EXISTENCE OF A SOLUTION TO A CLASS OF PSEUDOPARABOLIC PROBLEMS

Ngonn Seam and Guy Vallet

Abstract. In this paper we are interested, on the one hand, in problems involving a nonlinearity of form $f(\partial_t u)$; on the other hand, we are interested in Barenblatt's type equations [5] too.

By the way of an implicit time-discretization, we would prove the existence of a solution to the following problem: $f(\partial u_t) - \Delta \phi(u) - \epsilon \Delta \partial u_t = g$ with a Lipschitz-continuous function ϕ .

Keywords: Pseudoparabolic problems, existence results, time-discretization. *AMS classification:* 35K65, 35K70.

§1. Introduction

In this paper, we are interested in the mathematical analysis of the pseudoparabolic Cauchy problem:

$$f(\partial_t u) - \Delta \phi(u) - \epsilon \Delta \partial_t u = g, \quad u(0, .) = u_0, \tag{1}$$

where f and ϕ are Lipschitz-continuous functions with f non-decreasing.

This study has its roots in the analysis of problems with a nonlinearity of form $f(\partial_t u)$. Such a term has been previously introduced by G. I. Barenblatt in [5] for elasto-plastic porous media. It has been revisited by S. N. Antontsev *et al.* [1, 2, 3, 4] or G. Vallet [8] concerning a constrained stratigraphic models in geology.

An implicit time-discretization scheme is used to prove the existence of a solution in a suitable functional space. As an application, by passing to the limits with respect to ϵ , one proves the existence of a solution to the Barenblatt's equation.

Let us consider in the sequel a bounded domain $\Omega \subset \mathbb{R}^d$ with a Lipschitz-boundary Γ . For any T > 0, let us denote Q a cylinder defined by $Q := [0, T[\times \Omega.$ Moreover, one assumes that:

f is a non-decreasing Lipschitz-continuous function, (H_1)

$$\phi$$
 is a $C^1(\mathbb{R})$ -Lipschitz-continuous function such that $\phi(0) = 0$, (H_2)

$$\epsilon > 0 \text{ and } u_0 \in H_0^1(\Omega),$$
 (H₃)

$$g \in L^2(Q). \tag{H4}$$

We shall write $M = ||\phi'||_{\infty}$.

Let us define now what is a solution to our pseudoparabolic problem.

Definition 1. A solution to (1) is any $u \in H^1(0, T, H_0^1(\Omega))$ such that $u(0, \cdot) = u_0$ and, for all v in $H_0^1(\Omega)$,

$$\int_{\Omega} \left\{ f\left(\partial_{t} u\right) v + \phi'\left(u\right) \nabla u \nabla v + \epsilon \nabla \partial_{t} u \nabla v \right\} dx = \int_{\Omega} g v \, dx.$$
⁽²⁾

The main result of this paper is that

Theorem 1. There exists a solution to Problem (1).

§2. Existence of a solution

2.1. Semi-discretized processes

Consider a positive integer N and denote by h = T/N. In this section, we are interested in proving the existence of the sequence of approximation by the way of an implicit semidiscretization scheme.

Each step of the scheme consist in solving a nonlinear elliptic problem. In a first par, the case of a bounded f would be consider. Then, thanks to some truncation arguments, the general case would be obtained.

Proposition 2. Under the hypothesis (H_1) to (H_3) and by assuming moreover that f is a bounded function, if h is small enough $(h < \epsilon/(M + 1))$, for any $g \in L^2(\Omega)$, there exists an element u in $H_0^1(\Omega)$ such that, for all v in $H_0^1(\Omega)$,

$$\int_{\Omega} f\left(\frac{u-u_0}{h}\right) v \, dx + \int_{\Omega} \phi'(u) \, \nabla u \nabla v, \, dx + \epsilon \int_{\Omega} \nabla \frac{u-u_0}{h} \nabla v \, dx = \int_{\Omega} g v \, dx. \tag{3}$$

This element is unique as soon as ϕ' is a Lipschitz-continuous function.

