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Abstract. We present an algorithm that provides an extension of the QR method in order
to compute the joint eigenvalues of a family of commuting real matrices.
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§1. Introduction

In this paper, we present the algorithm that describes an extension of the QR method to si-
multaneously compute the joint eigenvalues of a finite family of commuting matrices defined
in [1]. This problem is motivated by the task of finding solutions of polynomial systems of
equations of the form

F(X) = 0, F = ( f1, . . . , fm) , f j ∈ C [x1, . . . , xn] .

The idea behind this approach is to extend the Frobenius companion matrix to the multivariate
case. Recall that if f (x) = a0 + a1 x + · · ·+ anxn, an , 0, is a polynomial in one variable, then
its zeros are the eigenvalues of the companion matrix

A :=



0 −a0/an

1 0 −a1/an
. . .

. . .
...

1 0 −an−2/an

1 −an−1/an


.

Since this result can be proved, for example, by division with remainder and considering
multiplication modulo the (principal) ideal generated by f , it allows for an extension via
computational ideal theory, especially the concept of Gröbner bases or H–bases. However,
in n variables one does not have to find the eigenvalues of a single matrix A but the joint
eigenvalues of a systemA = (A1, . . . , An) of commuting matrices, i.e. A jAk = AkA j. A naive
and direct approach would be to compute the eigenvalues and eigenvectors for each of the
matrices separately and then connect the eigenvalues (which are the components of one of
the zeros) by means of the associated eigenvectors. This approach, however, faces difficul-
ties as soon as the coordinate projections of the solutions are not well separated as then the
eigenvectors will usually not be unique any more, hence the connection can only be made via
a numerically instable intersection of eigenspaces. And while multiple eigenvalues do not
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constitute a thread for the QR method of eigenvalue dermination, cf. [3], clustered eigenval-
ues are a numerical problem, hence should be avoided. To overcome these difficulties, we
proposed a method that extends the QR method and the included concept of splitting matrices
by treating the matrices as simultaneous as possible, making use of the fact that under certain
circumstances a split, that is, a separation of eigenspaces, obtained for one of the matrices
from the family carries over to the whole family. The eigenvalue approach applies only to
the case when the set X of solutions to F(X) = 0 is finite, or, in algebraic terminology, if the
ideal generated by F is zero dimensional. Then the size of the matrices is the number of zeros
which is determined automatically by the algebraic reduction process.

The following lemma, proved in [1], provides the condition that will allow us to perform
the simultaneous triangularization process of all commuting matrices.

Lemma 1 (Cf. [1], Lemma 2.1). Let A, B be two real n × n matrices such that AB = BA. If
there exists a nonsingular matrix P such that

P−1AP =

[
A1 A2
0 A3

]
,

where the p × p (1 ≤ p ≤ n − 1) matrix A1 and the (n − p) × (n − p) matrix A3 satisfy
Spec(A1) ∩ Spec(A3) = ∅, then

P−1BP =

[
B1 B2
0 B3

]
(1)

and B1 is a p × p matrix.

In Section 2, we comment the steps of the algorithm and present the core MATLAB code of
each one. In Section 3, we add the subroutines used in the main program.

§2. Algorithm

Let A be a set of m real commuting matrices n × n such that A, B ∈ A implies AB = BA.
Besides, let threshold, toleranceEig be variables holding (small) positive numbers used as
thresholds in the algorithm. We apply the following algorithm in order to find the orthogonal
matrix P that has to exist by Lemma 1.

Step 1. Storing and ordering matrices. The matrices ofA which have only one eigenvalue
or a unique pair of complex eigenvalues will be recognized by a routine uniqueEigenvalue
and will not be considered for decomposition. The other ones will concatenated into a single
matrix.

j=0;
for i=1:m

[H]=hessenberg(A(:,(i-1)*n+1:(i)*n));
[only]=uniqueEigenvalue(H,n,threshold,toleranceEig);
if(only==0)

j=j+1;
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A(:,(j-1)*n+1:(j)*n)=A(:,(i-1)*n+1:(i)*n);

end -end if

end -end for

The assumption that the ideal is zero dimensional and that there is more than one solution
of F(X) = 0 ensures thatA is nonempty.

