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FROM THE HEAT EQUATION
TO THE SOBOLEV EQUATION

Guy Vallet

Abstract. In this paper, we consider the theorem of Lions-Tartar in W(0,T,V,V ′) with
different “pivot-spaces” H. In a first part, depending on H, we have a look at the corre-
sponding solved problem. Then, the second energy equality set forth in a second part.
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§1. Introduction

Considering two separable Hilbert spaces V and H, V being continuously embedded in H and
dense in H, the interpretation of the equation du/dt + Au = f in V ′, with initial condition u0
in H, is under discussion in the situation where one changes the pivot space H in the usual
Gelfand-Lions framework.

In [5], J. Simon warns us against the use of the common identification of H with its dual
space in the functional frame V ↪→ H ≡ H′ ↪→ V ′. In particular, it is mentioned that if
D(Ω)† is not dense in V , the study is incompatible with the distributional frame for some
standard PDE’s. Remaining with D(Ω) dense V , we present in this paper the different type
of solved problems by the theorem of Lions-Tartar when one changes the pivot’s space. We
systematically illustrate our remarks with the rigged Hilbert space (Hs(Rd),H1(Rd)) when
s ∈ [0, 1]. For example, the equation du/dt − ∆u = f would correspond to the heat equation
∂u/∂t − ∆u = f if s = 0. Here, ∂u/∂t denotes the time derivative of u in the sense of the
distribution of D′(Q). It would correspond to the Sobolev equation (I − ∆)∂u/∂t − ∆u = f if
s = 1.

In a last part of the paper, we will be interested in the “second energy equality” for the
solution to the lemma of Lions-Tartar. More precisely, Theorem 4 asserts that if u0 ∈ V ,
g ∈ L2(0,T,H) and assuming that the bilinear form a is independent of time, symmetric
and coercive, then the corresponding solution u to the lemma of Lions-Tartar belongs to
C([0,T ],V) and for any t ∈ [0,T ],∫

]0,t[

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ +
1
2

a(u(t), u(t)) =
1
2

a(u(0), u(0)) +

∫
]0,t[

(
g(σ),

du
dt

(σ)
)

dσ.

Outlines of the paper

One presents in Section 2 some notations, then, in Section 3, one reminds the reader of the
embedding of V in V ′ when the Riesz-identification H ≡ H′ is assumed. In particular, what is

†The space of infinitely differentiable functions with a compact support.
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the characterization of the image of H1(Rd) when H = Hs(Rd). Then, thanks to this, we will
be interested in the sense given to the space W(0,T ) =

{
u ∈ L2(0,T,V), du/dt ∈ L2(0,T,V ′)

}
.

We will look more closely to the case V = H1(Rd) and H = Hs(Rd) when s ∈ [0, 1] and to
the link with fractional operators.

Section 4 will be devoted to the lemma of Lions-Tartar and Section 5 to the second energy
equality. Then, we end this paper with an annex that precise the regularization of Landes, used
in the proof of the result of Section 5.

§2. Notations

Let V and H be two separable Hilbert spaces, with norm ‖ · ‖ for V , associated with the
scalar product (( · , · )), and norm | · | for H, associated with the scalar product ( · , · ). Assume
moreover that V is continuously embedded in H with a dense injection. Then, the dual space
H′ is continuously embedded in V ′ and dense. The norm in V ′ is denoted by ‖ · ‖∗.

Ω ⊂ Rd denotes a regular open set and for any positive T , Q = ]0,T [ ×Ω.
As usual, D(A) denotes the class of C∞-derivable functions in a given open set A, with

compact support in A and its dual space D′(A) denotes the space of distributions in A.
S denotes the Schwartz space in Rd and S′ the tempered distributions.
For any s ∈ [0, 1], Hs(Rd) denotes the fractional Sobolev space defined, for any s, by

Hs(Rd) =
{
u ∈ L2(Rd), |ξ|sFx(u) ∈ L2(Rd)

}
, where Fx is the Fourier transform of variable

x ∈ Rd.
Given s ∈ ]−d/2, 1] and f ∈ S, we recall the fractional operators (−∆)s f as (−∆)s f =

F −1
x

[
|ξ|2sFx( f )

]
and (I − ∆)s f as (I − ∆)s f = F −1

x
[
(1 + |ξ|2)sFx( f )

]
.