Proof. The existence of a solution of (2) is classically obtained by using the Schauder-Tikhonov fixed point theorem in the framework of separable reflexive B-spaces. In order to do it, let us denoted Ψ the mapping defined by $\Psi : H_0^1(\Omega) \to H_0^1(\Omega), S \mapsto u_S$, where u_S is the unique solution of the following linear problem: find $u_S \in H_0^1(\Omega)$ such that, for all $v \in H_0^1(\Omega)$,

$$\int_{\Omega} \left(\phi'(S) + \frac{\epsilon}{h} \right) \nabla u_S \nabla v \, dx = \int_{\Omega} gv \, dx - \int_{\Omega} f\left(\frac{S-u_0}{h}\right) v \, dx + \frac{\epsilon}{h} \int_{\Omega} \nabla u_0 \nabla v \, dx. \tag{4}$$

As soon as $h < \epsilon/(M + 1)$, this linear problem is coercive in $H_0^1(\Omega)$. It is well-posed and Ψ exists. Choosing $v = u_S$ a test function, one gets that

$$\|u_{S_n}\|_{H^1_0(\Omega)} \le C_1 = C(\Omega, \|f\|_{\infty}, g, \epsilon, u_0, h),$$
 (5)

and Ψ conserve the closed ball $\bar{B}_{H^1_0(\Omega)}(0, C_1)$.

Let (S_n) be a sequence that converges weakly in $H_0^1(\Omega)$ towards S. Up to a subsequence still denoted in the same way, it can be assumed that S_n converges strongly in $L^2(\Omega)$ and *a.e.*

in Ω . Furthermore, the functions ϕ' and f are continuous and bounded, then owing to the theorem of Lebesgue, we can prove that, for all v in $H_0^1(\Omega)$,

$$\int_{\Omega} f\left(\frac{S_n - u_0}{h}\right) v \, dx \to \int_{\Omega} f\left(\frac{S - u_0}{h}\right) v \, dx \quad \text{and} \quad \phi'(S_n) \, \nabla v \to \phi'(S) \, \nabla v \quad \left(L^2(\Omega)\right)^d, \quad (6)$$

Moreover, according to (5), the sequence (u_{S_n}) is bounded in $H_0^1(\Omega)$. Thus, χ in $H_0^1(\Omega)$ exists, as well as a subsequence, still indexed by *n*, extracted from (u_{S_n}) , such that, u_{S_n} converges weakly in $H_0^1(\Omega)$ toward χ . Then, we have that

$$\nabla u_{S_n} \to \nabla \chi$$
 in $(L^2(\Omega))^d$ and $\nabla \frac{u_{S_n} - u_0}{h} \to \nabla \frac{\chi - u_0}{h}$ in $(L^2(\Omega))^d$. (7)

Passing to the limits in (4) with S_n by using (6) and (7), we obtain that χ is a solution to problem (4) with S. By uniqueness of such a solution, one gets that $\chi = u_S$.

Thus by a compactness argument, all the sequences converge weakly in $H_0^1(\Omega)$ toward u_S , *i.e.* $u_{S_n} \rightarrow u_S$ weakly in $H_0^1(\Omega)$. Then the mapping Ψ is sequentially weakly weakly continuous in $H_0^1(\Omega)$. Thus the fixed point theorem of Schauder-Tikhonov proves that Ψ has at most a fixed point; *i.e.* there exists S in $H_0^1(\Omega)$ such that $u_S = S$ and a solution to (3) exists.

Let us prove now that this solution is unique. Let us consider \hat{u} another solution of (3). Thus we obtain by subtraction, for all v in $H_0^1(\Omega)$,

$$0 = \int_{\Omega} \left[f\left(\frac{u-u_0}{h}\right) - f\left(\frac{\widehat{u}-u_0}{h}\right) \right] v \, dx + \int_{\Omega} \left(\phi'\left(u\right) + \frac{\epsilon}{h}\right) \nabla\left(u-\widehat{u}\right) \nabla v \, dx + \int_{\Omega} \left(\phi'\left(u\right) - \phi'\left(\widehat{u}\right)\right) \nabla \widehat{u} \nabla v \, dx.$$
(8)

For a giving $\mu > 0$, let us denote by $p_{\mu}(r) = (r - \mu)^+/r$; p_{μ} is non-decreasing Lipschitz function with $p'_{\mu}(r) = \frac{\mu}{r^2} \mathbf{1}_{\{r>\mu\}}$.

