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REDUCTION OF GIBBS PHENOMENON
FOR 1D RBF INTERPOLATION
Diego Izquierdo, María Cruz López de Silanes

and María Cruz Parra

Abstract. The Gibbs phenomenon can be observed in different interpolation methods.
Radial basis functions (RBF) is a modern meshfree interpolation technique in any number
of dimensions. Here we investigate the Gibbs phenomenon for 1D RBF interpolation
numerically, and propose a procedure to reduce Gibbs oscillations using nonsmooth basis
functions locally. The accuracy in the smooth region is enhanced by applying piecewise
linear basis functions in the proximity of discontinuity.
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§1. Introduction

Radial basis functions interpolation is a modern meshfree technique in any number of dimen-
sions collected in [7] and introduced by Hardy using multiquadrics [5].

Gibbs phenomenon is the peculiar manner in which the Fourier series of a function f be-
haves at a jump discontinuity. The overshoot does not die out as the frequency increases, but
approaches a finite limit. Gibbs phenomenon can also be observed in different interpolation
methods. Fornberg and Flyer [3] perform cardinal interpolation for discontinuous functions
with centers x j = j ∈ Z and study expansion coefficients for some RBFs. Guessab, Mon-
cayo and Schmeisser [4] define a class of nonlinear four point subdivision schemes. These
schemes include as a particular case the PPH scheme (or power-2 scheme) previously studied
by Amat, Donat, Liandrat and Trillo [1]. The general schemes, by using generalized harmonic
means, reduce the Gibbs phenomenon around jump discontinuities, as occurs with power-2
scheme. Their properties (e.g. stability, convexity preservation, approximation order) are
more balanced than those of the power-p schemes.

Jung [6] makes a complete study of RBF interpolation on R of step function with uni-
formly distributed centers in [−1, 1] and uses multiquadric with shape parameter, γ, Φ(x) =√
|x|2 + γ2. Jung proposes a method to reduce Gibbs phenomenon adapting shape parameter,

i.e. to define γ = 0 at centers next to discontinuity. Actually, multiquadric is changed by
linear RBF at these centers. Here, our aim is to describe a similar interpolation technique that
eliminates oscillations next to discontinuity, using different RBFs.

This paper is divided into the following sections. In Section 2, we establish the necessary
notations and preliminaries for RBF interpolation on Rd, a technique described in [7]. In
Section 3, we consider an interpolation example of the discontinuous function studied in [6].
First, we study local performance of interpolation with two centers and then interpolation
with N centers uniformly distributed in [−1, 1]. We use RBFs of [2, Appendix D] to obtain
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interpolant features for different step functions and two other functions. Finally, in Section 4,
we develop a local piecewise linear interpolation for discontinuous functions using different
RBFs to reduce the Gibbs oscillations in the vicinity of the discontinuity. This technique
adapts and expands the method described in [6] to most RBF of [2, Appendix D]. Then, this
technique is applied to some examples presented in the previous section. We finish the section
obtaining some errors for an example in [4] and compare these results with those given there.
The numerical and graphical examples presented in this paper have been executed using
Mathematica 8.0.

§2. RBF interpolation

Definition 1. A function Φ : Rd → R is said to be radial if there exists a continuous function
φ : [0,+∞)→ R such that Φ(x) = φ(‖x‖2) for all x ∈ Rd.

Let N ∈ N. We interpolate an unknown function f : Ω ⊆ Rd → R, with data values
F = ( f1, . . . , fN)> at given data sites X = {x1, . . . , xN} ⊆ Ω, the set of centers, so that we look
for an interpolant as

s f ,X(x) =

N∑
j=1

α jΦ(x − x j), x ∈ Rd,

with expansion coefficients vector, α = (α1, . . . , αN)>, so that the interpolation conditions are
verified

s f ,X(x j) = f j, 1 ≤ j ≤ N. (1)

Let AΦ,X = (Φ(x j − xk))1≤ j,k≤N be the interpolation matrix. If there exists a unique solution of
the system

AΦ,Xα = F,

then s f ,X will be defined.
Definition 2. A function Φ : Rd → R is positive definite on Rd if, for all N ∈ N, all pairwise
distinct x1, . . . , xN ∈ R

d and all α ∈ RN \ {0}, the quadratic form
N∑

j=1

N∑
k=1

α jαkΦ(x j − xk)

is positive.
By definition AΦ,X is symmetric. If it is positive definite, then the interpolant will be

defined. In this way, we can also say that Φ is positive definite when the interpolation matrix
AΦ,X is positive definite.

