
H−

1
2 (Γ)×H

1
2 (Γ)

= 0.

This implies that
[D(u)n]τ + αuτ = h on Γ.

�

Now, we show the following inequality which will be useful in the proof of coercivity.

Lemma 7. Let Ω be a bounded open set of R3 of class C1,1. Then, there exists a constant
C = C(Ω) > 0 such that∫

Ω

|D(u)|2dx +

∫
Γ

α|uτ|2dσ ≥ C‖u‖H 1(Ω), ∀u ∈ V. (3.8)

Proof. Assume that the inequality (3.8) is not true. Then there is a sequence (uk)k of V such
that

‖uk‖H 1(Ω) = 1
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and ∫
Ω

|D(uk)|2dx +

∫
Γ

α|(uk)τ|2dσ <
1
n
, ∀k ≥ 1. (3.9)

Hence, there is a subsequence, again denoted by (uk)k and u ∈ V such that

(uk)kconverge to u weakly in H1(Ω), strongly in L2(Ω),

and
D(uk) −−−−−→ 0 in L 2(Ω)

It follows from the Korn inequality that for all ε > 0 we have

‖up − uk‖
2
H 1(Ω) 6 C{‖up − uk‖

2
L 2(Ω) + ‖D(up) − D(uk)‖2L 2(Ω)}

6 ε.

Thus, the subsequence (uk)k is a Cauchy sequence in H 1(Ω) and then

uk −−−−−→ u strongly in H 1(Ω).

Therefore, D(u) = 0, which means that u(x) = a + b × x, a, b ∈ R3. But by (3.9) we have
uτ = 0 on Γ, then u = 0 on Γ. Using the second left-hand side of (3.9) , we deduce that u = 0,
that is a contradiction with ‖u‖H1(Ω) = 1. �

Now, we can solve the Stokes problem with Navier boundary condition.

Theorem 8. ( Weak solution for (ST ))
Suppose that χ = 0 and g = 0. Let f ∈ [H0(div,Ω)]′ and h ∈ H−

1
2 (Γ), satisfying

h · n = 0 on Γ.

Then, the Stokes problem (ST ) has a unique solution (u, π) ∈ H 1(Ω)× L 2(Ω)/R and we have
the following estimate:

‖u‖H 1(Ω) + ‖π ‖L 2(Ω)/R ≤ ‖f ‖[H0(div,Ω)]′ + ‖h‖
H−

1
2 (Γ)

. (3.10)

Proof. Thanks to the Proposition 6, the problem (ST ) is equivalent to the following varia-
tional formulation:


Find u ∈ V such that,

∀ϕ ∈ V, 2
∫

Ω
D(u) : D(ϕ) dx +

∫
Γ
α(x)ϕτuτ dσ = 〈f ,ϕ〉[H0(div,Ω)]′×H0(div,Ω)

− 〈h,ϕ〉
H −

1
2 (Γ)×H

1
2 (Γ)

.

(3.11)

We consider the Hilbert space V endowed with the norm ‖v‖V = ‖v‖L2(Ω) + ‖D(v)‖L 2(Ω),

E(u,ϕ) = 2
∫

Ω

D(u) : D(ϕ) dx +

∫
Γ

α(x)ϕτuτ dσ f or, u,, ϕ ∈ V,
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l(ϕ) = 〈f ,ϕ〉[H0(div,Ω)]′×H0(div,Ω) − 〈h,ϕ〉H − 1
2 (Γ)×H

1
2 (Γ)

.

Its easy to see that the bilinear form E(., .) (resp. the linear form l(.))is continuous on
V × V(resp. on V) since we have

E(u,ϕ) ≤ C(‖u‖H 1(Ω)‖ϕ‖H 1(Ω)) ≤ C(‖u‖V‖ϕ‖V),

l(ϕ) ≤ (‖f‖[H0(div,Ω)]′‖ + ‖h‖
H −

1
2 (Γ)

)‖ϕ‖V .

Furthermore, the bilinear form E(., .) is V−elliptic, as we have

∀u ∈ V, E(u,u) ≥ C‖u‖V .

thanks to the Lemma 7. According to Lax-Milgram theorem, the problem (ST ) has a unique
function u ∈ H 1(Ω) and π ∈ L 2(Ω) solution of the Stokes problem. �

Remark 3. We can also solve the Stokes problem (ST ) when the divergence operator does
not vanish and g , 0. To do this, we consider the following Neumann problem:

∆θ = χ inΩ and
∂θ

∂n
= g on Γ. (3.12)

and setting z = u − ∇θ.