We then compute quantities that will allow us to order the matrices ofA according to their
spread. The spread is an easily computed estimate how widely the eigenvalues of a given
matrix vary. A matrix with large spread is more likely to have well–separated eigenvalues
and hence the QR iterations will be expected to lead to a separation of eigenspaces after a
smaller number of iterations. To estimate the spread of the eigenvalues of a matrix in A, we
use Gerschgorin circles as well as an estimate based on determinant and trace of the matrix,
cf. [1].

for i=1:j

A=A(:,(i-1)*n+1:(i)*n);

L(i)=Gerschgorin(A);

F(i)=means(A);

G(i)=max(L(i),F(i));

end -end for

The matrix A is then reordered according to the values in G. This is in fact crucial as a
large spread makes an early split after only a few iterations more likely.

Step 2. Initializing variables for starting the process. We will initialize a variable matrix
with the first unused matrix in A and other variables (some of them related to possible found
blocks on the process) that will play an important role through the algorithm. Since we also
consider parts of the matrices after a QR–split, the size of the theses blocks is stored in a
variable newBlockMatrix which is initialized with the full matrix.

newBlockMatrix=[1,n,1];

matrix=A(:,(i-1)*n+1:i*n); initialMatrix=A(:,(i-1)*n+1:i*n);

auxStoringQ=eye(n); change=0;

Step 3. Selecting the matrix which starts the process with the process matrix. A variable
processMatrix will be initialized with the first unused matrix in A, and transformed into
Hessenberg form with the routine hessenberg based on Householder reflections and stored
again in the variable processMatrix.
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Step 4. Selecting the process matrix if it has not order n. If we have to consider
blocksNum subblocks of matrix, we extract those into a variable processMatrix to be
treated by a QR factorization thereafter.

for v=1:blocksNum
p=blockMatrix(v,1);q=blockMatrix(v,2);
processMatrix=matrix(p:q,p:q);
processMatrix=hessenberg(processMatrix);
storingQ=eye(q-p+1);
auxQ=eye(length(processMatrix));
Process the matrix . . .

end

Step 5. Initial transformation of the process matrix when it has trace zero. If the matrix
processMatrix has trace zero, then we first perform two consecutive steps of the shifted
QR algorithm with shifts (using the routine qrShift) in order to make our spread estimation
work. The tolerance of 10−10 is just chosen as an example and can be adapted if necessary.

if(abs(trace(processMatrix))<=1e-10)
[processMatrix,storingQ1]=choosingShift(processMatrix);
storingQ=auxQ*storingQ1;
auxQ=storingQ;

end -end if

Step 6. Localizating an special subdiagonal element to find an eigenvalue. If some subdi-
agonal element in processMatrix has an absolute value less than a given tolerance, that
is, the matrix is already “almost split”, we will apply a step of the QR algorithm with a shift
whose value will be given by the routine choiceShift. As is well–known, a properly cho-
sen shift will significantly improve the performance of the QR iteration, cf. [2]. This process
will be continued until either we get the absolute value of this subdiagonal element smaller
than a positive number threshold, less than tolerance, of course, or until we arrive at a
maximal number of iterations.

