Existence of a solution to a class OF PSEUDOPARABOLIC PROBLEMS

Ngonn Seam and Guy Vallet

Abstract

In this paper we are interested, on the one hand, in problems involving a nonlinearity of form $f\left(\partial_{t} u\right)$; on the other hand, we are interested in Barenblatt's type equations [5] too.

By the way of an implicit time-discretization, we would prove the existence of a solution to the following problem: $f\left(\partial u_{t}\right)-\Delta \phi(u)-\epsilon \Delta \partial u_{t}=g$ with a Lipschitz-continuous function ϕ.

Keywords: Pseudoparabolic problems, existence results, time-discretization.
AMS classification: 35K65, 35K70.

§1. Introduction

In this paper, we are interested in the mathematical analysis of the pseudoparabolic Cauchy problem:

$$
\begin{equation*}
f\left(\partial_{t} u\right)-\Delta \phi(u)-\epsilon \Delta \partial_{t} u=g, \quad u(0, .)=u_{0}, \tag{1}
\end{equation*}
$$

where f and ϕ are Lipschitz-continuous functions with f non-decreasing.
This study has its roots in the analysis of problems with a nonlinearity of form $f\left(\partial_{t} u\right)$. Such a term has been previously introduced by G. I. Barenblatt in [5] for elasto-plastic porous media. It has been revisited by S. N. Antontsev et al. [1, 2, 3, 4] or G. Vallet [8] concerning a constrained stratigraphic models in geology.

An implicit time-discretization scheme is used to prove the existence of a solution in a suitable functional space. As an application, by passing to the limits with respect to ϵ, one proves the existence of a solution to the Barenblatt's equation.

Let us consider in the sequel a bounded domain $\Omega \subset \mathbb{R}^{d}$ with a Lipschitz-boundary Γ. For any $T>0$, let us denote Q a cylinder defined by $Q:=] 0, T[\times \Omega$.
Moreover, one assumes that:

$$
\begin{gather*}
f \text { is a non-decreasing Lipschitz-continuous function, } \\
\phi \text { is a } C^{1}(\mathbb{R}) \text {-Lipschitz-continuous function such that } \phi(0)=0, \\
\epsilon>0 \text { and } u_{0} \in H_{0}^{1}(\Omega), \\
g \in L^{2}(Q) . \tag{4}
\end{gather*}
$$

We shall write $M=\left\|\phi^{\prime}\right\|_{\infty}$.
Let us define now what is a solution to our pseudoparabolic problem.

Definition 1. A solution to (1) is any $u \in H^{1}\left(0, T, H_{0}^{1}(\Omega)\right)$ such that $u(0, \cdot)=u_{0}$ and, for all v in $H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left\{f\left(\partial_{t} u\right) v+\phi^{\prime}(u) \nabla u \nabla v+\epsilon \nabla \partial_{t} u \nabla v\right\} d x=\int_{\Omega} g v d x . \tag{2}
\end{equation*}
$$

The main result of this paper is that
Theorem 1. There exists a solution to Problem (1).

§2. Existence of a solution

2.1. Semi-discretized processes

Consider a positive integer N and denote by $h=T / N$. In this section, we are interested in proving the existence of the sequence of approximation by the way of an implicit semidiscretization scheme.

Each step of the scheme consist in solving a nonlinear elliptic problem. In a first par, the case of a bounded f would be consider. Then, thanks to some truncation arguments, the general case would be obtained.
Proposition 2. Under the hypothesis $\left(H_{1}\right)$ to $\left(H_{3}\right)$ and by assuming moreover that f is a bounded function, if h is small enough $\left(h<\epsilon /(M+1)\right.$), for any $g \in L^{2}(\Omega)$, there exists an element u in $H_{0}^{1}(\Omega)$ such that, for all v in $H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} f\left(\frac{u-u_{0}}{h}\right) v d x+\int_{\Omega} \phi^{\prime}(u) \nabla u \nabla v, d x+\epsilon \int_{\Omega} \nabla \frac{u-u_{0}}{h} \nabla v d x=\int_{\Omega} g v d x . \tag{3}
\end{equation*}
$$

