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1D NUMERICAL SIMULATION
FOR NONLINEAR

PSEUDOPARABOLIC PROBLEMS
Robert Luce, Ngonn Seam and Guy Vallet

Abstract. In this paper, we are interested in the numerical simulation of a pseudo-
parabolic fully-nonlinear equation with a nonlinear term of Barenblatt’s type. We are
exactly interested in the illustrations of the solution of the boundary-value problem: find
u such that

f (ut) − div {a(u)∇u + b(u)∇ut} = g.

The mathematical analysis of a close problem and its simulation have recently been stud-
ied by S. N. Antontsev et al. [3] when f = IdR and the existence result has been gen-
eralized by N. Seam and G. Vallet in [8]. We propose in particular simulations of the
nonlinear problem of the Barenblatt’s type: f (ut) − ∆u − ε∆ut = g (see [1]).
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§1. Introduction

In this paper, we deal with the 1D numerical simulation to the fully-nonlinear pseudopara-
bolic problem:

f
(
∂u
∂t

)
−
∂

∂x

{
a(u)

∂u
∂x

+ b(u)
∂

∂x

(
∂u
∂t

)}
= g in Q, u|Γ = 0 and u(0, ·) = u0, (1)

where f is a Lipschitz-continuous and increasing function, a is Lipschitz-continuous and
bounded and b is a positive Lipschitz-continuous and bounded function.

Problems close to that one have been previously studied by S. N. Antontsev et al. [3]
for stratigraphic models by the way of an implicit time-discretization, and has recently been
generalized by N. Seam and G. Vallet in [8] by the same way (see [6, 7] too). The existence
of the solution at each step of the discretized scheme is based on Schauder-Tikhonov’s fixed
point theorem and the convergence of the scheme on an adapted compactness argument.

Our aim is then to illustrate the solution of the above problem by a standard P1-finite
element method in space and an implicit time discretization. In particular, we are interested in
the pseudoparabolic singular perturbation when the molecular diffusion changes sign. To do
this, we have modified the codes developed by Alberty [2] for the diffusion-reaction problem.

Let us denote by Ω = ]xl, xr[ a bounded interval of R, T a positive number and assume
the following assumptions:
(H1) a and b are Lipschitz continuous functions over R such that

∃β,M > 0, ∀u ∈ R, |a(u)| ≤ M, β ≤ b(u) ≤ M.
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(H2) f is a Lipschitz continuous and nondecreasing function over R.

(H3) g ∈ L2 (Q) and u0 ∈ H1
0(Ω).

Then, one would say that

Definition 1. A solution of the problem (1) is u ∈ H1
(
0,T ; H1

0(Ω)
)

such that for all v ∈ H1
0(Ω)

and t ∈ ]0,T [ a.e.,∫ xr

xl

{
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}
dx =

∫ xr

xl

gv dx

with the initial condition u(0, · ) = u0.

Let us recall a theorem concerning the existence and uniqueness:

Theorem 1 (N. Seam and G. Vallet [8]). Under hypotheses (H1), (H2) and (H3), there exists
u in H1

(
0,T,H1

0(Ω)
)

such that for all v in H1
0 (Ω) and t almost everywhere in ]0,T [,∫ xr

xl

{
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}
dx =

∫ xr

xl

gv dx with u(0, ·) = u0 (2)

§2. 1D finite elements formulation

Let us remark that the problem can be strongly non linear and generally the explicit formula-
tion fails because of very restrictive conditions of C.F.L type. So, an implicit formulation has
been chosen to obtain solutions with reasonable time steps.