Therefore, as $v = p_{\mu}(u - \widehat{u})$ is a suitable test function, its comes that

$$0 = \int_{\Omega} \left[f\left(\frac{u-u_0}{h}\right) - f\left(\frac{\widehat{u}-u_0}{h}\right) \right] p_{\mu} \left(u-\widehat{u}\right) dx + \mu \int_{\left\{u-\widehat{u}>\mu\right\}} \left(\phi'\left(u\right) + \frac{\epsilon}{h}\right) \frac{\left|\nabla\left(u-\widehat{u}\right)\right|^2}{\left|u-\widehat{u}\right|^2} dx + \mu \int_{\left\{u-\widehat{u}>\mu\right\}} \frac{\phi'\left(u\right) - \phi'\left(\widehat{u}\right)}{\left|u-\widehat{u}\right|^2} \nabla \widehat{u} \cdot \nabla\left(u-\widehat{u}\right) dx.$$

Since f is a non-decreasing function and as $h \leq \epsilon/(M+1)$, it comes that

$$\begin{split} \int_{\{u-\widehat{u}>\mu\}} \frac{\left|\nabla\left(u-\widehat{u}\right)\right|^2}{\left|u-\widehat{u}\right|^2} dx &\leq \int_{\{u-\widehat{u}>\mu\}} \frac{\left|\phi'\left(u\right)-\phi'\left(\widehat{u}\right)\right|^2}{2\left|u-\widehat{u}\right|^2} \left|\nabla\widehat{u}\right|^2 dx + \int_{\{u-\widehat{u}>\mu\}} \frac{\left|\nabla\left(u-\widehat{u}\right|^2\right)}{2\left|u-\widehat{u}\right|^2} dx \\ &\leq \int_{\{u-\widehat{u}>\mu\}} \frac{\left|\phi'\left(u\right)-\phi'\left(\widehat{u}\right)\right|^2}{\left|u-\widehat{u}\right|^2} \left|\nabla\widehat{u}\right|^2 dx \leq \|\phi''\|_{\infty} \int_{\Omega} |\nabla\widehat{u}|^2 dx. \end{split}$$

Let us denote by $F_{\mu}(r) = \ln (1 + (r - \mu)^{+}/\mu)$. F_{μ} is a Lipchitz-continuous function, $F_{\mu}(u - \hat{u}) \in H_{0}^{1}(\Omega)$ and one gets that

$$\int_{\Omega} \left| \nabla F_{\mu} \left(u - \widehat{u} \right) \right|^2 dx \leq \left\| \phi'' \right\|_{\infty} \int_{\Omega} \left| \nabla \widehat{u} \right|^2 dx.$$

- 0

Thanks to Poincaré inequality, the sequence $(F_{\mu}(u-\widehat{u}))_{\mu}$ is bounded in $L^2(\Omega)$ independently of μ . Note that the sequence $(F_{1/n}(u-\widehat{u}))_n$ is non-decreasing, and converges almost everywhere in $\mathbb{R} \cup \{+\infty\}$ to $+\infty \mathbf{1}_{\{u-\widehat{u}>0\}}$. Hence, the theorem of Beppo Levi leads to meas $(\{u > \widehat{u}\}) = 0$. Then $(u - \widehat{u})^+ = 0$, *i.e* $u \leq \widehat{u}$.

Permutating *u* and \hat{u} thereinbefore gives $\hat{u} \leq u$ as well and the solution is unique. \Box

Proposition 3. Under the hypothesis (H_1) to (H_3) , if h is small enough $(h < \epsilon/(M + 1))$, for any $g \in L^2(\Omega)$, there exists an element u in $H_0^1(\Omega)$ such that, for all v in $H_0^1(\Omega)$,

$$\int_{\Omega} f\left(\frac{u-u_0}{h}\right) v \, dx + \int_{\Omega} \nabla \phi\left(u\right) \nabla v \, dx + \epsilon \int_{\Omega} \nabla \frac{u-u_0}{h} \nabla v \, dx = \int_{\Omega} g v \, dx. \tag{9}$$

This element is unique as soon as ϕ' is a Lipschitz-continuous function.

Proof. The proof of the uniqueness result of the solution is identical to the one proposed previously.