Then, one denotes by W(H,V)(0,T ) =
{
u ∈ L2(0,T,V), du/dt ∈ L2(0,T ; V ′)

}
.

§3. The space W(H,V)(0, T)

3.1. How to embed V in V ′?
In this section, we lay stress on the question: how to embed V in V ′? Since V is not a priori
a space with a finite dimension, there exist many possibilities to identify V with its image in
V ′ when one says that V ↪→ V ′?

Classically, the rigged Hilbert space (H,V) is considered (or Gelfand-Lions triple):

1. Either H = V . Then, thanks to the theorem of Riesz, V is identified with its dual V ′.
Indeed,

J : V → V ′, u 7→ Ju such that Ju : v ∈ V 7→ ((u, v))

is an isometric mapping.

2. Or, H  V . Then, H is identified with its dual H′ (Riesz’s theorem) and V is embedded
in V ′ by “passing through H ≡ H′”. H is called the pivot-space, or intermediate space.
Then,

JH : V → V ′, u 7→ JHu such that JHu : v ∈ V 7→ (u, v)

is an injective mapping.
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Remark 1.

1. Note that if H = V , then JH = J.

2. If H and H̃ are two pivot-spaces with H ( H̃ and V is densely embedded in H and H̃,
then we get that JH̃(V) ( JH(V).

3. If V = H1(Rd) and H = L2(Rd) then, for any u ∈ V , we get that J−1 ◦ JHu = w where
w is the unique solution in H1(Rd) of the problem: w − ∆w = (u, · )L2(Rd).

3.1.1. Fractional Sobolev spaces

Let us recall some basics about Hs(Rd) from J.-L. Lions et al. [2] and L. Tartar [7]. Remind
that S denotes the Schwartz space and S′ the tempered distributions.

Definition 1. Let us denote by Fx the Fourier transform of variable x ∈ Rd. Then, for a
real number s ≥ 0, Hs(Rd) =

{
u ∈ L2(Rd), |ξ|sFx(u) ∈ L2(Rd)

}
, and, for a real number s,

Hs(Rd) =
{
u ∈ S′(Rd), (1 + |ξ|2)s/2Fx(u) ∈ L2(Rd)

}
.

Then,

Lemma 1.

1. When s ∈ N, Hs(Rd) denotes the classical Sobolev space (with H0(Rd) = L2(Rd)).

2. D(Rd) is dense in the Hilbert space Hs(Rd) for the norm u 7→
∥∥∥[1 + |ξ|2]s/2Fx(u)

∥∥∥
L2(Rd).

3. If s ∈ ]0, 1[, then u ∈ Hs(Rd) if and only if u ∈ L2(Rd) and∫
Rd×Rd

|u(x) − u(y)|2

|x − y|d+2s dx dy < ∞.

For an open set Ω, one could define Hs(Ω) for 0 < s < 1 in (at least) three different ways:

1. u ∈ L2(Ω) and
∫

Ω×Ω

|u(x) − u(y)|2

|x − y|d+2s dx dy < ∞.

2. u is the restriction to Ω of an element U in Hs(Rd).

3. One may define Hs(Ω) by interpolation Hs(Ω) = [H1(Ω), L2(Ω)]1−s,2.

For a bounded open set with a Lipschitz boundary, the three definitions give the same space
with equivalent norms.

3.1.2. Fractional Laplace operator

Let us now remind some basics on the fractional operators (cf. L. E. Silvestre [3]):

Definition 2. Given s ∈ ]−d/2, 1], and f ∈ S, we define:

1. (−∆)s f as (−∆)s f = F −1
x

[
|ξ|2sFx( f )

]
.