For any Nt ∈ N
∗ and all k ∈ [0,Nt], let us denote by ∆t = T/Nt and tk = k∆t. Thus, the

implicit time discretization of the problem (2) is: find uk+1 in H1
0 (Ω) for a given uk in H1

0 (Ω)
such that, for any v ∈ H1

0(Ω),∫ xr

xl

f
(

uk+1 − uk

∆t

)
v dx +

∫ xr

xl

a
(
uk+1

) ∂uk+1

∂x
∂v
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+
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xl

b
(
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) ∂
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(
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∆t

)
∂v

∂x
dx =

∫ xr

xl

gk+1vdx, k ∈ [0,Nt − 1],

where gk+1 is an approximation of g at time tk+1.
The formulation can be written∫ xr

xl

f
(

uk+1 − uk

∆t

)
v dx +

∫ xr

xl

[
a
(
uk+1

)
+

1
∆t

b
(
uk+1

)] ∂uk+1

∂x
∂v
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dx

−
1
∆t

∫ xr

xl

b
(
uk+1

) ∂uk

∂x
∂v

∂x
dx −

∫ xr

xl

gk+1v dx = 0, k ∈ [0,Nt − 1] . (3)

Now, for any Nx ∈ N, denote by h = ∆x = (xr − xl)/(Nx + 1) for a uniform mesh with
x0 = xl, and xNx+1 = xr. Thus xi = x0 + ih for i ∈ [0,Nx + 1]. We construct the finite
dimensional space Vh formed of linear piecewise polynomials:

Vh =
{
vh ∈ H1

0 (Ω) ; vh|[xi,xi+1] ∈ P1, 0 ≤ i ≤ Nx; vh (xl) = vh (xr) = 0
}
.
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Clearly, Vh = span
{
φ1, φ2, . . . , φNx

}
, where the φi’s are the hat functions, and dim Vh = Nx.

By using Vh in place of H1
0(Ω), the approximation by the finite element of the problem (3)

can be written: find uk+1
h ∈ Vh for a giving uk

h ∈ Vh such that for all vh ∈ Vh
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f
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gk+1vh dx = 0, k = 0, 1, . . . ,Nt − 1,

For k ∈ [0,Nt], inserting uk+1
h =

∑Nx
j=1 uk+1

j φ j with a given approximation u0
h =

∑Nx
j=1 u0

jφ j of u0
and using, for i ∈ [1,Nx], that φi as an admissible test function, we get the nonlinear system

∫ xr

xl

f
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h
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 φi dx −
1
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∫ xr
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b
(
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) (
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)
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)′
φ′i dx −

∫ xr

xl

gk+1φi dx = 0, k ∈ [0,Nt] , i ∈ [1,Nx] .

The nonlinear system can be usually solved by the Newton Raphson method (cf. [4, 9] ).
In this case, for k ∈ [0,Nt], we denote by Uk+1

h =
(
uk+1

1 , uk+1
2 , . . . , uk+1

Nx

)T
and we introduce the

function F : RNx → RNx , Uk+1
h 7→ Fi

(
Uk+1

h

)
for [1,Nx], defined by the formula
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(
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h

)
=
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f
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 φi dx −
1
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(
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) (
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φ′i dx

+

∫ xr
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a (
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h

)
+

b
(
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h

)
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 (uk+1
h

)′
φ′i dx −

∫ xr

xl

gk+1φi dx.

Thus, we have to solve the nonlinear system F
(
Uk+1

h

)
= 0, where 0 ∈ RNx , by the Newton

Raphson algorithm (see [4], [5] and [9] for the details):

1. For k ∈ [0,Nt], we initialize the vector Uk
h,

2. then, we compute Uk+1
h , solution to the linear system in the Newton method,

3. we give a initial estimation Uk+1,0
h of Uk+1

h ,

4. for ` = 0, 1, 2, . . . , `max, we compute ∆Uk+1,`
h , solution to the linear system

F′
(
Uk+1,`

h

)
∆Uk+1,`

h = −F
(
Uk+1,`

h

)
,

where F′
(
Uk+1,`

h

)
is the Jacobian of F at point Uk+1,`

h ,

5. we finally let Uk+1,`+1
h = Uk+1,`

h + ∆Uk+1,`
h .
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By definition of the Jacobian,
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Thus, we can compute the coefficient matrix and the right-hand side matrix.

