
Monografías Matemáticas García de Galdeano 37, 115–121 (2012)

HIGH-PRECISION
PERIODIC ORBIT CORRECTOR

Ángeles Dena, Alberto Abad and Roberto Barrio

Abstract. An algorithm to compute periodic orbits of dynamical systems up to an ar-
bitrary number of precision digits is presented. The algorithm is based on an optimized
Newton-Raphson method combined with a new numerical ODE solver, TIDES that uses
a Taylor series method. Finally, we present some numerical tests for the Lorenz model
and the Hénon-Heiles Hamiltonian which show the quadratic convergence and the good
behaviour of the proposed method.
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§1. Introduction

Nowadays, more and more theoretical and applied problems need high-precision results. In
Dynamical Systems we may find a large plethora of such problems, like studying the ex-
ponentially small splitting of separatrices, in the analysis of SNAs, in the study of complex
singularities of systems like Lorenz model, and so on. Studying and locating the periodic or-
bits of dynamical systems give relevant information. So, the periodic orbits are an important
topic in several physical applications and finding them accurately is of great importance in
periodic orbit theory [2, 3, 4]. In this paper we propose a new algorithm to locate periodic
orbits up to any arbitrary precision.

The only algorithm known on the literature capable of computing periodic orbits accu-
rate and highly convergent is the method proposed by D. Viswanath [6] that is based on the
Lindstedt-Poincaré technique. To introduce the problem and the new method here proposed,
we describe briefly the Viswanath’s technique. The problem is to find an isolated orbit of
the dynamical system ẋ(t) = f(x), with x ∈ Rn. Rescaling time using τ = ωt, we have the
following one ωẋ(t) = f(x). The starting guesses, ω0 and x0(τ) must be sufficiently close to
the periodic orbit. The aim is to improve approximations for ωi and xi(τ) and each iteration
is made up of a sequence of steps. Let ω0ẏ(τ) = A(τ)y + r(τ) − δωẋ0(τ) be the correction
equation, then compute the Fourier series for all n2 entries of A(τ), n Fourier series for the
residual r(τ) and another n Fourier series for ẋ0(τ). The general solution of the above equa-
tion is written as, y(τ) = Y(τ)y(0) + f1(τ) − δω f2(τ), where Y(τ) is the Fundamental solution
of ω0ẏ(τ) = A(τ)y. We take into consideration that Y(τ), f1(τ) and f2(τ) are computed by
using an accurate ODE solver in double precision. So, to obtain an arbitrary precision peri-
odic orbit this algorithm uses several numerical techniques in a sophisticated way to use just
double precision in the numerical integration of the ODE system.

As remarked, the method of D. Viswanath avoids the use of the integration of ODEs in
multiple precision, but at the price of using a complicated algorithm. Therefore, we have tried
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to develop a new algorithm for computing periodic orbits using a multiple precision ODE in-
tegrator. This method is described in the next section. Our algorithm is based on an optimized
shooting method combined with TIDES (Taylor Integrator for Differential EquationS). This
tool is an accurate numerical ODE integrator which allows us to integrate in multiple preci-
sion arithmetic. We remark that nowadays this method, the Taylor series method, is the only
capable method to integrate and ODE system up to any desired precision level (any Runge-
Kutta or similar numerical method for ODEs cannot be used for such a high-precision).

§2. The corrector algorithm

Let
x = x(t; y), t ∈ R, x, y ∈ Rn, (1)

be the solution of the autonomous differential system

ẋ = f(x); x(0) = y, x ∈ Rn, (2)

where y represents the initial conditions.
The solution of (2) is periodic if it verifies the periodicity condition

x(T, y) − y = 0. (3)

The Newton method is a common procedure to find the roots of this equation. Our algo-
rithm is an iterative scheme that begins with a set (y0,T0) of approximate initial conditions.
At each iteration we update the initial conditions (yi,Ti) by adding them the corrections (∆yi,
∆Ti) that are obtained by expanding

x(Ti + ∆Ti; yi + ∆yi) − (yi + ∆yi) = 0,

in a Taylor series up to the first order

x(Ti; yi) − yi +

(
∂x
∂y
− I

)
∆yi +

(
∂x
∂t

)
∆Ti = 0. (4)