2. (I − ∆)s f as (I − ∆)s f = F −1
x

[
(1 + |ξ|2)sFx( f )

]
.
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Clearly, if s = 1, then (−∆)s = −∆; if s = 0, then (−∆)s = Id; and (−∆)s1 ◦ (−∆)s2 =

(−∆)s1+s2 , respectively with I − ∆ instead of −∆.
When f ∈ S, we can also compute the same operator by using the singular integral

(−∆)s f (x) = cn,sPV
∫
Rd

f (x) − f (y)
|x − y|d+2s dy.

Let us remark also that for any f , g ∈ S,∫
Rd

[(Id − ∆)s] f g dx =

∫
Rd

(1 + |ξ|2)sFx( f )Fx(g) dξ

=

∫
Rd

(1 + |ξ|2)s/2Fx( f )(1 + |ξ|2)s/2Fx(g) dξ

=

∫
Rd

(I − ∆)s/2 f (I − ∆)s/2g dx,

which is the scalar product of Hs(Rd).

3.1.3. Intermediate spaces

If one assumes that V ↪→ H ≡ H′ ↪→ V ′, then (J.-L. Lions et al. [2]) there exists an
unbounded operator A on V ′ such that [D(A),H]1/2 = V , [V,V ′]1/2 = H and D(A1/2) = V .

Classically, when V = H1(Rd), we consider that H = L2(Rd). Therefore, the image of the
dual of H1(Rd) by the identification L2(Rd)′ ≡ L2(Rd) is H−1(Rd), the space of “derivatives
of order less than one of elements of L2”, and [H1(Rd),H−1(Rd)]1/2 = H0(Rd) = L2(Rd).
Moreover, since we have

D(Rd) ↪→ H1(Rd) ↪→ L2(Rd) ≡ L2(Rd)′ ↪→ H−1(Rd) ↪→ D′(Rd),

any element u of H1(Rd) is a distribution via the identification L2(Rd) ≡ L2(Rd)′, i.e., u is
identifiable with the distribution: ϕ ∈ D(Rd) 7→

∫
Rd uϕ dx.

Consider now that the pivot-space is Hs(Rd), for a given s ∈ [0, 1]. Then,

D(Rd) ↪→ H1(Rd) ↪→ Hs(Rd) ≡ Hs(Rd)′ ↪→ H1(Rd)′ ↪→ D′(Rd),

and an element u of H1(Rd) is a distribution via the identification Hs(Rd) ≡ Hs(Rd)′, i.e., u is
identifiable with the distribution: ϕ ∈ D(Rd) 7→ (u, ϕ)Hs .

Now, the question is: since in this case [H1(Rd),H1(Rd)′]1/2 = Hs(Rd), what is the image
in the dual of H1(Rd) by the identification Hs(Rd)′ ≡ Hs(Rd)? More precisely, since we
have to obtain [H1(Rd),H1(Rd)′]1/2 = Hs(Rd), why can we identify H1(Rd)′ with H2s−1(Rd)?
Indeed, let us denote by

Φ : H2s−1(Rd)→ H1(Rd)′; w 7→ Φw

where

Φw : H1(Rd)→ R; u 7→
∫
Rd

(1 + |ξ|2)sFxwFxu dξ.
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Clearly, Φ exists and is an injection.
Consider T ∈ H1(Rd)′. Since Hs(Rd)′ is dense in H1(Rd)′, T is the limit of a sequence

(Tn) ⊂ Hs(Rd)′ in H1(Rd)′. Since Hs(Rd) is the pivot space, there exists wn ∈ Hs(Rd) such
that

∀v ∈ H1(Rd), 〈Tn, v〉 = (wn, v)Hs =

∫
Rd

(1 + |ξ|2)sFxwn Fxv dξ.

