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ON A STOCHASTIC NONLINEAR
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Abstract. In this paper, we are interested in the stochastic viscous Buckley-Leverett
equation with a Hölder continuous nonlinear function.
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§1. Introduction

In our presentation “On stochastic nonlinear conservation laws”, at the Ninth International
Conference Zaragoza-Pau on Applied Mathematics and Statistics, we have presented results
of existence and uniqueness for the solution to parabolic and hyperbolic problems. These
results were extracted from the publications G. Vallet [10] and G. Vallet and P. Wittbold [11].
In this paper, we would like to revisit the example of the formal stochastic viscous Buckley-
Leverett equation

du − ε∆u dt − div( f (u)~B) dt = hdw in D × ]0,T [ ×Ω,

where f is assumed to be a Hölder continuous function.
In the sequel, one assumes that D is a bounded Lipschitz domain of Rd, that T is a

positive number and one denotes by Q = ]0,T [ × D. Then, homogeneous Dirichlet would be
considered.

Thereafter, W = {wt,Ft ; 0 ≤ t ≤ T } denotes a standard adapted one-dimensional contin-
uous Brownian motion, defined on some probability space (Ω,F , P), with the property that
w0 = 0. This assumption on W is made for convenience. Our aim is to adapt known methods
for nonlinear PDE to noise perturbed ones.

Usually, the Buckley-Leverett equation is a transport equation used to model two-phase
flow in porous media (ε = 0). It can be obtained as the limit, when ε goes to 0, of the above
viscous equation. Such a result can be found in G. Vallet and P. Wittbold [11] for a regular
function f , but one needs the notion of entropy solution. Note that the model corresponds to
a generalization to d > 1 of the Burger’s equation too: i.e. d = 1 and f (x) = x2.

The Burger’s equation has been intensively studied in the literature with many extensions.
Usually, the stochastic convolution is used. Let us mention, without exhaustiveness, G. Da
Prato et al. [2, 3], W. Grecksch et al. [4] or I. Gyongy et al. [5] and M. Röckner et al. in [9]
for a generalization of the classical.

Usually, Lipschitz or local-Lipschitz conditions are assumed on the function f . In this
application we consider that f is a 1/2-Hölder-continuous function (with f (0) = 0 since
div ~B = 0). The method consists in using a Lipschitz-approximation of f and passing to the
limits with respect to this approximation.
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§2. Assumptions, definition of a solution and the main result

Let us assume in the sequel that
• ~B ∈ (L∞(D))d with div ~B = 0 a.e. in D,

• f : R→ R is a 1/2 Hölder-continuous function with f (0) = 0,

• h ∈ L2(Q) and u0 ∈ L2(D).

Denote by V = H1
0(D), endowed with ||u||V =

(∫
D |∇u|2 dx

)1/2
the norm of Poincaré (cf.

R. Adams [1, Th. 6.28, p.159] ), by Cp the Poincaré’s constant, i.e., for all v ∈ V , ||v||L2(D) ≤

Cp||v||V .
Our aim is then to give a result of existence and uniqueness of the variational solution to

the above-mentioned problem. Let us fix in what sense such a solution is understood.

Definition 1. Any function u of L2(Ω × ]0,T [ ; V) such that ∂
∂t

[
u −

∫ t
0 h(s, .) dw(s)

]
, taken in

the sense of the vectorial V ′-valued distributions, belongs to L2(Ω × ]0,T [ ; V ′) is a solution
to our stochastic problem if u is L2(D)-valued progressively measurable and if for t a.e. in
]0,T [ and any test-function v of V , the variational formulation holds

0 =

〈
∂

∂t

[
u −

∫ t

0
h(s, ., ) dw(s)

]
, v

〉
V ′,V

+

∫
D
{ε∇u.∇v + f (u)~B.∇v} dx,

with the initial condition u(0, .) = u0.
The results we want to prove is:

Theorem 1. A unique solution in the sense of the above definition exists to the above stochas-
tic Buckley-Leverett equation.

§3. Proof of the result

For any positive M, consider fM = ( f ∗ ρM) ◦ TM where ρM denotes the usual mollifier se-
quence of support 1/M and TM(x) = max[min(x,M),−M]. Then, fM is a bounded, Lipschitz-
continuous function and classical results yield the existence and uniqueness of the solution,
denote by uM , to the problem:

duM − ε∆uM dt − div( fM(uM)~B)dt = hdw in D × ]0,T [ ×Ω

for the same initial condition and the regularity required in the previous definition.
Such a result would be admitted; refer e.g. to G. Da Prato et al. [3], W. Grecksch et al. [4]

or G. Vallet [10].
Thanks to the stochastic-energy equality, one has that a positive constant C exists such

that, for any t,

E
∫

D
u2

M(t) dx + 2E
∫ t

0

∫
D
|∇uM |

2 dx ds + 2E
∫ t

0

∫
D

fM(uM)~B.∇uM dx ds =

∫ t

0

∫
D

h2 dx ds.