The n × n matrix ∂x/∂y is the fundamental matrix, i.e. the solution of the variational
equations. This matrix evaluated at (yi,Ti) is an approximation of the monodromy matrix M.
I is the identity matrix of order n. The column vector ∂x/∂t represents the derivative of the
solution with respect to the time, i.e., ẋ = f(x). This vector, evaluated in (yi,Ti) corresponds
to the expression f(yTi ), where yTi = x(Ti, yi). To do that, we use the accurate numerical
ODE integrator TIDES [1] that computes simultaneously both, the solution and the partial
derivatives of the solutions of (2). So, the previous equation is equivalent to the next one

(M − I)∆yi + f(yTi )∆Ti = −(yTi − yi). (5)

To solve this linear system, it must take into account that varying ∆yi along the periodic orbit
gives different representations of the same periodic orbit. Therefore, we impose the additional
requirement that ∆yi must be orthogonal to the vector field at yi; i.e.,

〈f(yi),∆yi〉 = 0. (6)
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2.1. Dissipative case
Equations (5) and (6) are written in a matrix form of dimension (n + 1) × (n + 1), M − I f(yTi )

(f(yi))T 0


∆yi

∆Ti

 =

yi − yTi

0

 . (7)

In order to obtain the corrections ∆yi and ∆Ti, we use an iterative scheme which solves
the linear system by using the Singular Value Decomposition Algorithm (SVD) [5] although
it may use any known solver method for linear systems as the matrix is a non-singular square
matrix.

2.2. Hamiltonian case
When the differential system (2) admits one or more integrals, a new constrain or vector of
constrains, respectively, must be added to the periodicity condition (3). To maintain the new
constrain, G(t; x) = g, we impose the condition

G(Ti + ∆Ti; yi + ∆yi) − g ≈ G(Ti; yi) − g +
∂G
∂x

∣∣∣∣∣
(Ti;yi)

∆yi +
∂G
∂t

∣∣∣∣∣
(Ti;yi)

∆Ti = 0.

In a Hamiltonian problem we have the integral of energyH(x) = H. So, in this case, we
add the following condition to the above linear system,

(∇xH)|(Ti;yi) ∆yi + (Ht)|(Ti;yi) ∆Ti = H − HTi .

Taking into account that the Hamiltonian does not depend on the time, the second term of
the addition is cancelled. So, the constrain condition has the form

(∇xH)|(Ti;yi) ∆yi = H − HTi . (8)

Hamiltonian condition (8) is computed using TIDES and Mathematica’s operator gradient,
∇xH . The matrix of the new linear system has dimension (n + 2) × (n + 1). So, we wish to
find the least-norm solution to an overdetermined set of linear equations and for this, we use
the SVD Algorithm for constructing the singular value decomposition of the matrix. Here,
we have for the Hamiltonian case the matrix form,

M − I f(yTi )

(f(yi))T 0

(∇xH)|(Ti;yi) 0


∆yi

∆Ti

 =


yi − yTi

0

H − HTi

 . (9)

§3. ODE’s, partial derivatives and multiple precision with TIDES

To compute the correction, as well as to solve the linear system (7) and (9), we have to
compute the matrix of the systems. For that, we need to integrate the ODE (2) and to compute
the partial derivatives of its solution (1) with respect to the initial condition y. To do that we



118 Ángeles Dena, Alberto Abad and Roberto Barrio

Lorenz LR

-15 -10 -5 0 5 10 15

x

-20
-10
0

10
20

y

15

20

25

30

35

40

z

Figure 1: The periodic orbit LR of the Lorenz model.

use the software TIDES [1], that consists of a C library and a Mathematica precompiler
that writes a C program which permits to compute simultaneously both, the solution and the
partial derivatives of the solution of (2), in double or multiple precision, by using the Taylor
Series Method (TSM).

Usually, the matrix of partial derivatives Φ = ∂x/∂y of the solution with respect to the
initial condition is computed by using the variational equations Φ̇ = (∂f/∂x) · Φ, that are
different for each problem and sometimes very difficult to formulate. In TIDES, instead of
formulate the variational equations, we use the Taylor series expression

x(t) =
∑

i

x[i] hi, h = t − t0, x[i] =
1
i!

dx(i)(t0)
dti ,

to create iterative formulas to compute simultaneously both, the solution and the partial
derivatives. This simplifies the process and permits to extend it to any differential equation
and work with any precision without difficulties. Obviously, to use the Taylor series method
the second member of the differential equations has to be a smooth enough function.