Since H1(Rd) =
{
u ∈ S′,

∫
Rd (1 + |ξ|2)|Fxv|

2 dξ < +∞
}

and ‖v‖2H1(Rd) =
∫
Rd (1 + |ξ|2)|Fx|

2v dξ,

‖Tn‖H1(Rd)′ = sup
v∈H1(Rd)\{0}

∫
Rd (1 + |ξ|2)s−1/2 Fxwn(1 + |ξ|2)1/2 Fxv dξ

‖v‖H1(Rd)
= ‖wn‖H2s−1(Rd).

Then, the result holds by passing to the limit and Φ is an isometry.

3.2. Time derivation
Consider a positive real number T and assume that u ∈ L2(0,T,V). Then, u is said to belong
to W(H,V)(0,T ) if u ∈ L2(0,T,V), du/dt ∈ L2(0,T ; V ′) and V ↪→ H ≡ H′ ↪→ V ′. Then, in this
section, we wish to discuss about the sense given to du/dt ∈ L2(0,T ; V ′) (cf. J. Simon [4]).

1. On the one hand, one can consider u as an element of D′(0,T ; V), the V-valued distri-
butions. Thus, du/dt, the time derivative of u in the sense of D′(0,T ; V), exists and

∀ϕ ∈ D(0,T ),
du
dt

(ϕ) = −

∫ T

0
u(t)ϕ′(t) dt in V.

Then, by using JH : V ↪→ H ≡ H′ ↪→ V ′, we have that

∀ϕ ∈ D(0,T ), ∀v ∈ V,
〈
JH

[du
dt

(ϕ)
]
, v

〉
= −

(∫ T

0
u(t)ϕ′(t) dt, v

)
.

Since uϕ′ ∈ L1(0,T,V) and T : V → R, u 7→ (u, v) is a linear and continuous mapping,
we get that

(∫ T
0 u(t)ϕ′(t) dt, v

)
=

∫ T
0 ϕ′(t)(u(t), v) dt. Note that this result is an obvious

fact for simple functions u, then for any u by passing to the limit. Therefore, for all
ϕ ∈ D(0,T ) and v ∈ V ,〈

JH

[du
dt

(ϕ)
]
, v

〉
= −

∫ T

0
ϕ′(t)(u(t), v) dt =

〈 d
dt

(u(t), v), ϕ
〉

D′(0,T ),D(0,T )
.

2. On the other hand, one can consider that JH(u) is then an element of L2(0,T,V ′), thus
an element of D′(0,T ; V ′), the V ′-valued distributions. Therefore, dJHu/dt, the time
derivative of JHu in the sense of D′(0,T ; V ′), exists and

∀ϕ ∈ D(0,T ),
dJHu

dt
(ϕ) = −

∫ T

0
JHu(t)ϕ′(t) dt in V ′,

i.e.

∀ϕ ∈ D(0,T ), ∀v ∈ V,
〈dJHu

dt
(ϕ), v

〉
= −

〈∫ T

0
JHu(t)ϕ′(t) dt, v

〉
.
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Since JHuϕ′ ∈ L1(0,T,V ′) and T : V ′ → R, f 7→ 〈 f , v〉 is a linear and continuous
mapping, we get also that

〈∫ T
0 JHu(t)ϕ′(t) dt, v

〉
=

∫ T
0 ϕ′(t) 〈u(t), v〉 dt. Therefore, for

all ϕ ∈ D(0,T ) and v ∈ V ,〈dJHu
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t) 〈JHu(t), v〉 dt

=

〈 d
dt
〈JHu(t), v〉 , ϕ

〉
D′(0,T ),D(0,T )

=

〈 d
dt

(u(t), v), ϕ
〉

D′(0,T ),D(0,T )
.

Thus, JH ◦
du
dt

=
dJHu

dt
.