Thus, one deduces that

E
∫

D
u2

M(t) dx + 2E
∫

Q
|∇uM |

2 dx ds ≤ C(h). (1)
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Moreover, for any v in V \ {0},∣∣∣∣〈 ∂
∂t

[
uM −

∫ t
0 h dw(s)

]
, v

〉
V ′,V

∣∣∣∣
||v||V

≤ ||∇uM ||L2(D) + ||~B||∞cP|| fM(uM)||L2(D).

Since

| fM(uM)|2 =

∣∣∣∣∣∫
R

f (TM(uM) − y)ρM(y) dy
∣∣∣∣∣2 ≤ ∫

R

| f (TM(uM) − y)|2ρM(y) dy

≤ c( f )
∫
R

|TM(uM) − y| ρM(y) dy ≤ c( f )(|TM(uM)| + 1) ≤ c1u2
M + c2,

one deduces that∣∣∣∣〈 ∂
∂t

[
uM −

∫ t
0 h dw(s)

]
, v

〉
V ′,V

∣∣∣∣2
‖v‖2V

≤ 2||∇uM ||
2
L2(D) + 2||~B||2∞c2

P

[
c1||uM ||

2
L2(D) + c2 meas(D)

]
and that

E
∫ T

0

∥∥∥∥∥ ∂∂t

[
uM −

∫ t

0
h dw(s)

]∥∥∥∥∥2

V ′
dt ≤ C(h). (2)

Thus, one is able to assert the

Lemma 2. Uniformly with respect to M and for any t ∈ [0,T ], the sequences uM(t), uM and
∂
∂t

[
uM −

∫ t
0 h dw(s)

]
are bounded respectively in L2(Ω × D), L2(Ω × ]0,T [ ,V) and L2(Ω ×

]0,T [ ,V ′).

Following J. U. Kim [6], denote, for any t, by

Θ(uM , t) = sup
s∈[0,t]

‖uM(s)‖2L2(D) + ‖uM‖
2
L2(0,t;V) +

∥∥∥∥∥ ∂∂t

[
uM −

∫ .

0
h dw(s)

]∥∥∥∥∥2

L2(0,t,V ′)
,

Ω̃(t) =
⋃
L≥2

⋃
M≥1

⋃
k≥m

{Θ(uM , t) ≤ L} and Ω̃ = Ω̃(T ).

Thanks to the above lemma, one deduces that P(Ω̃) = 1. Then, for P-a.s. ω, a positive
constant L(ω) and a sub-sequence denoted by uMω

exist such that {Θ(uMω
,T ) ≤ L(ω)}. There-

fore, there exist u = u(ω) in L2(0,T ; V) with moreover ∂
∂t
[
u −

∫ t
0 h dw(s)

]
in L2(0,T,V ′) and

a sub-sequence denoted by (uk) such that uk converges weakly to u in L2(0,T ; V) and that
∂
∂t
[
uk −

∫ t
0 h dw(s)

]
converges weakly to ∂

∂t
[
u −

∫ t
0 h dw(s)

]
in L2(0,T,V ′).

Moreover, thanks to Corollary 4, (uk) converges in L2(0,T ; L2(D)) and a.e. in Q since
sub-sequences are considered, and in C([0,T ]; H−1(D)). In particular, u0 = uk(0) converges
to u(0) in V ′.

Since f 2
k (uk) ≤ c1u2

k + c2, it can be assumed, up to a sub-sequence denoted in the same
way, that fk(uk) converges weakly to some fu in L2(Q). Note that, by construction, fk(uk)
converges a.e. in Q to f (u). Then, it converges weakly to f (u) in L2(Q) (Cf. J.-L. Lions [7,
lemma 1.3, p.12]).
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It follows that, for any v in V and t a.e. in ]0,T [,〈
∂

∂t
[u −

∫ t

0
h dw], v

〉
V ′,V

+

∫
D
∇u.∇v + f (u)~B.∇v dx = 0.

If one denotes by û an other solution, for any v in V , one gets that〈
∂

∂t
[u − û], v

〉
V ′,V

+

∫
D
∇[u − û].∇v + [ f (u) − f (û)]~B.∇v dx = 0.

For a given µ > 0, set v = pµ[u − û] where pµ(x) = 0 if x < µ/e, 1 if x > µ and ln(ex/µ) else.
Note that pµ is a Lipschitz-continuous function and denote by Pµ =

∫ x
0 pµ(s) ds. Then,

0 =
d
dt

∫
D

Pµ [u − û] dx +

∫
D

p′µ [u − û] |∇[u − û]|2 + [ f (u) − f (û)]p′µ[u − û]~B.∇[u − û] dx.