Not every RBF used for interpolation is a positive definite function, although the corre-
sponding quadratic form is positive for some expansion coefficients. In general, RBF inter-
polation uses a conditionally positive definite function of some order.
Definition 3. Let m ∈ N. A function Φ : Rd → R is conditionally positive definite of order
m on Rd if, for all N ∈ N, all pairwise distinct x1, . . . , xN ∈ R

d and all α ∈ RN\{0} satisfying
N∑

j=1

α j p(x j) = 0
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Figure 1: Two positive definite functions on R.
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Figure 2: Three conditionally positive definite functions on R.

for all real-valued polynomials of degree less than m, the quadratic form

N∑
j=1

N∑
k=1

α jαkΦ(x j − xk)

is positive.

For any m ∈ N, we denote by πm−1(Rd) the space of polynomial functions defined over
Rd of degree ≤ m − 1 with respect to the set of variables. If we want to interpolate f using a
conditionally positive definite function of order m, we will look for an interpolant of the form

s f ,X(x) =

N∑
j=1

α jΦ(x − x j) +

Q∑
k=1

βk pk, x ∈ Rd, (2)

where {p1, . . . , pQ} is a basis of the polynomial space πm−1(Rd).
The coefficients α = (α1, . . . , αN)> and β = (β1, . . . , βQ)> in (2) are uniquely determined

by (1) and the additional conditions

N∑
j=1

α j pk(x j) = 0, 1 ≤ k ≤ Q.
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If we define the matrix P = (pk(x j)) ∈ RN×Q, α and β will be the solution of the system(
AΦ,X P
P> 0

) (
α
β

)
=

(
F
0

)
.

In this paper, we consider the RBF interpolation on R, i.e. for the case d = 1. For more
details and proofs, revise [7].

§3. Interpolation of a discontinuous function

In this section, we study features of an interpolant s f ,X for a piecewise function

f (x) =

 f1(x), −1 ≤ x < 0,
f2(x), 0 < x ≤ 1,

(3)

with f1 and f2 continuous, and such that it has a finite jump discontinuity at xc = 0, i.e.
| f + − f −| , 0, where f − = limx→0− f (x) and f + = limx→0+ f (x).

First we present a study of RBF interpolation with two centers near discontinuity and then
we make a general study with N centers in [−1, 1].

3.1. Local performance of interpolation
We now select two centers in a small neighbourhood of the discontinuity. Let X = {−δ/2, δ/2}
for δ > 0. Most RBFs produce a strictly monotone interpolant sδ(x) defined in [−δ/2, δ/2].
By definition, sδ(x) is continuous, so we can then evaluate it at xc = 0:

• If Φ is positive definite, we will get as interpolant

sδ(x) = α1Φ(x + δ/2) + α2Φ(x − δ/2),

where

α1 =
f (δ/2)Φ(δ) − f (−δ/2)Φ(0)

Φ2(δ) − Φ2(0)
and α2 =

f (−δ/2)Φ(δ) − f (δ/2)Φ(0)
Φ2(δ) − Φ2(0)

.

Then
sδ(0) = ( f (δ/2) + f (−δ/2))

Φ(δ/2)
Φ(δ) + Φ(0)

.

• If Φ is conditionally positive definite of order one, we will get as interpolant

sδ(x) = α1Φ(x + δ/2) + α2Φ(x − δ/2) + β1,

where
α1 =

f (δ/2) − f (−δ/2)
2(Φ(δ) − Φ(0))

= −α2 and β1 =
f (−δ/2) + f (δ/2)

2
.

Then
sδ(0) =

f (δ/2) + f (−δ/2)
2

.
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Figure 3: sδ(x), with δ = 1/2, for f1(x) = −1 and f2(x) = 1.

• If Φ is any conditionally positive definite of order two, we will get as interpolant

sδ(x) = α1Φ(x + δ/2) + α2Φ(x − δ/2) + β2x + β1,

where

α1 = 0 = α2, β1 =
f (δ/2) + f (−δ/2)

2
and β2 =

f (δ/2) − f (−δ/2)
δ

.

Then
sδ(0) =

f (δ/2) + f (−δ/2)
2

.

Let us observe that, if Φ is any conditionally positive definite function of a higher order,
we will not get a unique interpolant. In Figure 3, we show interpolants sδ(x), with δ = 1/2,
for the fuctions φ1, φ2, φ3 and φ4 defined in Figures 1 and 2, with f1(x) = −1 and f2(x) = 1.
The graphic shows that interpolants are strictly increasing and sδ(0) = 0.

3.2. Interpolation with N centers
We reduce interpolation study to an even number N of centers X = {x1, . . . , xN}, but the same
results are obtained for an odd N.