[subdiagonal]=subdiagonal(processMatrix,w);
[j,lessThanTolerance] = min(subdiagonal <= tolerance);
while(subdiagonal(j)>threshold and approxNum<=n)

[shift]=choosingShift(processMatrix,j);
[processMatrix,obtainedQ]=qrShift(processMatrix,shift,w);
storingQ=auxQ*obtainedQ;
auxQ=storingQ;
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matrix(p:q,p:q)=processMatrix;
subdiagonal(j)=abs(processMatrix(j+1,j));
approxNum = approxNum + 1;

end
if(subdiagonal(j)<=threshold)

first=p; last=p+j-1; first1=p+j; last1=q;
lessThanThreshold=1;
foundBlock=1;
matrix(p:q,p:q)=processMatrix;

else
lessThanThreshold=0;

end -end if

In the first case, we have obtained a candidate for the split and we continue with the
process described in Step 7, while in the second case we continue as described in Step 8.
Keep in mind here that according to Lemma 1 a split is only useful as a common split if
it decomposes the processMatrix in such a way that the spectra of the submatrices are
disjoint.

If there is no such a subdiagonal element, on the other hand, we will apply one step of
the QR algorithm (using the routine qr of MATLAB) and repeat the above process up to reach
a maximal number of iterations (depending on the order of the matrix in processMatrix).

if(lessThanTolerance==0)
[Q,R]=qr(processMatrix);
storingQ=auxQ*Q;
auxQ=storingQ;
processMatrix=R*Q;
matrix(p:q,p:q)=processMatrix;

end -end if
if(lessThanThreshold==0)

[processMatrix,storingQ1]=choosingShift(processMatrix);
storingQ=auxQ*storingQ1;
auxQ=storingQ;
matrix(p:q,p:q)=processMatrix;

end -end if

If after a certain number of iterations which depends on the order of the matrix in
processMatrix we still did not obtain a split, we pick the next unused matrix from A,
store it in processMatrix and restart the iteration.

Step 7. Storing the matrix obtained in the previous process. In a variable called
storingMatrix of order n, we store the processMatrix at the same relative position with
respect to the initialMatrix. Initially the variable storingMatrix is a zero matrix.
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newstoringQ=eye(n);
newstoringQ([p:q],[p:q])=storingQ;
auxStoringQ=auxStoringQ*newstoringQ;
storingMatrix=auxStoringQ;

Then we split this storingMatrix into two blocks with “break” at the relative position
of the subdiagonal element from Step 6 with absolute value less than the variable threshold
in the storingMatrix and compute the spectra of these blocks:

totalBlocksNum = totalBlocksNum + 1;
newBlockMatrix=zeros(totalBlocksNum,3);
[takeFirstBlock]=consideredBlock(matrix, first, last);
[takeSecondBlock]=consideredBlock(matrix, first1,last1);
[newBlockMatrix]=doingNBM(v, first, last, first1, last1, takeFirstBlock,

takeSecondBlock, totalBlocksNum, oldBlockMatrix)
[endProcess]=spectraIntersection(matrix, last, first1, toleranceEig);

If the spectra are disjoint, then the joint triangularization process is essentially finished
and we just have to perform some conclusive computations as described in Step 9. If the spec-
tra are not disjoint and we can split the storingMatrix into blocks of order 1 or 2, these final
blocks contain either a single real value to be checked by the routine uniqueEigenvalue or
a pair of conjugate complex eigenvalues. Then we carry out an appropriate symmetric per-
mutation in order to separate the spectra of the blocks. So, we are either in the situation of
Step 3 again, now with the freshly computed storingMatrix, which will then be stored in
the variable processMatrix, or the procedure pointed out in Step 4 will be applied to the
storingMatrix, as the variable processMatrix, with properly chosen blocks of this ma-
trix to be considered in Step 4. If one of these blocks has only a unique eigenvalue or a block
of order two with a couple of conjugate eigenvalues, we do not consider this block in Step 4.

Step 8. Not all the eigenvalues of the process matrix have been located. If we have not
found all the eigenvalues of the matrix in spite of performing the QR algorithm with shifts the
maximal number of iterations given by the order of the variable processMatrix, then we
apply a step of the QR algorithm with shift. If all the subdiagonal elements are greater than the
tolerance, then we select a new matrix of the family A. If there exists a subdiagonal element
with absolute value less than the tolerance, we switch to Step 6 which we can repeat until
we arrive at a maximal number of iterations given by the order of the processMatrix. If this
maximal number of iterations is exceeded, then we again choose a new matrix of the family A.
This can be performed cyclically and after each cycle the maximal number of iterations can
be raised, if necessary.

