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FREENESS OF LINE ARRANGEMENTS
WITH MANY CONCURRENT LINES

Daniele Faenzi and Jean Vallès

Abstract. We propose here a new approach in order to study line arrangements on the
projective plane. We use this approach to prove Terao’s conjecture when many lines of
the arrangement are concurrent.
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A line arrangement in P2 = P(C[x0, x1, x2]) is a finite collection of lines, say {l1, . . . , ls}.
The union of these lines is a reduced divisor denoted by D = { f = 0}, where f is the product
of the s linear forms defining the li’s. Saito (see [3]) associates to D the bundle T (log D) of
vector fields with logarithmic poles along D. This is a vector bundle of rank 2, defined by the
following exact sequence of sheaves:

0 −−−−−−→ T (log D) −−−−−−→ O3
P2

( ∂ f
∂x0

,
∂ f
∂x1

,
∂ f
∂x2

)
−−−−−−−−−→ OP2 (s − 1). (1)

We say that the arrangement is free when T (log D) splits as a sum of two line bundles and
more precisely we will say that it is free of type (a, b), with 0 ≤ a ≤ b, when T (log D) '
OP2 (−a) ⊕ OP2 (−b).

The main open question about these bundles (also valid on Pn, for n ≥ 2) is the so-called
Terao’s conjecture (see [2]):

Conjecture 1 (Terao). Freeness of D depends only on its combinatorial type.

By combinatorial type here we mean the intersection lattice associated to the arrangement.
Its incidence graph has one vertex vi for each line li of the arrangement and one vertex ui, j

an intersection point li ∩ l j. The vertex ui, j is linked by an edge to all vertices vk such that
li∩ l j lies in lk. So two line arrangements are said to have the same combinatorial type if these
graphs are isomorphic.

We propose a new approach to Terao’s conjecture, based on projective duality. Any line
of the divisor D corresponds to a point in P2∨. This way we associate to D a finite set Z of
points in P2∨. From now, in order to insist on the correspondence, we will denote by Z ⊂ P2∨

the finite set of points and by DZ ⊂ P
2 the corresponding divisor.

Let us now introduce the variety F ⊂ P2 × P2∨. which is the incidence variety point-line
in P2, and the projections p and q on P2 and P2∨.

F
q

−−−−−−→ P2∨

p
y
P2
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Let JZ be the ideal sheaf of Z in P2∨. We show first that the Saito vector bundle T (log D)
is obtained by looking at JZ(1) on P2. More precisely, we prove:

Theorem 2. p∗q∗JZ(1) ' T (log D).

Proof. Let us consider the canonical exact sequence:

0 −−−−−−→ JZ(1) −−−−−−→ OP2∨ (1) −−−−−−→ OZ(1) −−−−−−→ 0.

Looking at the above exact sequence over P2 means applying the functor p∗q∗. Then, denoting
by TP2 the tangent bundle to P2, we have:

0 −−−−−−→ p∗q∗JZ(1) −−−−−−→ TP2 (−1) −−−−−−→ ⊕l∈ZOl.

Now, the equation f of DZ provides a non zero global section of the ideal sheaf generated
by the partial derivatives of f , namely the Jacobian ideal J f (s). This amounts to an injective
morphism of sheaves of the form OP2 → J f (s). This morphism induces a commutative
diagram:

OP2 (−1) OP2 (−1)y f
y

0 −−−−−−→ T (log D) −−−−−−→ O3
P2 −−−−−−→ J f (s − 1) −−−−−−→ 0∥∥∥∥ y y

0 −−−−−−→ T (log D) −−−−−−→ TP2 (−1) −−−−−−→ C −−−−−−→ 0,

where the middle row is the exact sequence (1) defining T (log D). The sheaf C is the ideal
sheaf of the singular locus of the hypersurface { f = 0} considered on the hypersurface. We
have a natural inclusion C ⊂ ⊕l∈ZOl by desingularization. Then, since the homomorphism
TP2 (−1)→ ⊕l∈ZOl is essentially unique (see [4]) this proves that both kernels p∗q∗JZ(1) and
T (log D) coincide. �

In order to show that this approach is relevant we prove here a special case of Terao’s
conjecture, without using any further material.

Theorem 3. Terao’s conjecture is true for a free divisor DZ of type (n, n + r), with r ≥ 0, as
soon as (n + 2) points of Z are collinear.

Saying that (n + 2) points of Z are collinear amounts to require that (n + 2) lines of DZ

are concurrent, hence we may say that freeness of arrangements with many concurrent lines
is combinatorial.

The first step to prove the theorem is the following lemma relating sections on one side
to decomposition over lines on the dual side.

Lemma 4. Let Z ⊂ P2∨ be a set of points and x be a general point in P2∨. Assume that
T (log DZ) ⊗ Ox∨ = Ox∨ (−n) ⊕ Ox∨ (−n − r) with r ≥ 0. Then H0((JZ ⊗ J

n
x )(n + 1)) , 0.
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Proof. Let us denote by P̂ the blowing up of P2∨ along the point x. We recall that P̂ '
p−1(x∨) ⊂ F and we consider the induced incidence diagram:

P̂
q̂

−−−−−−→ P2∨

p̂
y
x∨

Moreover we have the following resolution of P̂ in F:

0 −−−−−−→ p∗OP2 (−1) −−−−−−→ OF −−−−−−→ OP̂ −−−−−−→ 0.