This element is unique as soon as ϕ^{\prime} is a Lipschitz-continuous function.
Proof. The existence of a solution of (2) is classically obtained by using the SchauderTikhonov fixed point theorem in the framework of separable reflexive B-spaces. In order to do it, let us denoted Ψ the mapping defined by $\Psi: H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega), S \mapsto u_{S}$, where u_{S} is the unique solution of the following linear problem: find $u_{S} \in H_{0}^{1}(\Omega)$ such that, for all $v \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left(\phi^{\prime}(S)+\frac{\epsilon}{h}\right) \nabla u_{S} \nabla v d x=\int_{\Omega} g v d x-\int_{\Omega} f\left(\frac{S-u_{0}}{h}\right) v d x+\frac{\epsilon}{h} \int_{\Omega} \nabla u_{0} \nabla v d x . \tag{4}
\end{equation*}
$$

As soon as $h<\epsilon /(M+1)$, this linear problem is coercive in $H_{0}^{1}(\Omega)$. It is well-posed and Ψ exists. Choosing $v=u_{S}$ a test function, one gets that

$$
\begin{equation*}
\left\|u_{S_{n}}\right\|_{H_{0}^{1}(\Omega)} \leq C_{1}=C\left(\Omega,\|f\|_{\infty}, g, \epsilon, u_{0}, h\right), \tag{5}
\end{equation*}
$$

and Ψ conserve the closed ball $\bar{B}_{H_{0}^{1}(\Omega)}\left(0, C_{1}\right)$.
Let $\left(S_{n}\right)$ be a sequence that converges weakly in $H_{0}^{1}(\Omega)$ towards S. Up to a subsequence still denoted in the same way, it can be assumed that S_{n} converges strongly in $L^{2}(\Omega)$ and a.e.
in Ω. Furthermore, the functions ϕ^{\prime} and f are continuous and bounded, then owing to the theorem of Lebesgue, we can prove that, for all v in $H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} f\left(\frac{S_{n}-u_{0}}{h}\right) v d x \rightarrow \int_{\Omega} f\left(\frac{S-u_{0}}{h}\right) v d x \quad \text { and } \quad \phi^{\prime}\left(S_{n}\right) \nabla v \rightarrow \phi^{\prime}(S) \nabla v \quad\left(L^{2}(\Omega)\right)^{d} \tag{6}
\end{equation*}
$$

Moreover, according to (5), the sequence ($u_{S_{n}}$) is bounded in $H_{0}^{1}(\Omega)$. Thus, χ in $H_{0}^{1}(\Omega)$ exists, as well as a subsequence, still indexed by n, extracted from ($u_{S_{n}}$), such that, $u_{S_{n}}$ converges weakly in $H_{0}^{1}(\Omega)$ toward χ. Then, we have that

$$
\begin{equation*}
\nabla u_{S_{n}} \rightharpoonup \nabla \chi \quad \text { in }\left(L^{2}(\Omega)\right)^{d} \quad \text { and } \quad \nabla \frac{u_{S_{n}}-u_{0}}{h} \rightharpoonup \nabla \frac{\chi-u_{0}}{h} \quad \text { in }\left(L^{2}(\Omega)\right)^{d} \tag{7}
\end{equation*}
$$

Passing to the limits in (4) with S_{n} by using (6) and (7), we obtain that χ is a solution to problem (4) with S. By uniqueness of such a solution, one gets that $\chi=u_{S}$.

Thus by a compactness argument, all the sequences converge weakly in $H_{0}^{1}(\Omega)$ toward u_{S}, i.e. $u_{S_{n}} \rightharpoonup u_{S}$ weakly in $H_{0}^{1}(\Omega)$. Then the mapping Ψ is sequentially weakly weakly continuous in $H_{0}^{1}(\Omega)$. Thus the fixed point theorem of Schauder-Tikhonov proves that Ψ has at most a fixed point; i.e. there exists S in $H_{0}^{1}(\Omega)$ such that $u_{S}=S$ and a solution to (3) exists.