We consider that centers are uniformly distributed in [−1, 1], that is, for j = 1, . . . ,N,
x j = −1 + 2( j − 1)/(N − 1) . Discontinuity exists at xc =

(
xN/2 + xN/2+1

)
/2 = 0. Any RBF

used to interpolate produces a continuous interpolant s f ,X , defined in Section 2. For most
RBFs of [2, Appendix D], s f ,X has the same features. We have obtained lots of examples,
using the mentioned RBFs, for different step functions and functions in Example 2. The next
two examples show the interpolant features.
Example 1. Let f be given by (3) with f1(x) = −1 and f2(x) = 1. We interpolate it with N =

4, 16, 32, 64 and 128, using the RBFs φ2, φ3, φ̃(r) = φ4(
√

50r) and φ5 (see Figure 4). We have
modified φ4 to get good interpolation matrices in the sense that Mathematica is able to solve
the associated systems. We observe that s f ,X is strictly increasing in (xN/2, xN/2+1). In addtion,
φ3-interpolants do not present oscillations near the discontinuity. In fact, by definition of f in
this example, Jung [6] shows that any φ3-interpolant is

s f ,X(x) =


−1, x < xN/2,

(N − 1)x, xN/2 ≤ x ≤ xN/2+1,

1, x > xN/2+1.
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Figure 4: Interpolants of the function f given in Example 1. The used RBFs are φ2 in (a), φ3
in (b), φ̃ in (c) and φ5 in (d).

Example 2. We consider the two non-step functions

g1(x) =

sin x, x < 0,
cos x, x > 0,

and g2(x) =

log(1 − x), x < 0,
0.5(x − 0.5)3, x > 0,

and we interpolate them with N = 4, 16, 32, 64, and 128 centers. The function g1 has also
been considered in [6].

Figure 5 shows several interpolants of g1 and g2, using φ3 as RBF. These interpolants
do not present oscillations. They are polygonal functions with vertices at (xi, f (xi)) for i =

1, . . . ,N, and so they are not differential functions at vertices. Therefore, φ3-interpolants are
not good approximations of functions. In Figure 6, we show interpolants of g1 on top and of
g2 on the bottom. We use φ̃ at (a) and (d), φ2 at (b) and (e), and φ5 at (c) and (f).

Numerical experiments for not oscillatory differentiable RBFs of [2, Appendix D] yield
interpolants with the same features:

• The interpolant of f has oscillations near xc. Oscillations do not disappear even for high
values of N, Gibbs phenomenon, but increase up to a limit. Maximum oscillations are
located in (xN/2−1, xN/2) and (xN/2+1, xN/2+2).

• s f ,X is a strictly increasing monotone function in (xN/2, xN/2+1) if f (xN/2) < f (xN/2+1)
and strictly decreasing if f (xN/2) > f (xN/2+1).

• The expansion coefficient αi is related to the center xi, for i = 1, . . . ,N. Taking centers
each time close to xc the absolute values of associated expansion coefficients become
much bigger than at the boundary.
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Figure 5: φ3-interpolants of the functions g1 (left) and g2 (right) given in Example 2.

Now we define a rate R to measure maximum oscillation on the right of discontinuity. Let
s? be the value of the interpolant at maximum oscillation located in (xN/2+1, xN/2+2). For step
functions f with f1(x) = f − and f2(x) = f +, we define the ratio R between the maximum
absolute value of over/under-shoots and the jump discontinuity by

R =
|s? − f +|

| f + − f −|
. (4)

We consider different step functions and compute R, i.e. oscillations performance, with
different RBFs, number of centers and jump discontinuities. Table 1 collects this information
and shows that maximum oscillation limit depends on the discontinuity jump and the RBF
used, for a given N. Values of Table 1 point out that R is a relative measure of the maximum
oscillation since R is invariant for fixed N and RBF. This means that R does not depend on
the jump discontinuity for fixed N and RBF. Looking through Table 1, we can affirm that the
interpolation using Φ5 produces a maximum oscillation limit about 8% of jump.
Remark 1. All results in this section could also be obtained for any interval and with a dis-
continuity at another point.

§4. Local piecewise linear interpolation

In the previous section, we have described the behaviour of the interpolant s f ,X of a function
with a discontinuity for N centers uniformly distributed. The interpolant does not reproduce
the discontinuity of function and the Gibbs phenomenon appears.

Anyway, we observe a special performance of interpolant using φ3 as RBF: s f ,X has no
oscillation because it is a piecewise linear function.

Looking through Fornberg’s paper [3], we confirm that RBF expansion coefficients are
bigger near discontinuity. Moreover, Jung [6] gives a method to eliminate oscillations of
interpolant using multiquadrics. Jung’s paper adapts the interpolation by changing the shape
parameter of multiquadrics, γ = 0, at centers with expansion coefficients in absolute value
bigger than that at the boundary. This is changing multiquadric by linear RBF, φ3. We realize
that it is enough to change RBF at centers next to the discontinuity: xN/2 and xN/2+1. We can
eliminate oscillations using φ3 only at those centers and most RBFs of [2, Appendix D] at the
other centers.
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Figure 6: Interpolants sg1,X (top row) and sg2,X (bottom row). The used RBFs are φ̃ in (a) and
(d), φ2 in (b) and (e), and φ5 in (c) and (f).