And by construction,

d
dt

∫
D

Pµ [u − û] dx +
1
2

∫
D

p′µ[u − û]|∇[u − û]|2 ≤ C
∫
{µ/e<u−û<µ}

|u − û|p′µ [u − û] dx.

Thus, ∫
D

Pµ[u − û] dx ≤ C meas ({µ/e < u − û < µ}) +

∫
D

Pµ[0] dx.

Passing to the limits leads to u ≤ û.
Since one is able to prove in the same way that u ≥ û, the solution to the above problem

is unique and all the sequence (uMω
) converges.

Now, one needs to prove that u, generated by sub-sequences depending on ω, is adapted
to the filtration and belongs to the stated spaces. In order to prove this, we propose to follow
J. U. Kim’s [6] arguments. Consider a closed ball B in H−1(D) and, for any positive integer n,
Bn =

⋃
v∈B B̄H−1(D)(v, 1/n). For a fixed t∗, note that

Ω̃ ∩ {u(t∗) ∈ B} = Ω̃ ∩

[⋃
L>0

⋂
n>0

⋂
k>0

⋃
M≥k

{uM(t∗) ∈ Bn} ∩ {Θ(uM , t∗) ≤ L}
]
. (3)

Indeed, for anyω ∈ Ω̃∩{u(t∗) ∈ B}, (uMω
) satisfies Θ(uMω

, t∗) ≤ Θ(uMω
,T ) ≤ L(ω). Moreover,

since uMω
converges in C([0,T ],H−1(D)), ω belongs to the right hand side set.

Conversely, if ω belongs to the right hand side set, there exists L̄(ω) > 0 such that for
any positive integer n, one is able to construct a sub-sequence uM̄ω,n

with uM̄ω,n
(t∗) ∈ Bn and

Θ(uM̄ω,n
, t∗) ≤ L̄(ω).

Since, what has been done with uMω
in ]0,T [ can be done again with uM̄ω,n

in ]0, t∗[, the
uniqueness result proved above yields the convergence of uM̄ω,n

to u. Therefore, u(t∗) ∈ Bn

for any n, and the result holds.
Thanks to the regularity of uM , the left hand side of (3) is Ft∗ -measurable and {u(t∗) ∈ B}

is in Ft∗ . More generally, for any t in [0,T ], {u(t∗) ∈ F} ∈ Ft for any Borel subset F of
H−1(D). Since u belongs to C([0,T ],H−1(D)), {(t, ω), 0 ≤ t ≤ t∗, u(t, ω) ∈ F} ∈ ([0,T ])×Ft∗

for each F ∈ B(H−1(D)) and any t ∈ ]0,T ].
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Since u belongs to Cs([0,T ], L2(D)), u(t) ∈ L2(D) for any t and thanks to lemmata 5
and 7 in the annexes, the same result of measurability holds for any F ∈ B(L2(D)); and u is
progressively measurable as a L2(D) valued process.

Note that a similar argument could be used in L2(D) with the weak topology since u
belongs to Cs([0,T ], L2(D)) with values in a fixed bounded subset of L2(D) and thanks to
lemma 6 in the annexes.

Then, thanks to (1), (2) and the lemma of Fatou, on gets that

E
∫

D
u2(t) dx + 2E

∫
Q
|∇u|2 dxds + E

∫ T

0

∥∥∥∥∥∥ ∂∂t

[
u −

∫ t

0
h dw(s)

]∥∥∥∥∥∥2

V ′
dt ≤ C(h),

and a solution exists in the sense of the definition 1.
For the uniqueness of the solution, one has just to use the same method than the one given

above, based on the approximation of the sgn+ function by pµ.

§4. Annexes

In this section we propose some classical tools used in this paper.
First, let us remind the theorem on Aubin-Simon:

Theorem 3 ([7, Th. 5.1, Th. 12.1 and (12.10)]). Let us consider 1 < p ≤ +∞, 1 ≤ q ≤
+∞, B0, B1 and B2 three B-spaces such that the embedding of B0 in B1 is compact and the
embedding of B1 in B2 is continuous. If (un) is a bounded sequence in Lq(0,T ; B0) such
that (dun/dt) (the derivation is taken in the sense of vectorial distributions) is a bounded
sequence in Lp(0,T ; B2), then there exists a subsequence that converges in Lq(0,T ; B1) and
in C([0,T ]; B2).