Let us prove now that this solution is unique. Let us consider \widehat{u} another solution of (3). Thus we obtain by subtraction, for all v in $H_{0}^{1}(\Omega)$,

$$
\begin{align*}
0= & \int_{\Omega}\left[f\left(\frac{u-u_{0}}{h}\right)-f\left(\frac{\widehat{u}-u_{0}}{h}\right)\right] v d x+\int_{\Omega}\left(\phi^{\prime}(u)+\frac{\epsilon}{h}\right) \nabla(u-\widehat{u}) \nabla v d x \\
& +\int_{\Omega}\left(\phi^{\prime}(u)-\phi^{\prime}(\widehat{u})\right) \nabla \hat{u} \nabla v d x . \tag{8}
\end{align*}
$$

For a giving $\mu>0$, let us denote by $p_{\mu}(r)=(r-\mu)^{+} / r ; p_{\mu}$ is non-decreasing Lipschitz function with $p_{\mu}^{\prime}(r)=\frac{\mu}{r^{2}} \mathbf{1}_{\{r>\mu\}}$.

Therefore, as $v=p_{\mu}(u-\widehat{u})$ is a suitable test function, its comes that

$$
\begin{aligned}
0= & \int_{\Omega}\left[f\left(\frac{u-u_{0}}{h}\right)-f\left(\frac{\widehat{u}-u_{0}}{h}\right)\right] p_{\mu}(u-\widehat{u}) d x+\mu \int_{\{u-\widehat{u}>\mu\}}\left(\phi^{\prime}(u)+\frac{\epsilon}{h}\right) \frac{|\nabla(u-\widehat{u})|^{2}}{|u-\widehat{u}|^{2}} d x \\
& +\mu \int_{\{u-\widehat{u}>\mu\}} \frac{\phi^{\prime}(u)-\phi^{\prime}(\widehat{u})}{|u-\widehat{u}|^{2}} \nabla \widehat{u} . \nabla(u-\widehat{u}) d x .
\end{aligned}
$$

Since f is a non-decreasing function and as $h \leq \epsilon /(M+1)$, it comes that

$$
\begin{aligned}
\int_{\{u-\widehat{u}>\mu\}} \frac{|\nabla(u-\widehat{u})|^{2}}{|u-\widehat{u}|^{2}} d x & \leq \int_{\{u-\widehat{u}>\mu\}} \frac{\left|\phi^{\prime}(u)-\phi^{\prime}(\widehat{u})\right|^{2}}{2|u-\widehat{u}|^{2}}|\nabla \hat{u}|^{2} d x+\int_{\{u-\widehat{u}>\mu\}} \frac{\mid \nabla\left(u-\left.\widehat{u}\right|^{2}\right)}{2|u-\widehat{u}|^{2}} d x \\
& \leq \int_{\{u-\widehat{u}>\mu\}} \frac{\left|\phi^{\prime}(u)-\phi^{\prime}(\widehat{u})\right|^{2}}{|u-\widehat{u}|^{2}}|\nabla \widehat{u}|^{2} d x \leq\left\|\phi^{\prime \prime}\right\|_{\infty} \int_{\Omega}|\nabla \widehat{u}|^{2} d x .
\end{aligned}
$$

Let us denote by $F_{\mu}(r)=\ln \left(1+(r-\mu)^{+} / \mu\right) . F_{\mu}$ is a Lipchitz-continuous function, $F_{\mu}(u-\widehat{u}) \in$ $H_{0}^{1}(\Omega)$ and one gets that

$$
\int_{\Omega}\left|\nabla F_{\mu}(u-\widehat{u})\right|^{2} d x \leq\left\|\phi^{\prime \prime}\right\|_{\infty} \int_{\Omega}|\nabla \widehat{u}|^{2} d x
$$