RBF ( f −, f +) N = 4 N = 16 N = 32 N = 64 N = 128
Φ2 (−1, 1) 0.07269 0.10546 0.10538 0.10540 0.10545

(0, 1) 0.07269 0.10546 0.10538 0.10540 0.10545
(−1.5, 1.5) 0.07269 0.10546 0.10538 0.10540 0.10545
(−0.4, 0.4) 0.07269 0.10546 0.10538 0.10540 0.10545

Φ̃ (−1, 1) 0.05727 0.11899 0.13324 0.13877 0.14041
(0, 1) 0.05727 0.11899 0.13324 0.13877 0.14036

(−1.5, 1.5) 0.05727 0.11899 0.13324 0.13877 0.14055
(−0.4, 0.4) 0.05727 0.11899 0.13324 0.13877 0.14029

Φ5 (−1, 1) 0.07740 0.08046 0.08046 0.08046 0.08046
(0, 1) 0.07741 0.08046 0.08046 0.08046 0.08046

(−1.5, 1.5) 0.07740 0.08046 0.08046 0.08046 0.08046
(−0.4, 0.4) 0.07740 0.08046 0.08046 0.08046 0.08046

Table 1: Values of R for different RBF, ( f −, f +) and N
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Figure 7: Interpolants s̃g1,X (top row) and s̃g2,X (bottom row). The used RBFs are φ̃ in (a) and
(d), φ2 in (b) and (e), and φ5 in (c) and (f).

In the conditions described in Section 3, we seek an interpolant s̃ f ,X , using φ3 at centers
next to discontinuity, of the form

s̃ f ,X(x) =

N∑
j=1

j,N/2,N/2+1

α̃ j φ(|x − x j|) +

2∑
j=1

α̃N/2−1+ j |x − xN/2−1+ j| +

m̃∑
k=1

λk pk, x ∈ R,

where {p1, . . . , pm̃} is a basis of the polynomial space πm̃−1(R). The coefficients α̃1, . . . , α̃N

and λ1, . . . , λm̃ are determined by (1) and the additional conditions

N∑
j=1

α̃ j pk(x j) = 0, 1 ≤ k ≤ m̃.

We use m̃ = 1 for Φ positive definite and m̃ = m for Φ conditionally positive definite of order
m. Finally we add the constant needed by the linear RBF φ3.

Next, we present two examples. Example 3 shows graphical behaviour of this method
for two functions studied in the previous section. Example 4 provides some errors at some
distance from discontinuity to show the fitting of the new interpolant.

Example 3. We apply this technique to Example 2 to eliminate oscillations of the interpolants
in Figure 6. In Figure 7, we observe that the oscillations are eliminated and interpolants
fit better to the function at [−1, xN/2] ∪ [xN/2+1, 1]. This technique eliminates oscillations
because we get an interpolant that is a straight line by (xN/2, f (xN/2)) and (xN/2+1, f (xN/2+1))
in [xN/2, xN/2+1].
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RBF x = −41
46 x = −24

46 x = −8
46 x = −7

46 x = −5
46 x = −4

46 x = −3
46 x = 0

φ̃1(r) = φ1(4.1r) 1.95e−4 2.00e−5 7.21e−6 3.16e−6 5.07e−6 1.97e−5 3.02e−5 8.16e−5

φ̃2(r) = φ2(1.3r) 1.12e−3 3.41e−6 2.30e−4 1.79e−4 1.16e−4 1.49e−4 1.12e−4 2.20e−4

φ̃4(r) = φ4(2r) 7.31e−8 1.46e−6 1.41e−5 1.31e−5 2.47e−5 5.12e−5 5.60e−5 3.60e−5

Table 2: Values of E for different points and RBFs.

Example 4. Let

g3(x) =


exp(x), x ∈ [−1, 0),
3, x = 0,
5 + sin x, x ∈ (0, 1],

be a function given in [4]. We apply the described technique with N = 24 centers for different
RBFs. Let E(x) =

∣∣∣ f (x) − s̃g3,X(x)
∣∣∣ be the error function. It is obvious that E(xi) = 0 for

i = 1, . . . ,N. Errors close to 1 occur at next to discontinuity due to the approximation of the
technique near to discontinuity. Table 2 shows the values of E for different points and RBFs.
We observe that these errors are similar to the ones obtained in [4] for the same example.

Finally, as conclusions, we have investigated the Gibbs phenomenon for 1D RBF inter-
polation numerically, and proposed a procedure to reduce oscillations using nonsmooth basis
functions locally. This technique is the first step of an approximation method of discontinuous
functions which we plan to develop in the future.
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