§3. Numerical simulations

In this section, we illustrate the solution to the problem (1) with different given data. In the
following examples, ]xl, xr[ = ]−π, π[ and

• either u0 = 0 and g(t, x) = 1 if x ∈ [π/4, π/2], g(t, x) = −1 if x ∈ [−π/2,−π/4],
g(t, x) = 0 otherwise (configuration 1),

• or u0(x) = 4x/π if x ∈ [−π/4, π/4], u0(x) = 2−4x/π if x ∈ ]π/4, π/2], u0(x) = −2−4x/π
if x ∈ [−π/2,−π/4[, u0(x) = 0 otherwise, and g(t, x) = 0 (configuration 2).

3.1. Linear pseudoparabolic equation or Sobolev’ equation

Here, f (r) = r, a(r) = 1 and b(r) = τ with τ = 0, 1/2, 1 and 5. We present the simulation of
configuration 1 (i.e. u0 = 0) in Figure 1 and that of Configuration 2 (i.e. u0 , 0) in Figure 2.

Remark first that the pseudoparabolic perturbation slows down the evolution of the sys-
tem. The second remark concerns the space regularity of the solution for t > 0: in the
pseudoparabolic case, the initial condition fixes the regularity of the solution. Indeed, the
first step in the time-iteration solves the elliptic problem: u − (∆t + τ) ∆u = ∆tg + u0 − τ∆u0.
Consequently, if τ > 0 and if u0 is in H1

0(Ω), it will be the same for the solution u.
In Figures 3 and 4, we illustrate the same problem unless b where b(r) = 0.1 if r < 0,

b(r) = k else. We can see the dissymmetry of the solution.

3.2. Nonlinear pseudoparalolic equation

In Figures 5 and 6, f (r) = r, a(r) = arctan(r) and b(r) = τwhere τ = 0.1, 0.2, 0.5, 1. Since the
sign of a changes, we observe diffusive and anti-diffusive effects illustrated by a convergence
to a Dirac mass, especially for small ε.
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Figure 1: ∂tu − ∂2
xxu − τ∂3

xxtu = g with u0(x) = 0, τ = 0, 1/2, 1, 5.

Figure 2: ∂tu − ∂2
xxu − τ∂3

xxtu = 0 with u0(x) , 0, τ = 0, 1/2, 1, 5.
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Figure 3: ∂tu − ∂2
xxu − τ∂3

xxtu = g with u0(x) = 0, b(r) = τr+ − 0.1r−, τ = 0, 1/2, 1, 5.

Figure 4: ∂tu − ∂2
xxu − τ∂3

xxtu = 0 with u0(x) , 0, b(r) = τr+ − 0.1r−, τ = 0, 1/2, 1, 5.
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Figure 5: ∂tu − ∂x[arctan(u)∂xu] − τ∂3
xxtu = g with u0 = 0, τ = 0.1, 0.2, 0.5, 1.

Figure 6: ∂tu − ∂x[arctan(u)∂xu] − τ∂3
xxtu = 0 with u0 , 0, τ = 0.1 and small times.
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Figure 7: f (∂tu) − ∂2
xxu − τ∂3

xxtu = g with u0(x) = 0, τ = 0, 1/2, 1, 5.

3.3. Barenblatt’s Equation

In Figures 7 to 10, f (r) = r/10 if r > 0 and f (r) = 10r otherwise, a(r) = 1 and b(r) = τ with
different values of τ = 0.1, 0.2, 0.5, 1. The two configurations are illustrated, as well as the
asymptotic behaviour.

Note that, in spite of odd data, x 7→ u(t, x) is not a odd function any more if t > 0.
Indeed, for negative x, t 7→ u(t, x) is an increasing function. Thus, the equation is formally
∂tu − 10 ∆u − 10ε∆∂tu = 10g. Else, for positive x, t 7→ u(t, x) is a decreasing function. Thus,
the equation is formally ∂tu − 1

10 ∆u − ε
10 ∆∂tu =

g
10 .
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