Concerning the result of existence, consider for any positive n, $f_n = \max(-n, \min(n, f))$. The corresponding solutions, given by the above proposition, are denoted by u_n . Applying the test function $v = (u_n - u_0)/h$ to (3), one gets that

$$\begin{split} &\int_{\Omega} \left[f_n \left(\frac{u_n - u_0}{h} \right) - f_n(0) \right] \frac{u_n - u_0}{h} \, dx + \int_{\Omega} [h\phi'(u_n) + \epsilon] \left| \nabla \frac{u_n - u_0}{h} \right|^2 \, dx \\ &\leq \int_{\Omega} [g - f_n(0)] \frac{u_n - u_0}{h} \, dx - \int_{\Omega} \phi'(u_n) \, \nabla u_0 \nabla \frac{u_n - u_0}{h} \, dx \\ &\leq \left[||g - f_n(0)||_{L^2(\Omega)} + M \, ||u_0||_{H^1_0(\Omega)} \right] \cdot \left\| \frac{u_n - u_0}{h} \right\|_{H^1_0(\Omega)} . \end{split}$$

Since f is non-decreasing, f_n too, $h < \epsilon/(M+1)$ and thanks to Poincaré's inequality, one gets that

$$\left\|\frac{u_n - u_0}{h}\right\|_{H_0^1(\Omega)} \le \|g\|_{L^2(\Omega)} + |f(0)| \sqrt{\operatorname{meas}(\Omega)} + M \|u_0\|_{H_0^1(\Omega)}.$$
 (10)

Therefore, a sub-sequence still indexed by *n* can be extracted, such that u_n converges in $H_0^1(\Omega)$ weakly to *u*, strongly in $L^2(\Omega)$ and *a.e.* in Ω . Moreover, one has that

$$\left\| f_n(\frac{u_n - u_0}{h}) \right\|_{H_0^1(\Omega)} \le \left\| f' \right\|_{\infty} \left[\|g\|_{L^2(\Omega)} + |f(0)| \sqrt{\operatorname{meas}(\Omega)} + M \|u_0\|_{H_0^1(\Omega)} \right].$$
(11)

Since $f_n(\frac{u_n-u_0}{h})$ converges a.e. to $f(\frac{u-u_0}{h})$, it ensures that $f(u_n)$ converges in $L^2(\Omega)$ toward f(u) (and weakly in $H^1(\Omega)$). Furthermore, since ϕ is a Lipschitz-continuous function, $\phi(u_n)$ converges weakly to $\phi(u)$ in $L^2(\Omega)$, and, passing to the limits in the variational formulation stating u_n , one gets (9).

Inductively, the following result can be proved:

Existence of a solution to a class of pseudoparabolic problems

Theorem 4. Let us consider $N \in \mathbb{N}^*$ with $N > T(M+1)/\epsilon$, h = T/N and $(g^k) \subset L^2(\Omega)$. Then, under the hypothesis (H_1) – (H_3) , there exists a sequence $(u^k)_k$ in $H_0^1(\Omega)$ with $u^0 = u_0$ and such that, for all $v \in H_0^1(\Omega)$,

$$\int_{\Omega} f\left(\frac{u^{k+1} - u^k}{h}\right) v \, dx + \int_{\Omega} \nabla \phi\left(u^{k+1}\right) \nabla v \, dx + \epsilon \int_{\Omega} \nabla \frac{u^{k+1} - u^k}{h} \nabla v \, dx = \int_{\Omega} g^{k+1} v \, dx.$$
(12)

This sequence is unique as soon as ϕ' is a Lipschitz-continuous function.

2.2. Existence of a solution

In order to prove the existence of a solution, let us introduce some notations. For any sequence v^k , let us denote in the sequel

$$v^{h} = \sum_{k=0}^{N-1} v^{k+1} \mathbf{1}_{[t_{k}, t_{k+1}[} \text{ and } \widetilde{v}^{h} = \sum_{k=0}^{N-1} \left[\frac{v^{k+1} - v^{k}}{h} \left(t - t_{k} \right) + v^{k} \right] \mathbf{1}_{[t_{k}, t_{k+1}[},$$

where $t_k = kh$ and

$$g^{h} = \sum_{k=0}^{N-1} \frac{1}{h} \int_{kh}^{(k+1)h} g(t, \cdot) dt \, \mathbf{1}_{[t_{k}, t_{k+1}[}$$

Lemma 5. Assume that $h < \epsilon/(M + 1)$. Then,

- (i) The sequence (u^h) is bounded in $L^{\infty}(0, T; H^1_0(\Omega))$ and (\tilde{u}^h) is bounded in $H^1(0, T; H^1_0(\Omega)) \cap L^{\infty}(0, T; H^1_0(\Omega))$.
- (ii) There exists C > 0 such that for all t in $[0, T[, \|\widetilde{u}^h(t) u^h(t)\|_{H^1(\Omega)} \le C\sqrt{h}$.
- (iii) There exists a set Z of full measure in]0, T[such that, for any t in Z, $\partial_t \tilde{u}^h(t)$ is bounded in $H_0^1(\Omega)$.

