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SYMMETRY BREAKING BIFURCATIONS IN
A D4 SYMMETRIC HAMILTONIAN SYSTEM

Sławomir Piasecki, Roberto Barrio and Fernando Blesa
Abstract. In this work we investigate a numerical method to locate periodic orbits in
Hamiltonian systems of two degrees of freedom in a D4 and time reversal symmetric
Hamiltonian. The procedure to obtain the “skeleton” of periodic orbits is a combination
of several methods such as continuation theory, systematic search algorithm, Poincaré
surface of section and a fast chaos indicator, OFLI2. Those techniques are used to provide
a complete study of symmetry breaking bifurcations in a particular Hamiltonian system.
Moreover, we show in detail the evolution of some families of periodic orbits and an
analysis of new bifurcations.
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§1. Introduction

Periodic orbits (PO) and their stabilities are powerful tool in understanding of dynamical
systems. The studies of changes in the behavior of PO a can provide essential insights into
nature of simple integrable dynamics and complicated, chaotic dynamics. These knowledge
have considerably broad applications in physics (quantum eigen state studies [11]) and in
astrophysics (numerous problems of stellar and celestial dynamics, e.g., satellite orbits sta-
bilities, etc. Cf. [13]).

Bifurcation is nothing more than qualitative changes in the system’s asymptotic behavior
and the points where those changes appear are called Bifurcation Points (BP). Whereas, a
bifurcation of PO is when those changes affects on the stability of a equilibria or a PO. For
better understanding of the bifurcation we have to concentrate on the study of Periodic Orbits.
For instance at the period-doubling bifurcation a PO of period T jumps from stable to unstable
branch and simultaneously a new stable PO of period 2T is created.

A symmetry breaking bifurcation, appears when some perturbation with less symmetry
is added to symmetric system. In this note we consider the quartic homogeneous potential
system having a general form

H =
1
2

(X2 + Y2) +
1
4

(x4 + y4) + αx2y2 + β(x2 + y2), (1)

in terms of the Cartesian coordinates x, y and their conjugate momenta X,Y , α, β ∈ R. This
system is characterized by discrete symmetries and it is invariant under a rotation by π/4
(Fig. 1). This system was studied e.g. in [10] to find soliton solution in three space dimensions
and also in [7], where a direct method to identify integrable N-degree of freedom Hamiltonian
systems was described. The existence of large regions of chaotic orbits in parameter space in
the neighborhood of the degenerate bifurcation point was reported in [1].
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Figure 1: Contour plot of the potential

We choose this Hamiltonian system to create skeleton of periodic orbits and investigate
connection between them. Therefore, we set α = 1/4, β = −1, hence

H =
1
2

(X2 + Y2) +
1
4

(x2 + y2)2 − x2 − y2 −
1
4

x2y2. (2)

The dynamics of the Takens-Bogdanov bifurcation with D4 symmetry was studied by Ruck-
lidge [15], and he founded that a symmetry-breaking, period-doubling bifurcation and chaotic
sets with five symmetry types allows a quantitative description of the bifurcation sequence
were stability is assigned from one subspace to the another.

This Hamiltonian system (2) can be explored for the largest number of orbits. For in-
stance, at Poincaré surface of section our computations include up to 70 × 70 = 4900 orbits,
however with chaos indicator we compute even with 700 × 700 = 562500 orbits for different
energy E.

§2. Numerical techniques

Our goal was to find families of periodic orbits and to create the skeleton of periodic orbits
in the Hamiltonian system with D4, and time-reversal symmetries. For that we use set of
numerical techniques that are introduced in this section.

First tool is based on continuation theory implemented in the software AUTO created by
[9], that handles continuation and bifurcation problems in ordinary, differential equation [14].
Not only it prevents the continuation of the solution curve irrespective of the direction of this
curve, but also it allows to detect and follow vertical solution branches. A disadvantage of
this technique is that initial computation requires a well defined periodic orbit, without it we
are not able to obtain the complete family of periodic orbits nor bifurcations points on it. For
further studies two families were chosen (Fig. 5).