Step 9. Computing the ortogonal matrix P. In the end, after the iterations have been per-
formed, we calculate the product of all the matrices corresponding to all the intermediate
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transformations carried out over the initialMatrix in order to obtain the orthogonal ma-
trix P mentioned in Lemma 1.

§3. Subroutines

In this section we give more detailed descriptions of the subroutines used in our algorithm.
As an easy starting point we list the very simple function that just checks whether a matrix is
normal, that is, whether AT A = AAT .

The subroutine that chooses the shift for the QR step is already more complicated as
the choice of the shift depends on whether the matrix is normal and the shift also has to be
adapted to the eigenstructure of the lower left 2 × 2 block of B.

choosingShift

[processMatrix,storingQ]=choosingShift(B)
N=length(B); storingQ=eye(N); a=eig(B([N-1:N],[N-1:N]));
if( checkingNormalMatrix(B,N)==1 )

shift1=sqrt(norm(B,’fro’)/N);
[Q,R]=qr(B-shift1*eye(N));
storingQ = storingQ * Q;
processMatrix=R*Q+shift1*eye(N);

else
if(abs(imag(a(1)))<1e-10) % The real case

if( max( abs( real(a) ) < 1e-10 )
newShift=norm(B,inf)/N;
[Q,R]=qr(B-newShift*eye(N));
storingQ = storingQ * Q;
processMatrix=R*Q+newShift*eye(N);

else
[Q,R]=qr(B-maximum*eye(N));
storingQ = storingQ * Q;
[Q,R]=qr( R*Q );
storingQ = storingQ * Q;
processMatrix=R*Q+maximum*eye(N);

end -end if
else % The complex case

if(N =2)
[Q,R]=qr(B-a(1)*eye(N));
storingQ = storingQ * Q;
[Q,R]=qr( R*Q + ( a(1) -a(2) ) * eye(N));
processMatrix=R*Q+a(2)*eye(N);
storingQ = storingQ * Q;

else
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processMatrix=B;
end -end if

end -end if
end -end if

The next subroutine, consideredBlock, checks whether a given block of a matrix needs
to be considered for the QR method. This is the case if the block is not of size 1 or does not
have a unique single eigenvalue, the latter being checked by the subroutine
uniqueEigenvalue which does a quick check whether that is the case.

consideredBlock

[takeFirstBlock]=consideredBlock(matrix, first, last)
firstBlock=matrix(first:last,first:last); takeFirstBlock=1;
l1=length(firstBlock);
if l1==1

takeFirstBlock=0;
elseif uniqueEigenvalue(firstBlock,last-first+1,threshold,toleranceEig) == 1

takeFirstBlock=0;
else

if l1==2 && eig(firstBlock) = 0
takeFirstBlock=0;

end -end if
end -end elseif

In doingNBM, the block matrices are extracted and the so far unused ones “advance” one
position in the queue.

doingNBM

[newBlockMatrix]=doingNBM(v,first, last, first1, last1, takeFirstBlock,
takeSecondBlock, totalBlocksNum, oldBlockMatrix)

if(v==1)
newBlockMatrix(1,:)=[first,last,takeFirstBlock];
newBlockMatrix(2,:)=[first1,last1,takeSecondBlock];
if(totalBlocksNum>2)

newBlockMatrix(3:totalBlocksNum,:)=oldBlockMatrix(2:totalBlocksNum-1,:);
end -end if

else
newBlockMatrix(1:v-1,:)=oldBlockMatrix(1:v-1,:);
newBlockMatrix(v+2:totalBlocksNum,:)=oldBlockMatrix(v+1:totalBlocksNum-1,:);
newBlockMatrix(v,:)=[first,last,takeFirstBlock];
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newBlockMatrix(v+1,:)=[first1,last1,takeSecondBlock];
end -end if

The subroutine Gerschgorin estimates the spectrum of A by means of Gerschgorin cir-
cles, cf. [2].