Tensoring the exact sequence above by q∗JZ(1) we get:

0→ q∗(JZ(1)) ⊗ p∗OP2 (−1)→ q∗(JZ(1))→ q̂∗(JZ(1))→ 0.

Now we apply the functors Ri p∗ to the above sequence (see for instance [1, Chapter III]).
Let us describe the effect of applying p∗ (i.e. Ri p∗ for i = 0) to the above sequence. For the
middle term, the result is computed by Theorem 1 and agrees with T (log D). For the leftmost
term, we get T (log D)(−1) by Theorem 1 and projection formula (see again [1, Chapter III]).
For the rightmost term, we get p̂∗q̂∗JZ(1) for p̂ and q̂ are the restrictions of p and q to P̂.
Denote by R1T (log DZ) the sheaf R1 p∗q∗JZ(1). We can now write the long exact sequence
obtained applying Ri p∗ for i = 0, 1 the exact sequence above.

0→ T (log DZ)(−1)
x∨
−→ T (log DZ) −→ p̂∗q̂∗JZ(1)→

→ R1T (log DZ)(−1)
x∨
−→ R1T (log DZ) −→ R1 p̂∗q̂∗JZ(1)→ 0.

Since x is general, any line through x is at most 1-secant to Z. Then the support of the sheaf
R1 p̂∗q̂∗JZ(1), which is the locus of 3-secant lines to Z through x, is empty. We have proved
p̂∗q̂∗JZ(1) = T (log DZ) ⊗ Ox∨ .

Then the decomposition T (log DZ) ⊗ Ox∨ = Ox∨ (−n) ⊕ Ox∨ (−n − r) gives an injective
homomorphism:

Ox∨ (−n) ↪→ p̂∗q̂∗JZ(1).

This means that we have a non zero map on P̂:

p̂∗Ox∨ (−n) ↪→ q̂∗JZ(1),

that we can write also as:
OP̂ ↪→ q̂∗JZ(1) ⊗ p̂∗Ox∨ (n).

This last map is equivalent to a non zero map on P2∨:

OP2∨ ↪→ JZ(1) ⊗ Jn
x (n) = (JZ ⊗ J

n
x )(n + 1).

�
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Proof of the main theorem. We first describe the combinatorial type according to the given
data. By hypothesis, there exists a line L such that |L ∩ Z| ≥ n + 2. This line is a fixed
component in the linear system of curves of degree n + 1 passing through Z. Since x is
general, a curve of degree n + 1 passing through Z and having multiplicity n at x is the union
of L and of n lines through x. Then there are at most n points of Z that do not lie in L. Since
the length of Z is 2n + r + 1, there are at least n + r + 1 points on L. In fact, according to the
decomposition, L is exactly (n + r + 1) secant to Z. Indeed, if there were strictly more than
n + r + 1 points on L, then one could find, for a general x, a curve of degree n passing through
Z and having multiplicity n − 1 at x (take the union of L and of the n − 1 lines through x and
the remaining points) and this contradicts the decomposition.

Assume now that Z0 has the same combinatorial type than Z. Then, according to Yoshi-
naga ([5, Thm. 2.2]) the splitting of T (log DZ0 ) on the general line l = x∨ (where x is a
general point) is of type Ox∨ (−n + t) ⊕ Ox∨ (−n − r − t) with t ≥ 0. This means that there is
a curve of degree n − t + 1 passing through Z0 and having multiplicity n − t at x. Then this
curve is the union of L and n − t lines through x. But since there are n points outside L the
number t cannot be positive. So the arrangement DZ0 is free of type (n, n + r). �

Remark 1. We can say more about the combinatorial type of Z, assuming that it is free of
type (n, n + r), and that it admits a (n + r + 1)-secant line. Let us write the reduction exact
sequence. Set Z1 = Z \ Z ∩ L. Then we have:

0 −−−−−−→ JZ1 −−−−−−→ JZ(1) −−−−−−→ OL(−n − r) −−−−−−→ 0.

We apply the functor p∗q∗ to obtain the following long exact sequence:

0→ OP2 (−n) −→ p∗q∗JZ(1) −→ OP2 (−n − r)→

→ R1 p∗q∗JZ1 −→ R1 p∗q∗JZ(1) −→ R1 p∗q∗OL(−n − r)→ 0.

Since p∗q∗JZ(1) � OP2 (−n) ⊕ OP2 (−n − r), we have a short exact sequence relating the locus
of 2-secant lines to Z1 to the locus of 3-secant lines to Z:

0→ R1 p∗q∗JZ1 −→ R1 p∗q∗JZ(1) −→ R1 p∗q∗OL(−n − r)→ 0.

The last sheaf is the structure sheaf of the fat point of length
(

n+r
2

)
supported on L∨. So any

2-secant line to Z1 must correspond to a 3-secant line to Z, i.e. any line passing through r + 2
points (r ≥ 0) of Z1 must further pass through a point of Z lying on L.
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