Proof. Thanks to (10), one has that

$$\left\|\frac{u^{k+1} - u^k}{h}\right\|_{H_0^1(\Omega)} \le \left\|g^{k+1}\right\|_{L^2(\Omega)} + |f(0)| \sqrt{\operatorname{meas}(\Omega)} + M \left\|u^k\right\|_{H_0^1(\Omega)},\tag{13}$$

and, if k > 0,

$$\left\|\frac{u^{k+1} - u^k}{h}\right\|_{H^1_0(\Omega)} \le \left\|g^{k+1}\right\|_{L^2(\Omega)} + C + M \left\|u_0\right\|_{H^1_0(\Omega)} + Mh \sum_{i=0}^{k-1} \left\|\frac{u^{i+1} - u^i}{h}\right\|_{H^1_0(\Omega)}.$$
 (14)

Then, one gets that

$$\begin{split} \sum_{k=0}^{n} h \left\| \frac{u^{k+1} - u^{k}}{h} \right\|_{H_{0}^{1}(\Omega)}^{2} &\leq 4 \sum_{k=0}^{n} h \left\| g^{k+1} \right\|_{L^{2}(\Omega)}^{2} + C(u_{0})T + 4M^{2}h^{2} \sum_{k=1}^{n} h \left\| \sum_{i=0}^{k-1} \left\| \frac{u^{i+1} - u^{i}}{h} \right\|_{H_{0}^{1}(\Omega)} \right\|^{2} \\ &\leq C(g, u_{0}) + 4M^{2}Th \sum_{k=1}^{n} \sum_{i=0}^{k-1} h \left\| \frac{u^{i+1} - u^{i}}{h} \right\|_{H_{0}^{1}(\Omega)}^{2} \leq C(g, u_{0})e^{4M^{2}T}, \end{split}$$

thanks to the discrete Gronwall lemma. This yields

$$\sum_{k=0}^{N-1} \left\| u^{k+1} - u^k \right\|_{H_0^1(\Omega)}^2 \le hC(g, u_0)e^{4M^2T},\tag{15}$$

and (i)-(ii) hold.

Moreover, (14) yields, for any $t \in]t_k, t_{k+1}[$, to

$$\left\|\partial_{t}\widetilde{u}^{h}(t)\right\|_{H^{1}_{0}(\Omega)}^{2} \leq 4\left\|g^{h}(t)\right\|_{L^{2}(\Omega)}^{2} + C(u_{0}) + 4M^{2}C(g, u_{0})e^{4M^{2}T}.$$
(16)

If moreover t belongs to the set of Lebesgue of g in $L^2(0, T; L^2(\Omega))$, $\partial_t \tilde{u}^h(t)$ is bounded in $H^1_0(\Omega)$ and (iii) holds.

Theorem 6. Under the hypotheses (H_1) – (H_4) , there exists u in $H^1(0, T; H_0^1(\Omega))$ such that, for all v in $H_0^1(\Omega)$,

$$\int_{\Omega} f(\partial_t u) v \, dx + \int_{\Omega} \nabla \phi(u) \, \nabla v \, dx \epsilon + \int_{\Omega} \nabla \partial_t u \nabla v \, dx = \int_{\Omega} g v \, dx, \tag{17}$$

with $u(0, \cdot) = u_0$.

Proof. Leading from Lemma 5-(i), there exists u in $H^1(0, T; H_0^1(\Omega))$, such that, up to a subsequences still denoted in the same way, one may assume that \tilde{u}^h converges to u weakly in $H^1(0, T; H_0^1(\Omega))$. Then, for any t in $[0, T], \tilde{u}^h(t)$ converges weakly in $H_0^1(\Omega)$ toward u(t). Then, Lemma 5-(ii) ensures that $u^h(t)$ converges weakly to u(t) in $H_0^1(\Omega)$. Moreover, since ϕ is a Lipschitz-countinuous function, $\phi(u^h(t))$ converges weakly to $\phi(u(t))$ in $H_0^1(\Omega)$ too.

Thanks to Lemma 5-(iii), for any t in Z, up to a sub-sequence indexed by h_t , $\partial_t \tilde{u}^{h_t}(t)$ converges weakly in $H_0^1(\Omega)$ towards a given $\xi(t)$ and strongly in $L^2(\Omega)$.