Gerschgorin

[dif,maxi,mini]=Gerschgorin(A)
n = length( A );
r = abs( A ) * ones( n,1 ) - abs( diag( A ) );
maxi = max( diag(A) + r );
mini = min( diag(A) - r );
dif = maxi - mini;

In hessenberg the matrix is transformed into Hessenberg form by means of Householder
transforms, see again [2]; the extra part is to apply the same transformations to the variable
storedMatrix that has to be processed in the rest of the method.

hessenberg

[H]=hessenberg(A)
n=length(A);
storedMatrix=A;
for i=1:n-2

v=zeros(n-i,1);
if(sign(storedMatrix(i+1,i))>=0)

v=norm(storedMatrix(i+1:n,i),2)*eye(n-i,1)+storedMatrix(i+1:n,i);
else

v=-norm(storedMatrix(i+1:n,i),2)*eye(n-i,1)+storedMatrix(i+1:n,i);
end -end if
v=v/(norm(v,2));
P=eye(n-i)-2*v*v’;
U=eye(n);
U([i+1:n],[i+1:n])=P;
storedMatrix=U*storedMatrix*U’;

end -end for
H=storedMatrix;

In means the difference between the algebraic and geometric means of a matrix is de-
termined; in a really performant version of the algorithm (which will, of course, not use
matlab), the computation of the determinant can be done more efficiently.
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means

[dif]=means(A)
n=length(A);
mA=abs( trace(A)/n );
mG=abs( det(A) )∧(1/n);
dif=abs( mA - mG );

The shifted QR method as in qrShift is simply standard.

qrShift

[B,E]=qrShift(A,a,n)
[Q,R]=qr(A-a*eye(n));
E=Q;
B=R*Q+a*eye(n);

The subroutine uniqueEigenvalue is slightly more tricky as it tries to figure out whether
a matrix A has only one, unique, real eigenvalue or, a single complex conjugate pair of eigen-
values. Also keep in mind that we assume that any input A will be in Hessenberg form so
that all the computations below are relatively cheap. The first step it to consider the number
a = (1/n) trace A which would be a guess for the single real eigenvalue and the real part of
the complex eigenvalue. To check whether a is indeed a single real eigenvalue, we perform
one QR step on a with shift a. If a were such an eigenvalue, the resulting matrix would be
upper triangular with a on the triangle.

If that is not the case, we have to check whether there is a single complex conjugate
pair a ± ib of eigenvalues which requires that the size n of the matrix is even. Then det A =(
a2+b2)n/2 and we can guess b via b2 = (det A)2/n−a2, where for the determinant computation

we can re–use the matrix R from the real QR decomposition. The we perform either a real QR
double step, cf. [2], with the guessed eigenvalue a + ib and check whether the result is block
diagonal, or, for simplicity, we can do a complex QR step and again check for diagonality of
the resulting complex matrix.

uniqueEigenvalue

[a]=uniqueEigenvalue(A,n,toleranceE)
a=0;
possibleEig=(trace(A))/n;
[Q,R]=qr( A - possibleEig * eye(n) );
auxMatrix = R * Q + possibleEig * eye(n);
if ( norm( tril( auxMatrix - possibleEig * eye( n ) ) ) < toleranceE )
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a = 1;
elseif rem( n,2 ) == 1

a = 0;
else % Check for complex

possibleIm = sqrt( prod( diag(R).∧2 )∧(1/n) - possibleEig∧2 );
possibleEig = possibleEig + I * possibleIm;
[Q,R]=qr( A - possibleEig * eye(n) );
auxMatrix= R*Q + possibleEig * eye(n);
if ( norm( tril( auxMatrix - possibleEig * eye( n ) ) ) < toleranceE )

a = 1;
end

end
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