§4. Strong Solution and regularity for the Stokes system (ST )

We prove now the existence of strong solution (u, π) ∈ H 2(Ω)×H 1(Ω) for the Stokes problem
(ST ). The proof of the following theorem is based on results given in Lemma2 and Lemma3.

Theorem 9. Assume that Ω is of class C2,1. Suppose that χ = 0. Let f ∈ L 2(Ω), g ∈ H
3
2 (Ω)

and h ∈ H
1
2 (Γ), satisfying ∫

Γ

g dσ = 0 and h · n = 0 on Γ.

Then, the solution (u, π) given by Theorem 8 belongs to H 2(Ω) × H 1(Ω)/R and satisfies the
estimate:

‖u‖H 2(Ω) + ‖π‖H 1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖

H
3
2 (Γ)

+ ‖h‖
H

1
2 (Γ)

)
. (4.1)

Proof. Note that under the hypothesis of Theorem 9, the data f satisfies also the hypothesis
of Theorem 8. So, this implies that problem (ST ) has a unique solution (u, π) ∈ H 1(Ω) ×
L 2(Ω)/R. To prove the regularity of the velocity, we set z = curl u. Using Remark 1, we
deduce that z satisfies the following problem:

−∆ z = curl f in Ω,
div z = 0 in Ω,
z × n = H on Γ.
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where H = αuτ − 2
∑2

k=1
(
uτ ·

∂n
∂sk

)
τk − h.

Because Ω is of class C2,1 and u ∈ H1(Ω), we have
∑2

k=1
(
uτ ·

∂n
∂sk

)
τk ∈ H

1
2 (Γ), it follows

that H ∈ H
1
2 (Γ) and H · n = 0. Since curl f belongs to [H0(curl,Ω)]′ and satisfies the

compatibility condition (2.6), as a result of Lemma 3, we have z ∈ H1(Ω). Then u ∈ X 2,2(Ω).
As a consequence, thanks to the imbedding of X 2,2(Ω) in H 2(Ω) (see[1]), the solution u of
the problem (ST ) belongs to H2(Ω),
where

X 2,2(Ω) = {v ∈ L 2(Ω); div v ∈ H1(Ω), curl v ∈ H1(Ω) and v · n ∈ H
3
2 (Γ)}.

Moreover, since
∇π = ∆u + f ∈ L 2(Ω),

we deduce that π ∈ H1(Ω). �

We have the following result concerning strong solution of the Stokes problem (ST ),
where the divergence operator does not vanish.

Corollary 10. Assume that Ω is of class C 2,1. For every f ∈ L 2(Ω), χ ∈ H 1(Ω), g ∈ H
3
2 (Ω)

and h ∈ H
1
2 (Γ), satisfying ∫

Γ

g dσ = 0 and h · n = 0 on Γ.

The solution (u, π) given by Theorem8 belongs to H 2(Ω)×H 1(Ω)/R and satisfies the estimate:

‖u‖H 2(Ω) + ‖π‖H 1(Ω) ≤ C
(
‖f‖L 2(Ω) + ‖χ‖H 1(Ω) + ‖g‖

H
3
2 (Γ)

+ ‖h‖
H

1
2 (Γ)

)
. (4.2)

Proof. We solve the following Neumann problem:

∆θ = χ inΩ and
∂θ

∂n
= g on Γ. (4.3)

This problem has a unique solution this problem has a unique solution θ ∈ H 3(Ω)/R
satisfying the estimate:

‖θ‖H 3(Ω) ≤ C{‖χ‖H 1(Ω) + ‖g‖
H

3
2 (Ω)
}. (4.4)

Setting z = u − ∇θ, then (ST ) becomes: Find (z, π) ∈ H 2(Ω) × H 1(Ω)/R such that
−∆ z + ∇π = f + ∇χ in Ω,

div z = 0 in Ω,
z · n = g on Γ,

2 [D(z)n]τ + αzτ = H on Γ.

where H = h− 2 [D(∇θ)n]τ −α(∇θ)τ and belongs to H
1
2 (Γ). Observe that f +∇χ belongs

to L 2(Ω). Thus, due to Theorem 9, this problem has a unique solution (z, π) ∈ H 2(Ω) ×
H 1(Ω)/R. Therefore u = z + ∇θ and belongs to H 2(Ω).

�
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