Assume, for example, that V = H1(Rd) and H = Hs(Rd) with s ∈ [0, 1]. Then, for any
v ∈ D(Rd) and any ϕ ∈ D(0,T ),〈dJHu

dt
(ϕ), v

〉
= −

∫ T

0
ϕ′(t)(u(t), v)Hs(Rd) dt =

〈 d
dt

(u(t), v)Hs(Rd), ϕ
〉

D′(0,T ),D(0,T )
.

1. Assume that s = 0. Then,〈dJL2(Rd)u
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t)

∫
Rd

uv dx dt =
〈∂u
∂t
, ϕ ⊗ v

〉
D′(Q),D(Q)

,

where ∂u/∂t denotes the time derivative of u in the sense of the distribution of D′(Q)
where Q = ]0,T [ × Rd with the classical identification L2 ≡ (L2)′.

2. Assume that s = 1. Then, up eventually to a constant due to the Fourier transform,〈dJH1(Rd)u
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t)

∫
Rd

(uv + ∇u∇v) dx dt =

〈
∂u
∂t
− ∆

∂u
∂t
, ϕ ⊗ v

〉
D′(Q),D(Q)

,

where the derivations are in the sense of the distribution of D′(Q) with the classical
identification L2 ≡ (L2)′.

3. Assume that s ∈ ]0, 1[. Then,〈dJHs(Rd)u
dt

(ϕ), v
〉

= −

∫ T

0
ϕ′(t) 〈(I − ∆)su, v〉(Hs)′,Hs dt

and
dJHs(Rd)u

dt
= (I − ∆)s du

dt
,

where du/dt is understood in the sense of D′(0,T ; Hs(Rd)).

§4. Lemma of Lions-Tartar

Lemma 2 (J.-L. Lions [1], J. Simon [4, 5] and L. Tartar [6]). Let a ∈ L∞(0,T,L(V,V ′)) such
that

∃α > 0, β ∈ R, for which , ∀u ∈ V, a(u, u) ≥ α‖u‖2 − β|u|2.
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Given u0 ∈ H, f1 ∈ L1(0,T ; H′) and f2 ∈ L2(0,T ; V ′), there exists a unique u ∈ C([0,T ]; H)∩
L2(0,T ; V), solution, for any v ∈ V and t a.e. in ]0,T [, of

d
dt

(u, v) + 〈a(·, u), v〉V ′,V = 〈 f1, v〉H′,H + 〈 f2, v〉V ′,V ,

u(0) = u0,
(1)

and the bilinear application ( f1+ f2, u0) 7→ u is continuous from
(
L2(0,T ; V ′)+L1(0,T ; H′)

)
×

H to L2(0,T ; V) ∩C([0,T ]; H). Moreover,

dJHu
dt
∈ L1(0,T ; H′) + L2(0,T ; V ′)

and the first energy equality holds

1
2

d
dt
|u|2 + 〈a(·, u), u〉V ′,V = 〈 f1, u〉H′,H + 〈 f2, u〉V ′,V .

Lemma 3 (J. Simon [4, 5]). With the same hypothesis than the previous lemma, unless
a ∈ L2(0,T,L(V,V ′)) (instead of L∞), there exists a unique u in L2(0,T ; V) ∩ L∞(0,T ; H) ∩
Cw([0,T ]; H) solution of (1). Moreover,

dJHu
dt
∈ L1(0,T ; V ′).

Remark 2.

1. J.-L. Lions considered f ∈ L2(0,T ; V ′) which gives dJHu/dt ∈ L2(0,T ; V ′), i.e., u ∈
W(H,V)(0,T ).

2. Assume for example that V = H1(Rd), H = Hs(Rd) with s ∈ [0, 1], that 〈a(·, u), v〉V ′,V =∫
Rd ∇u.∇v dx and denote by us the solution of Lions-Tartar’s lemma. Then, if s = 0, us

is the solution of the heat equation; if s = 1, us is the solution of the pseudoparabolic
Sobolev equation; else, us is the solution of intermediate evolution problems, hard to
characterize in term of PDE’s since (I − ∆)s is a non local fractional operator.