Thanks to Poincaré inequality, the sequence $\left(F_{\mu}(u-\widehat{u})\right)_{\mu}$ is bounded in $L^{2}(\Omega)$ independently of μ. Note that the sequence $\left(F_{1 / n}(u-\widehat{u})\right)_{n}$ is non-decreasing, and converges almost everywhere in $\mathbb{R} \cup\{+\infty\}$ to $+\infty \mathbf{1}_{\{u-\bar{u}>0\}}$. Hence, the theorem of Beppo Levi leads to meas $(\{u>\widehat{u}\})=0$. Then $(u-\widehat{u})^{+}=0$, i.e $u \leq \widehat{u}$.

Permutating u and \widehat{u} thereinbefore gives $\widehat{u} \leq u$ as well and the solution is unique.
Proposition 3. Under the hypothesis $\left(H_{1}\right)$ to $\left(H_{3}\right)$, if h is small enough $(h<\epsilon /(M+1)$), for any $g \in L^{2}(\Omega)$, there exists an element u in $H_{0}^{1}(\Omega)$ such that, for all v in $H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} f\left(\frac{u-u_{0}}{h}\right) v d x+\int_{\Omega} \nabla \phi(u) \nabla v d x+\epsilon \int_{\Omega} \nabla \frac{u-u_{0}}{h} \nabla v d x=\int_{\Omega} g v d x . \tag{9}
\end{equation*}
$$

This element is unique as soon as ϕ^{\prime} is a Lipschitz-continuous function.
Proof. The proof of the uniqueness result of the solution is identical to the one proposed previously.

Concerning the result of existence, consider for any positive $n, f_{n}=\max (-n, \min (n, f))$. The corresponding solutions, given by the above proposition, are denoted by u_{n}. Applying the test function $v=\left(u_{n}-u_{0}\right) / h$ to (3), one gets that

$$
\begin{aligned}
\int_{\Omega} & {\left[f_{n}\left(\frac{u_{n}-u_{0}}{h}\right)-f_{n}(0)\right] \frac{u_{n}-u_{0}}{h} d x+\int_{\Omega}\left[h \phi^{\prime}\left(u_{n}\right)+\epsilon\right]\left|\nabla \frac{u_{n}-u_{0}}{h}\right|^{2} d x } \\
& \leq \int_{\Omega}\left[g-f_{n}(0)\right] \frac{u_{n}-u_{0}}{h} d x-\int_{\Omega} \phi^{\prime}\left(u_{n}\right) \nabla u_{0} \nabla \frac{u_{n}-u_{0}}{h} d x \\
& \leq\left[\left\|g-f_{n}(0)\right\|_{L^{2}(\Omega)}+M\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}\right] \cdot\left\|\frac{u_{n}-u_{0}}{h}\right\|_{H_{0}^{1}(\Omega)} .
\end{aligned}
$$

Since f is non-decreasing, f_{n} too, $h<\epsilon /(M+1)$ and thanks to Poincare's inequality, one gets that

$$
\begin{equation*}
\left\|\frac{u_{n}-u_{0}}{h}\right\|_{H_{0}^{1}(\Omega)} \leq\|g\|_{L^{2}(\Omega)}+|f(0)| \sqrt{\operatorname{meas}(\Omega)}+M\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)} . \tag{10}
\end{equation*}
$$

Therefore, a sub-sequence still indexed by n can be extracted, such that u_{n} converges in $H_{0}^{1}(\Omega)$ weakly to u, strongly in $L^{2}(\Omega)$ and a.e. in Ω. Moreover, one has that

$$
\begin{equation*}
\left\|f_{n}\left(\frac{u_{n}-u_{0}}{h}\right)\right\|_{H_{0}^{1}(\Omega)} \leq\left\|f^{\prime}\right\|_{\infty}\left[\|g\|_{L^{2}(\Omega)}+|f(0)| \sqrt{\operatorname{meas}(\Omega)}+M\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}\right] . \tag{11}
\end{equation*}
$$

Since $f_{n}\left(\frac{u_{n}-u_{0}}{h}\right)$ converges a.e. to $f\left(\frac{u-u_{0}}{h}\right)$, it ensures that $f\left(u_{n}\right)$ converges in $L^{2}(\Omega)$ toward $f(u)$ (and weakly in $H^{1}(\Omega)$). Furthermore, since ϕ is a Lipschitz-continous function, $\phi\left(u_{n}\right)$ converges weakly to $\phi(u)$ in $L^{2}(\Omega)$, and, passing to the limits in the variational formulation stating u_{n}, one gets (9).