To define initial condition systematic search algorithms were used [5]. This technique
was developed based on the Brent’s method and the Taylor series method that permits to
compute the orbits using extended precision. This technique contains several steps, starting
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with computing of the Poincaré map. The manifold was chosen to be transverse to all orbits,
therefore we choose y = 0, ẋ = 0 and ẏwas obtained from Hamiltonian constant. Considering
an orbit which starts at position perpendicular to the x-axis(

x(0), y(0), ẋ(0), ẏ(0)
)

= (x0, 0, 0, ẏ(0)), (3)

and crosses the x-axis again perpendicularly, then the orbit is closed and symmetric. We de-
fine a new cross at the half period T of the orbit which is perpendicular to the x-axis. Next
step in the method is giving a mesh in the parameter and variable space (x −H plane). Com-
plete set of initial conditions is specified by a value of x and H . By integrating numerically
each set of initial conditions we obtain Poincaré map for a given multiplicity (for more details
see, [5]).

Next technique that was used in this work is chaos indicator OFLI2, that is an interest-
ing alternative to the standard Poincaré sections, to distinguish among periodic, regular and
chaotic orbits [4]. With the second order variational equations, numerical ODE integrator
and a specially developed Taylor method [3] gives a fast and accurate numerical integration.
The OFLI2 is looking for a set of initial conditions where we may expect strong dependence
on initial conditions. The OFLI2 indicator at the final time t f is given by

OFLI2 B sup
0<t<t f

log
∥∥∥∥∥{δy(t) +

1
2
δ2y(t)

}⊥∥∥∥∥∥, (4)

where δy(t) and δ2y(t) are the first and second order sensitivities with respect to carefully
chosen initial vectors and y⊥ stands for the component of y orthogonal to the flow [4]. The
above description gives us the value of the OFLI2 for a particular orbit for a given set of initial
conditions. The OFLI2 picture is describing the global dynamical properties of the system
when Poincaré section does only for local multiplicity.

In Fig. 3 we compare the evolution of the OFLI2 for the system with energy E = 2.0
and E = 2.5 on the surface y = 0, with Poincaré section. Note that OFLI2 gives much more
information than the Poincaré section and locates the periodic orbits and the chain of regular
islands inside the chaotic area (see magnification), where the Poincaré maps instead gives a
cloud of points.

§3. Bifurcation

In this section we present a study of the bifurcation points of the dynamical system using
the Monodromy Method ([2, 8]). 4 × 4 matrix (M) provides full information about periodic
trajectories and can be represented as a first order variational equation

Ṁ = K · Hess(H(q, p)) · M. (5)

For T = 0 we can simplify (5) to M(0) = I4, which is four dimensional identity matrix, K
is canonical sympletic matrix and Hess(H(u)) is the Hessian matrix of H with respect to u.
Characteristic multipliers of the fixed point (eigenvalues of M), can be use to study linear
stability of the system. From now on, the multipliers will be denoted by λi (i = 1 . . . 4) and
are in reciprocal pairs

λ1 λ2 = 1, λ3 λ4 = 1. (6)
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Figure 2: Typical bifurcations for local multiplicity m = 1.

That is possible, because system is Hamiltonian and the monodromy matrix M is a real sym-
plectic matrix. Also, complex eigenvalues are in conjugated pairs. In the work we are using
definition of stability index introduced by [12] in a form

κ B κ(M(T )) = Tr (M(T )) − 2, (7)

were three cases can be distinguished:

• |κ| < 0, periodic orbit is stable,

• |κ| > 0, periodic orbit is unstable (λ3, λ4 are real),

• |κ| = 2, appear special point where stability may change.

The bifurcation point among the family of periodic orbits appears when κ = λ3 + λ4 =

2 Re(λ3,4) = 2.
The most typical bifurcation called saddle-node bifurcation (Fig. 2) is an example of cre-

ating new families of periodic orbits, (apart from the boundaries of the domain of definition
of the Poincaré map). This special point is a place where two branches (stable and unstable)
met and annihilate (or create).