§5. Second energy equality

Theorem 4. Consider T > 0, Q = ]0,T [ × Ω, u0 ∈ V, g ∈ L2(0,T,H) and u the solution of
the lemma of Lions-Tartar. If a is independent of time, symmetric and coercive (i.e. β = 0)
bilinear form, then u ∈ H1(0,T ; H) ∩ Cw([0,T ],V). Moreover, u ∈ C([0,T ],V) and for any
t ∈ [0,T ],∫

]0,t[

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ +
1
2

a (u(t), u(t)) =
1
2

a (u(0), u(0)) +

∫
]0,t[

(
g(σ),

du
dt

(σ)
)

dσ. (2)

Proof. Since u is a mild solution, i.e. obtained by an implicit time-discretization scheme, it
is a classic exercise to prove that u ∈ H1(0,T ; H) ∩ L∞(0,T ; V). Then,

u ∈ C([0,T ]; H) ∩ L∞(0,T ; V) = Cw([0,T ]; V)
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(cf. [2]). Moreover, since u ∈ H1(0,T ; H), the time differentiation is understood in the space
H, without any embeddings. Then, we will denote it by du/dt.

Let us fix s ∈ [0,T [ and for any positive ε, denote by vε the solution of the differential
equation (see section 6 for further informations)

ε
dvε
dt

+ vε = u, for t > s, with vε(s, .) = u(s).

Then, testing the evolution equation with u − vε leads us to

ε

∫
]s,t[

(du
dt
,

dvε
dt

)
dσ +

∫
]s,t[

a(u, u − vε) dσ = ε

∫
]s,t[

(
g,

dvε
dt

)
dσ.

Thus, by monotonicity of a,

ε

∫
]s,t[

(du
dt
,

dvε
dt

)
dσ +

∫
]s,t[

a(vε , u − vε) dσ ≤ ε
∫

]s,t[

(
g,

dvε
dt

)
dσ,

i.e., by using the differential equation, we get

ε

∫
]s,t[

(du
dt
,

dvε
dt

)
dσ + ε

∫
]s,t[

a
(
vε ,

dvε
dt

)
dσ ≤ ε

∫
]s,t[

(
g,

dvε
dt

)
dσ,

and, by integration,∫
]s,t[

(du
dt
,

dvε
dt

)
dσ +

1
2

a (vε(t), vε(t)) ≤
∫

]s,t[

(
g,

dvε
dt

)
dσ +

1
2

a(u(s), u(s)). (3)

Since by construction (see annex) vε converges to u in H1(s,T ; H) ∩ L2(s,T ; V) and, for
any t, vε(t) converges weakly to u(t) in V ,∫

]s,t[

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ +
1
2

a(u(t), u(t)) ≤
∫

]s,t[

(
g,

du
dt

)
dσ +

1
2

a(u(s), u(s)).

Moreover, u ∈ Cw([0,T ],V) and lim sup
t→s+

a(u(t), u(t)) ≤ a(u(s), u(s)). Then, u is continuous

from the right from [0,T [ to V .

Consider now 0 < t < t + ∆t ≤ T . Then,∫ t

0

(du
dt
,

u(σ + ∆t) − u(σ)
∆t

)
dσ +

∫ t

0
a
(
u(σ),

u(σ + ∆t) − u(σ)
∆t

)
dσ

=

∫ t

0

(
g(σ),

u(σ + ∆t) − u(σ)
∆t

)
dσ.

Thus,∫ t

0

(du
dt

(σ),
u(σ + ∆t) − u(σ)

∆t

)
dσ +

1
2∆t

∫ t+∆t

t
a(u(σ), u(σ)) dσ

≥
1

2∆t

∫ ∆t

0
a(u(σ), u(σ)) dσ +

∫ t

0

(
g(σ),

u(σ + ∆t) − u(σ)
∆t

)
dσ.