Inductively, the following result can be proved:

Theorem 4. Let us consider $N \in \mathbb{N}^{*}$ with $N>T(M+1) / \epsilon, h=T / N$ and $\left(g^{k}\right) \subset L^{2}(\Omega)$. Then, under the hypothesis $\left(H_{1}\right)-\left(H_{3}\right)$, there exists a sequence $\left(u^{k}\right)_{k}$ in $H_{0}^{1}(\Omega)$ with $u^{0}=u_{0}$ and such that, for all $v \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} f\left(\frac{u^{k+1}-u^{k}}{h}\right) v d x+\int_{\Omega} \nabla \phi\left(u^{k+1}\right) \nabla v d x+\epsilon \int_{\Omega} \nabla \frac{u^{k+1}-u^{k}}{h} \nabla v d x=\int_{\Omega} g^{k+1} v d x \tag{12}
\end{equation*}
$$

This sequence is unique as soon as ϕ^{\prime} is a Lipschitz-continuous function.

2.2. Existence of a solution

In order to prove the existence of a solution, let us introduce some notations. For any sequence v^{k}, let us denote in the sequel

$$
v^{h}=\sum_{k=0}^{N-1} v^{k+1} \mathbf{1}_{\left[k_{k}, t_{k+1}[\right.} \quad \text { and } \quad \vec{v}^{h}=\sum_{k=0}^{N-1}\left[\frac{v^{k+1}-v^{k}}{h}\left(t-t_{k}\right)+v^{k}\right] \mathbf{1}_{\left[t, t_{k+1}\right]},
$$

where $t_{k}=k h$ and

$$
g^{h}=\sum_{k=0}^{N-1} \frac{1}{h} \int_{k h}^{(k+1) h} g(t, \cdot) d t \mathbf{1}_{\left[t_{k}, t_{k+1}[\right.} .
$$

Lemma 5. Assume that $h<\epsilon /(M+1)$. Then,
(i) The sequence $\left(u^{h}\right)$ is bounded in $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $\left(\widetilde{u}^{h}\right)$ is bounded in $H^{1}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap$ $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$.
(ii) There exists $C>0$ such that for all t in $\left[0, T\left[,\left\|\widetilde{u}^{h}(t)-u^{h}(t)\right\|_{H_{0}^{1}(\Omega)} \leq C \sqrt{h}\right.\right.$.
(iii) There exists a set Z of full measure in $] 0, T$ such that, for any t in $Z, \partial_{t} \widetilde{u}^{h}(t)$ is bounded in $H_{0}^{1}(\Omega)$.

Proof. Thanks to (10), one has that

$$
\begin{equation*}
\left\|\frac{u^{k+1}-u^{k}}{h}\right\|_{H_{0}^{1}(\Omega)} \leq\left\|g^{k+1}\right\|_{L^{2}(\Omega)}+|f(0)| \sqrt{\operatorname{meas}(\Omega)}+M\left\|u^{k}\right\|_{H_{0}^{1}(\Omega)} \tag{13}
\end{equation*}
$$

and, if $k>0$,

$$
\begin{equation*}
\left\|\frac{u^{k+1}-u^{k}}{h}\right\|_{H_{0}^{1}(\Omega)} \leq\left\|g^{k+1}\right\|_{L^{2}(\Omega)}+C+M\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}+M h \sum_{i=0}^{k-1}\left\|\frac{u^{i+1}-u^{i}}{h}\right\|_{H_{0}^{1}(\Omega)} \tag{14}
\end{equation*}
$$