Then, there exists k such that (12) leads, for any $v \in H_0^1(\Omega)$, to

$$\int_{\Omega} f\left(\partial_{t} \widetilde{u}^{h_{t}}(t)\right) v \, dx + \int_{\Omega} \nabla \phi\left(u^{h_{t}}(t)\right) \nabla v \, dx + \epsilon \int_{\Omega} \nabla \partial_{t} \widetilde{u}^{h_{t}}(t) \nabla v \, dx = \int_{\Omega} g^{h_{t}}(t) v \, dx.$$
(18)

By passing to the limits in the above equation, on gets that $\xi(t)$ is a solution in in $H_0^1(\Omega)$ to the variational problem:

$$\forall v \in H_0^1(\Omega), \ \int_\Omega f(\xi(t)) \, v \, dx + \epsilon \int_\Omega \nabla \xi(t) \nabla v \, dx = \int_\Omega g v dx - \int_\Omega \phi'(u(t)) \, \nabla u(t) \nabla v \, dx.$$
(19)

Then, since f is non-decreasing, this implies that such a solution is unique. As $\partial_t \tilde{u}^h(t)$ is a bounded sequence in $H_0^1(\Omega)$, one concludes that $\partial_t \tilde{u}^h(t)$ converges toward $\xi(t)$ weakly in $H_0^1(\Omega)$.

Therefore, $\xi : [0, T[\rightarrow H_0^1(\Omega)]$ is a weakly measurable function. Then, thanks to the theorem of Pettis ([9, p. 131]), it is a measurable function.

For any v in $H_0^1(\Omega)$, $\int_{\Omega} \nabla \partial_t u^h(t) \nabla v \, dx$ converges *a.e.* in]0, T[toward $\int_{\Omega} \nabla \xi(t) \nabla v \, dx$. Since $\left| \int_{\Omega} \nabla \partial_t \widetilde{u}^h(t) \nabla v \, dx \right| \leq \left\| \partial_t \widetilde{u}^h(t) \right\|_{H_0^1(\Omega)} \|v\|_{H_0^1(\Omega)}$, it is bounded in $L^2(0, T)$ and [7, Lemma 1.3, p.12] ensures that

$$\forall \alpha \in L^2(0,T), \ \int_0^T \int_\Omega \alpha(t) \nabla \partial_t \widetilde{u}^h(t) . \nabla v \, dx \, dt \to \int_0^T \int_\Omega \alpha(t) \nabla \xi(t) . \nabla v \, dx \, dt.$$

Since $(\partial_t \widetilde{u}^h)$ is bounded in $L^2(0, T; H_0^1(\Omega))$, an argument of density leads to the weak convergence in $L^2(0, T; H_0^1(\Omega))$ of $\partial_t \widetilde{u}^h$ toward ξ . Thus by uniqueness of the weak limit, one obtains that $\partial_t u = \xi$ and that there exists a solution.

§3. Application to Barenblatt's equation

As an application, let us return to the existence of a solution to Barenblatt's equation:

$$f\left(\partial_t u\right) - \Delta u = g,$$

where f(r) = r if r > 0 and $f(r) = \alpha r (\alpha > 0)$ if $r \le 0$, with $\alpha \ne 1$ a priori.

Our method consists in passing to the limits in the pseudoparabolic problem (2) with respect to ϵ toward 0, when $\phi = Id$, g in $L^2(Q)$ and u_0 in $H_0^1(\Omega)$.

By using the test function $v = \partial_t u_{\epsilon}$ in (2), we obtain, for any *t*, the following estimate:

$$\int_{\Omega\times]0,t[} f(\partial_t u_{\epsilon})\partial_t u_{\epsilon} + \epsilon |\nabla \partial_t u_{\epsilon}|^2 \, dx + \frac{1}{2} \int_{\Omega} |\nabla u_{\epsilon}(t)|^2 \, dx = \int_{\Omega\times]0,t[} g\partial_t u_{\epsilon} \, dx + \frac{1}{2} \int_{\Omega} |\nabla u_0|^2 \, dx.$$
(20)