§4. Tests

This method has proved its applicability with two paradigmatic examples, Lorenz model and
Hénon-Heiles Hamiltonian. The classical Lorenz model is given by the ordinary differential
equation

ẋ = σ(y − x), ẏ = −xz + rx − y, ż = xy − bz. (10)

In this work, we will take the classical Saltzman values of the parameters b = 8/3, σ = 10 and
r = 28 and the initial conditions (x, y, z) = (−13.764,−19.579, 27) and a period T = 1.5586
(with just five correct digits). So, we have computed the LR periodic orbit up to one hundred
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Figure 2: Stable orbit of the Hénon-Heiles problem.

digits of precision and we have obtained the next corrected initial conditions:

x = −13.7638096851860589580732306184596716646312388482977
2622500121342876008079691601274879478926826271846,

y = −19.5787320262306139267436186608034300269556256496783
6659773539464894683802943693730174080864746261638,

z = 27.00067580323982681061508034109521370602974077444411
867067129367628352836865457221640801921440996386,

T = 1.5586522107161747275678702092126960705284805489972433
935889521578319019875625888085435585108266014236.

It is well known that the chaotic attractor of the Lorenz model presents the shape of
the wings of a butterfly. There are infinite unstable periodic orbits foilated to this attractor.
Emphasize that the periodic orbit is labelled LR (see Figure 1) to indicate the sequence in
which it moves, so it does one loop on the left and another one on the right.

On the other hand, the Hénon-Heiles problem is given by the Hamiltonian:

H((x, y), (X,Y)) =
1
2

(X2 + Y2) +
1
2

(x2 + y2) + x2y −
1
3
y3. (11)

where (x,y) and (X,Y) represent the position and velocity vectors, respectively. In Figure 2,
we show a stable periodic orbit with initial conditions (x, y, X,Y) = (0, 0.5729, 0.2171, 0) and
period T = 32.378 (with just five correct digits). Therefore, we have computed this stable
periodic orbit of the Hénon-Heiles problem up to one hundred digits of precision and we have
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Lorenz Hénon-Heiles
No. of iterations − log10 |Error| No. of iterations − log10 |Error|

1 2.7520 1 3.6921
2 5.1912 2 6.8717
3 11.8648 3 12.6562
4 23.4265 4 25.3239
5 48.3370 5 49.9962
6 96.2892 6 98.9237

Table 1: Error estimates in each iteration of the algorithm.

obtained the next corrected initial conditions:

x = −0.0001508528959489402449679941228479329174839526991075
445634753055006429612789349157849185831040631093237,

y = 0.57295301370224350348504778098660473159863485033171053
20060780943368099065986782774328688443164631243,

X = 0.21706126541161424223171335987599024998866524355885647
29531449799555593630239513190046828312316602122,

Y = 0.00017004577430097839491728371273170373793851553739810
49371872238609555882492833175825147650058085136020,

T = 32.3777403421411707710174926185423471453720473050881630
4777025017758227599170926401377549088558254881.

The computational complexity of the numerical solution of an ODE system using a TSM
as TIDES with D = − log10(TOL) number of digits is O(D4), using variable-precision arith-
metic up to one hundred digits of precision, variable-order and variable-stepsize. Moreover,
it is well known that the Newton method has quadratic convergence, so the previous algo-
rithm which has been presented in the second section, is quadratically convergent too. We
achieve the preset tolerance in six iterations with about one hundred digits of fixed precision
arithmetic for both, the Lorenz model and the Hénon-Heiles Hamiltonian. As we can see in
the Table 1, the number of digits of precision in the initial conditions of the periodic orbits is
doubled at each iteration.

Acknowledgements

The authors have been supported for this research by the Spanish Research Grant MTM2009-
10767.



High-precision periodic orbit corrector 121

References

[1] Abad, A., Barrio, R., Blesa, F., and Rodríguez, M. TIDES: a Taylor series Integrator of
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