The following corollary is the main tool of compactness used in the paper:

Corollary 4. Let (un) be a bounded sequence in L2(0,T ; H1
0(D)) ∩ L∞(0; T ; L2(D)) and

H ∈ C([0,T ]; L2(D)). If (d(un − H)/dt) (the derivation is taken in the sense of vectorial dis-
tributions) is a bounded sequence in L2(0,T ; H−1(D)) then there exists a subsequence (unk )
that converges in L2(0,T ; L2(D)) and in C([0,T ]; H−1(D)).

Moreover, the limit is Cs([0,T ]; L2(D))1.

Proof. Since the embedding of L2(D) in H−1(D) is compact and since (un −H) is bounded in
L∞(0; T ; L2(D)), thanks to Aubin-Simon’s theorem, there exists a subsequence (unk − H) that
converges in C([0,T ]; H−1(D)). In particular, (unk ) converges in C([0,T ]; H−1(D)) too.

Thanks to the lemma of Lions ([7, Lemma 5.1]), for any positive ε, there exists a positive
dε such that, for any n, p,

||un+p − un||L2(0,T ;L2(D)) ≤ ε ||un+p − un||L2(0,T ;H1
0 (D)) + dε ||un+p − un||L2(0,T ;H−1(D)).

Thus, since ||un||L2(0,T ;H1
0 (D)) is bounded, one gets that for any positive ε, there exists a positive

dε such that, for any n, p,

||un+p − un||L2(0,T ;L2(D)) ≤
ε

2
+ dε ||un+p − un||L2(0,T ;H−1(D)).

1u ∈ Cs([0,T ]; X) if, for any x∗ ∈ X′, t 7→ 〈x∗, u(t)〉 is continuous.
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Since (unk ) is a Cauchy sequence in L2(0,T ; H−1(D)), a positive integer N exists such that
dε ||unk+p − unk ||L2(0,T ;H−1(D)) ≤ ε/2 as soon as nk ≥ N. Then, (unk ) is a Cauchy sequence in
L2(0,T ; L2(D)) and it converges.

Obviously, the limit belongs to L∞(0; T ; L2(D)) ∩ C([0,T ]; H−1(D)), thus it belongs to
Cs([0,T ]; L2(D)) thanks to [8, Lemma 8.1, p.297]. �

Let us give now some lemmata concerning the measurability of vector-valued functions.

Lemma 5. Assume that u is a function with values in L2(D) and H−1(D)-measurable, then it
is L2(D)-measurable.

Proof. Our argument is based on the theorem of Pettis in separable B-spaces [12].
If u is H−1(D)-measurable, then it is weakly measurable. Thus, for any v in H1

0(D),
〈u, v〉H−1,H1

0
is a scalar measurable function. As u is a function with values in L2(D),

〈u, v〉H−1,H1
0

=
∫

D uv dx and it is a scalar measurable function. Note that for any v ∈ L2(D),
there exists (vn) ⊂ H1

0(D) that converges toward v in L2(D). Thus,
∫

D uvn dx converges
a.e. toward

∫
D uv dx and it is a scalar measurable function. Therefore, u is weakly L2(D)-

measurable, thus L2(D)-measurable. �

I would like to present an generalisation proposed by L. Thibault (personal communica-
tion) and based on the two following lemmata:

Lemma 6. Let Y be a separable B-space. Then, the Borel sigma-algebra B(Y) when Y is
endowed with the strong topology is the same than the Borel sigma-algebra Bw(Y) when Y
is endowed with the weak topology. Moreover, B(Y) is the sigma-algebra generated by the
closed balls of Y.

Proof. First Bw(Y) ⊂ B(Y) is obvious since the same inclusion holds for the topologies.
On the other hand, any closed ball B̄(a, r) in Y is σ(Y,Y∗)-closed since it is convex. In

particular, B̄(a, r) ∈ Bw(Y).
As any open ball is a countable reunion of closed ones, any open ball belongs to Bw(Y).

Now, thanks to the separability of Y , any open subset of Y is a countable reunion of open
balls. Then, any open subset of Y is an element of Bw(Y) and B(Y) ⊂ Bw(Y). Note that this
prove that B(Y) is generated by the closed balls too. �

Lemma 7. Assume that X ⊂ Y are separable B-spaces with X reflexive. If the embedding i of
X in Y is continuous, then B(X) ⊂ B(Y), where B(X) (resp. Y) denotes the Borel σ-algebra
of X (resp. Y).

Proof. Consider A a closed ball in X. Since X is assumed to be reflexive, A is σ(X, X∗)
compact. Moreover, the application i is σ(X, X∗)-σ(Y,Y∗) continuous and then A is a compact
set of Y for the topology σ(Y,Y∗). Therefore, A is weakly closed in Y , it is closed and it
belongs to B(Y). The conclusion comes from the remark that B(X) is generated by the closed
balls of X. �
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