Then, one gets that

$$
\begin{aligned}
\sum_{k=0}^{n} h\left\|\frac{u^{k+1}-u^{k}}{h}\right\|_{H_{0}^{1}(\Omega)}^{2} & \leq 4 \sum_{k=0}^{n} h\left\|g^{k+1}\right\|_{L^{2}(\Omega)}^{2}+C\left(u_{0}\right) T+4 M^{2} h^{2} \sum_{k=1}^{n} h\left[\sum_{i=0}^{k-1}\left\|\frac{u^{i+1}-u^{i}}{h}\right\|_{H_{0}^{1}(\Omega)}\right]^{2} \\
& \leq C\left(g, u_{0}\right)+4 M^{2} T h \sum_{k=1}^{n} \sum_{i=0}^{k-1} h\left\|\frac{u^{i+1}-u^{i}}{h}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq C\left(g, u_{0}\right) e^{4 M^{2} T}
\end{aligned}
$$

thanks to the discrete Gronwall lemma. This yields

$$
\begin{equation*}
\sum_{k=0}^{N-1}\left\|u^{k+1}-u^{k}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq h C\left(g, u_{0}\right) e^{4 M^{2} T} \tag{15}
\end{equation*}
$$

and (i)-(ii) hold.
Moreover, (14) yields, for any $t \in] t_{k}, t_{k+1}[$, to

$$
\begin{equation*}
\left\|\partial_{t} \widetilde{u}^{h}(t)\right\|_{H_{0}^{1}(\Omega)}^{2} \leq 4\left\|g^{h}(t)\right\|_{L^{2}(\Omega)}^{2}+C\left(u_{0}\right)+4 M^{2} C\left(g, u_{0}\right) e^{4 M^{2} T} \tag{16}
\end{equation*}
$$

If moreover t belongs to the set of Lebesgue of g in $L^{2}\left(0, T ; L^{2}(\Omega)\right), \partial_{t} \widetilde{u}^{h}(t)$ is bounded in $H_{0}^{1}(\Omega)$ and (iii) holds.

Theorem 6. Under the hypotheses $\left(H_{1}\right)-\left(H_{4}\right)$, there exists u in $H^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$ such that, for all v in $H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} f\left(\partial_{t} u\right) v d x+\int_{\Omega} \nabla \phi(u) \nabla v d x \epsilon+\int_{\Omega} \nabla \partial_{t} u \nabla v d x=\int_{\Omega} g v d x \tag{17}
\end{equation*}
$$

with $u(0, \cdot)=u_{0}$.
Proof. Leading from Lemma 5-(i), there exists u in $H^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$, such that, up to a subsequences still denoted in the same way, one may assume that \widetilde{u}^{h} converges to u weakly in $H^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$. Then, for any t in $[0, T], \widetilde{u}^{h}(t)$ converges weakly in $H_{0}^{1}(\Omega)$ toward $u(t)$. Then, Lemma 5-(ii) ensures that $u^{h}(t)$ converges weakly to $u(t)$ in $H_{0}^{1}(\Omega)$. Moreover, since ϕ is a Lipschitz-countinuous function, $\phi\left(u^{h}(t)\right)$ converges weakly to $\phi(u(t))$ in $H_{0}^{1}(\Omega)$ too.

Thanks to Lemma 5-(iii), for any t in Z, up to a sub-sequence indexed by $h_{t}, \partial_{t} \widetilde{u}^{h_{t}}(t)$ converges weakly in $H_{0}^{1}(\Omega)$ towards a given $\xi(t)$ and strongly in $L^{2}(\Omega)$.