Since our system have symmetries two more types of the bifurcation points can be de-
tected pitchfork and antipitchfork (Fig. 2). The former appears when stable family changes
to unstable branch and in the same point two new stable branches are created. For antip-
itchfork is opposite, basic family is unstable and jumps into stable branch and two unstable
families are created. In all the cases of the bifurcated families a symmetry lost compare to
main family.

A 4-islands chain of isochronous bifurcation was also detected in the system. In this
case, the main family after bifurcation point remains in the stable branch and four new stable
families are created (see [6]).
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3.1. Bifurcation on the system

The focus of this study is pitchfork and 4-islands chain of isochronous bifurcation points.
We compare two maps with different energy value E1 = 2.5 (before BP, left) and E2 = 2.0
(after BP, right); Fig. 3. From the maps we know that we start with a stable family and after
bifurcation point the main family jumps into unstable branch and two new stable families are
created, this can be seen on top of figure, where OFLI2 results are plotted. Those families are
also in the skeleton of periodic orbits obtained from AUTO (fig. 4a). If we compare projected
orbits from the main family (Fig. 4b) with orbits from the new families we can see that orbits
projected into the xy plane, lose one symmetry with respect to y-axis.

The 4-islands chain of isochronous bifurcation is special bifurcation that appears in the
symmetric systems Fig. 4c. We project five different periodic orbits from each family. One
orbit represents orbit at BP and we see that it is symmetric with respect to x-axis and y-axis,
and other orbits loose one of the symmetry. Plot on Fig. 4c contains two bifurcated families,
each one consists of two branches. Notice that a orbits from opposite branches have the same
shape and are shifted by 180◦ relative to each other.

§4. Connection symmetric and asymmetric families of periodic orbits

To study the evolution of a periodic orbits along a family we choose two different families
(symmetric and asymmetric). In the symmetric family (Fig. 5), we start the evolution from
a point close to extreme (x = 0, E = 0) and moving clockwise. The family that starts
with highly eccentricity decreases until reaching the highest energy where eccentricity is the
lowest. This family was found to have only one perpendicular intersection with y-axis, so the
evolution runs symmetrically. Moreover, along the family we can see that stability changes
several times, at those points we have bifurcation points (Fig. 5c). The plot presenting how
the orbits change along the families are in the figures (5a, 5d).

From the main symmetric family we choose two bifurcation points and we found two
new asymmetric families of periodic orbits (Fig. 5e). Those branches finished at the extreme
(x = 0, E = 0) and are symmetric with respect to x-axis and y-axis. The study of the
evolution of this family we start from BP and we decrease value of parameter y. The orbit
begins with symmetry with respect to both axis, but the farther we are from bifurcation point,
the more significant asymmetry is (Fig. 5f).

In conclusion, we have shown a procedure to obtain skeleton of PO. We have started
with creation of a initial conditions using the systematic search with fixed multiplicity. Then
those results were used to create the skeleton, which consists of symmetric and asymmetric
families of PO. We found also some special bifurcations (the 4-islands chain of isochronous
bifurcation) and shown in details the evolution of some families of PO.
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Figure 3: OFLI2 (top) and Poincaré surface of section (bottom), before (left) and after (right)
bifurcation point (pitchfork bifurcation), projected on xX plane.
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Figure 4: Skeleton of periodic orbits close to pitchfork bifurcation ((a) green and red cor-
respond respectively to stable and unstable family ), next to it there are orbits projected on
plane xy (b). Outline of 4-islands chain of isochronous bifurcation (c), dots represents orbits
projected on xy plane (e). In the middle (d) we got skeleton obtained from AUTO.
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Figure 5: Evolution of symmetric (a,b,c) and asymmetric (d,e,f) periodic orbits. Main graphs
shows (a,d), evolution of periodic orbits along the family in three dimension. The main family
is plotted on figures b and e (black). Blue dots represent chosen orbits projected on the plane
xy (c, f). Colors on plots corresponds to stability of orbits, red unstable and green stable.
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