Thus, the sequence (u_{ϵ}) is bounded in $H^1(Q) \cap L^{\infty}(0, T; H^1_0(\Omega))$ as well as $(f(\partial_t u_{\epsilon}))$ in $L^2(Q)$. Indeed, for all t,

$$\min(1,\alpha)\int_{]0,t[\times\Omega}|\partial_t u_{\epsilon}|^2\,dx\,dt+\frac{1}{2}\int_{\Omega}|\nabla u_{\epsilon}(t)|^2\,dx\leq \frac{1}{2}\int_{\Omega}|\nabla u_0|^2\,dx+\int_{]0,t[\times\Omega}g\partial_t u_{\epsilon}\,dx\,dt.$$

Up to a sub-sequence still indexed by ϵ , one assumes that there exists u in $H^1(Q) \cap L^{\infty}(0,T;H_0^1(\Omega))$, weak limit in $H^1(Q)$ and weak-* limit in $L^{\infty}(0,T;H_0^1(\Omega))$ of (u_{ϵ}) ; as well as χ , weak limit in $L^2(Q)$ of $f(\partial_t u_{\epsilon})$.

On the one hand, one has $\chi - \Delta u = g$, *i.e.* $\partial_t u - \Delta u = g + \partial_t u - \chi := h$. Since $h \in L^2(Q)$ with the initial condition in $H_0^1(\Omega)$, one gets

$$\int_{Q} |\partial_{t}u|^{2} dx dt + \frac{1}{2} \int_{\Omega} |\nabla u(T)|^{2} dx = \frac{1}{2} \int_{\Omega} |\nabla u_{0}|^{2} dx + \int_{Q} [g + \partial_{t}u - \chi] \partial_{t}u dx dt.$$
(21)

On the other hand, since $(u_{\epsilon}(T))$ bounded in $H_0^1(\Omega)$ and as $u_{\epsilon}(T)$ converges toward u(T) in $L^2(\Omega)$, it converges weakly in $H_0^1(\Omega)$ and passing to the limits in (20) yields

$$\limsup_{\epsilon \to 0} \int_{Q} f(\partial_{t} u_{\epsilon}) \partial_{t} u_{\epsilon} \, dx \, dt + \frac{1}{2} \int_{\Omega} |\nabla u(T)|^{2} \, dx \leq \frac{1}{2} \int_{\Omega} |\nabla u_{0}|^{2} \, dx + \int_{Q} g \partial_{t} u \, dx \, dt.$$

Thus, $\limsup \epsilon \to 0 \int_Q f(\partial_t u_\epsilon) \partial_t u_\epsilon \, dx \, dt \leq \int_Q \chi \partial_t u \, dx \, dt$. Then, according to H. Brézis [6, Prop. 2.5, p. 27], $\chi = f(\partial_t u)$ and u is a solution to the problem.

References

- [1] ANTONTSEV, S. N., GAGNEUX, G., LUCE, R., AND VALLET, G. New unilateral problems in stratigraphy. *M2AN Math. Model. Numer. Anal.* 40, 4 (2006), 765–784.
- [2] ANTONTSEV, S. N., GAGNEUX, G., LUCE, R., AND VALLET, G. A non-standard free boundary problem arising from stratigraphy. *Anal. Appl. (Singap.)* 4, 3 (2006), 209–236.
- [3] ANTONTSEV, S. N., GAGNEUX, G., LUCE, R., AND VALLET, G. On a pseudoparabolic problem with constraint. *Differential Integral Equations* 19, 12 (2006), 1391–1412.
- [4] ANTONTSEV, S. N., GAGNEUX, G., MOKRANI, A., AND VALLET, G. Stratigraphic modelling by the way of a pseudoparabolic problem with constraint. *Advances in Mathematical Science and Applications* (To appear).
- [5] BARENBLATT, G. I. Similarity, self-similarity, and intermediate asymptotics. *New York, London: Consultants Bureau. XVII* (1982).
- [6] Brézis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies. 5. Notas de matematica (50). Amsterdam-London: North-Holland Publishing Comp.; New York: American Elsevier Publishing Comp., Inc. 183 p., 1973.
- [7] LIONS, J.-L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.
- [8] VALLET, G. Sur une loi de conservation issue de la géologie. C. R. Math. Acad. Sci. Paris 337, 8 (2003), 559–564.
- [9] YOSIDA, K. *Functional analysis*, fourth ed. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 123.

Ngonn Seam and Guy Vallet LMA, University of Pau IPRA BP 1155 Pau Cedex (France) seamngonn@yahoo.fr and guy.vallet@univ-pau.fr