Then, there exists k such that (12) leads, for any $v \in H_{0}^{1}(\Omega)$, to

$$
\begin{equation*}
\int_{\Omega} f\left(\partial_{t} \widetilde{u}^{h_{t}}(t)\right) v d x+\int_{\Omega} \nabla \phi\left(u^{h_{t}}(t)\right) \nabla v d x+\epsilon \int_{\Omega} \nabla \partial_{t} \widetilde{u}^{h_{t}}(t) \nabla v d x=\int_{\Omega} g^{h_{t}}(t) v d x \tag{18}
\end{equation*}
$$

By passing to the limits in the above equation, on gets that $\xi(t)$ is a solution in in $H_{0}^{1}(\Omega)$ to the variational problem:

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega), \int_{\Omega} f(\xi(t)) v d x+\epsilon \int_{\Omega} \nabla \xi(t) \nabla v d x=\int_{\Omega} g v d x-\int_{\Omega} \phi^{\prime}(u(t)) \nabla u(t) \nabla v d x . \tag{19}
\end{equation*}
$$

Then, since f is non-decreasing, this implies that such a solution is unique. As $\partial_{t} \widetilde{u}^{h}(t)$ is a bounded sequence in $H_{0}^{1}(\Omega)$, one concludes that $\partial_{t} \widetilde{u}^{h}(t)$ converges toward $\xi(t)$ weakly in $H_{0}^{1}(\Omega)$.

Therefore, $\xi:] 0, T\left[\rightarrow H_{0}^{1}(\Omega)\right.$ is a weakly measurable function. Then, thanks to the theorem of Pettis ([9, p. 131]), it is a measurable function.

For any v in $H_{0}^{1}(\Omega), \int_{\Omega} \nabla \partial_{t} u^{h}(t) \nabla v d x$ converges a.e. in $] 0, T\left[\right.$ toward $\int_{\Omega} \nabla \xi(t) \nabla v d x$. Since $\left|\int_{\Omega} \nabla \partial_{t} \widetilde{u}^{h}(t) \nabla v d x\right| \leq\left\|\partial_{t} \widetilde{u}^{h}(t)\right\|_{H_{0}^{1}(\Omega)}\|v\|_{H_{0}^{1}(\Omega)}$, it is bounded in $L^{2}(0, T)$ and [7, Lemma 1.3, p.12] ensures that

$$
\forall \alpha \in L^{2}(0, T), \int_{0}^{T} \int_{\Omega} \alpha(t) \nabla \partial_{t} \widetilde{u}^{h}(t) \cdot \nabla v d x d t \rightarrow \int_{0}^{T} \int_{\Omega} \alpha(t) \nabla \xi(t) \cdot \nabla v d x d t
$$

Since $\left(\partial_{t} \widetilde{u}^{h}\right)$ is bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, an argument of density leads to the weak convergence in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ of $\partial_{t} \widetilde{u}^{h}$ toward ξ. Thus by uniqueness of the weak limit, one obtains that $\partial_{t} u=\xi$ and that there exists a solution.

§3. Application to Barenblatt's equation

As an application, let us return to the existence of a solution to Barenblatt's equation:

$$
f\left(\partial_{t} u\right)-\Delta u=g
$$

where $f(r)=r$ if $r>0$ and $f(r)=\alpha r(\alpha>0)$ if $r \leq 0$, with $\alpha \neq 1$ a priori.
Our method consists in passing to the limits in the pseudoparabolic problem (2) with respect to ϵ toward 0 , when $\phi=I d, g$ in $L^{2}(Q)$ and u_{0} in $H_{0}^{1}(\Omega)$.

By using the test function $v=\partial_{t} u_{\epsilon}$ in (2), we obtain, for any t, the following estimate:

$$
\begin{equation*}
\int_{\Omega \times] 0, t[} f\left(\partial_{t} u_{\epsilon}\right) \partial_{t} u_{\epsilon}+\epsilon\left|\nabla \partial_{t} u_{\epsilon}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{\epsilon}(t)\right|^{2} d x=\int_{\Omega \times] 0, t[} g \partial_{t} u_{\epsilon} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2} d x . \tag{20}
\end{equation*}
$$