From the heat equation to the Sobolev equation 205

Therefore, the above remark yields∫ t

0

∣∣∣∣∣du
dt

(σ)
∣∣∣∣∣2 dσ +

1
2

a(u(t), u(t)) ≥
1
2

a(u0, u0) +

∫ t

0

(
g(σ),

du
dt

)
dσ.

Adding this to (3) with s = 0, we get (2) for any t ∈ [0,T [. Then, u ∈ Cw([0,T ],V) and
limt→s a(u(t), u(t)) = a(u(s), u(s)) yield u ∈ C([0,T [,V). We conclude the proof by remarking
that the same result holds for time T + 1 instead of T . �

Corollary 5. The same result holds if β , 0.

Proof. If u is a solution, then it is also the solution, for any v ∈ V and t a.e. in ]0,T [, of

d
dt

(u, v) + a(u, v) + β(u, v) = (g + βu, v), with u(0) = u0. (4)

Then, the result is just a consequence of the theorem. �

§6. Annex

Let us fix s ∈ [0,T [ and, for any positive ε, denote by vε the solution of the differential
equation

ε
dvε
dt

+ vε = u, for t > s, with vε(s, · ) = u(s), (5)

where u ∈ H1(s,T,H) ∩Cw([s,T ],V).

Lemma 6. As ε goes to 0+, vε converges to u in H1(s,T ; H)∩ L2(s,T ; V) and vε(t) converges
weakly to u(t) in V, for any t.

Proof. If vε is the solution of (5), then,

vε(t) = u(s)e(s−t)/ε +

∫ t

s

u(σ)
ε

e(σ−t)/ε dσ

and vε(t) is bounded in V , independently of t. Thus, by “multiplying in V” equation (5) by vε ,
we get that

ε
d
dt
‖vε‖

2 + ‖vε‖
2 ≤ ‖u‖2,

i.e.

ε‖vε(t)‖2 +

∫ t

s
‖vε‖

2 dσ ≤
∫ t

s
‖u‖2 dσ + ε‖u(s)‖2. (6)

Moreover, dvε/dt satisfies

ε
d2vε

dt2 +
dvε
dt

=
du
dt
, for t > s, with

dvε
dt

(s) = 0, (7)

where du/dt ∈ L2(s,T,H). Thus, by “multiplying in H” the above equation by dvε/dt, we
get that

ε
d
dt

∣∣∣∣∣dvεdt

∣∣∣∣∣2 +

∣∣∣∣∣dvεdt

∣∣∣∣∣2 ≤ ∣∣∣∣∣du
dt

∣∣∣∣∣2,
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i.e.

ε

∣∣∣∣∣dvεdt
(t)

∣∣∣∣∣2 +

∫ t

s

∣∣∣∣∣dvεdt

∣∣∣∣∣2 dσ ≤
∫ t

s

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ. (8)

As a first conclusion, there exists a positive constant C such that∣∣∣∣∣dvεdt

∣∣∣∣∣
L2(s,T,H)

≤ C; ∀t,
√
ε

∣∣∣∣∣dvεdt
(t)

∣∣∣∣∣ ≤ C, |vε(t) − u(t)| ≤ C
√
ε,

and vε converges weakly to u in H1(s,T,H) and strongly in C([s,T ],H).
Adding that vε(t) is bounded in V for any t, vε(t) converges weakly to u(t) in V for any t

and vε converges weakly to u in L2(s,T,V) (note that u is the only possible limit-point).
Then, on the one hand, (6) yields

lim sup
ε→0+

∫ t

s
‖vε‖

2 dσ ≤
∫ t

s
‖u‖2 dσ

and vε converges to u in L2(s,T,V). On the other hand, (8) yields

lim sup
ε→0+

∫ t

s

∣∣∣∣∣dvεdt

∣∣∣∣∣2 dσ ≤
∫ t

s

∣∣∣∣∣du
dt

∣∣∣∣∣2 dσ

and vε converges to u in H1(s,T,H). �
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