Thus, the sequence $\left(u_{\epsilon}\right)$ is bounded in $H^{1}(Q) \cap L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ as well as $\left(f\left(\partial_{t} u_{\epsilon}\right)\right)$ in $L^{2}(Q)$. Indeed, for all t,

$$
\min (1, \alpha) \int_{] 0, t[\times \Omega}\left|\partial_{t} u_{\epsilon}\right|^{2} d x d t+\frac{1}{2} \int_{\Omega}\left|\nabla u_{\epsilon}(t)\right|^{2} d x \leq \frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2} d x+\int_{] 0, t[\times \Omega} g \partial_{t} u_{\epsilon} d x d t
$$

Up to a sub-sequence still indexed by ϵ, one assumes that there exists u in $H^{1}(Q) \cap$ $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$, weak limit in $H^{1}(Q)$ and weak-* limit in $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ of $\left(u_{\epsilon}\right)$; as well as χ, weak limit in $L^{2}(Q)$ of $f\left(\partial_{t} u_{\epsilon}\right)$.

On the one hand, one has $\chi-\Delta u=g$, i.e. $\partial_{t} u-\Delta u=g+\partial_{t} u-\chi:=h$. Since $h \in L^{2}(Q)$ with the initial condition in $H_{0}^{1}(\Omega)$, one gets

$$
\begin{equation*}
\int_{Q}\left|\partial_{t} u\right|^{2} d x d t+\frac{1}{2} \int_{\Omega}|\nabla u(T)|^{2} d x=\frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2} d x+\int_{Q}\left[g+\partial_{t} u-\chi\right] \partial_{t} u d x d t \tag{21}
\end{equation*}
$$

On the other hand, since $\left(u_{\epsilon}(T)\right)$ bounded in $H_{0}^{1}(\Omega)$ and as $u_{\epsilon}(T)$ converges toward $u(T)$ in $L^{2}(\Omega)$, it converges weakly in $H_{0}^{1}(\Omega)$ and passing to the limits in (20) yields

$$
\limsup _{\epsilon \rightarrow 0} \int_{Q} f\left(\partial_{t} u_{\epsilon}\right) \partial_{t} u_{\epsilon} d x d t+\frac{1}{2} \int_{\Omega}|\nabla u(T)|^{2} d x \leq \frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2} d x+\int_{Q} g \partial_{t} u d x d t .
$$

Thus, $\lim \sup \epsilon \rightarrow 0 \int_{Q} f\left(\partial_{t} u_{\epsilon}\right) \partial_{t} u_{\epsilon} d x d t \leq \int_{Q} \chi \partial_{t} u d x d t$. Then, according to H. Brézis [6, Prop. 2.5, p. 27], $\chi=f\left(\partial_{t} u\right)$ and u is a solution to the problem.

References

[1] Antontsev, S. N., Gagneux, G., Luce, R., and Vallet, G. New unilateral problems in stratigraphy. M2AN Math. Model. Numer. Anal. 40, 4 (2006), 765-784.
[2] Antontsev, S. N., Gagneux, G., Luce, R., and Vallet, G. A non-standard free boundary problem arising from stratigraphy. Anal. Appl. (Singap.) 4, 3 (2006), 209-236.
[3] Antontsev, S. N., Gagneux, G., Luce, R., and Vallet, G. On a pseudoparabolic problem with constraint. Differential Integral Equations 19, 12 (2006), 1391-1412.
[4] Antontsev, S. N., Gagneux, G., Mokrani, A., and Vallet, G. Stratigraphic modelling by the way of a pseudoparabolic problem with constraint. Advances in Mathematical Science and Applications (To appear).
[5] Barenblatt, G. I. Similarity, self-similarity, and intermediate asymptotics. New York, London: Consultants Bureau. XVII (1982).
[6] Brézis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies. 5. Notas de matematica (50). Amsterdam-London: North-Holland Publishing Comp.; New York: American Elsevier Publishing Comp., Inc. 183 p., 1973.
[7] Lions, J.-L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.
[8] Vallet, G. Sur une loi de conservation issue de la géologie. C. R. Math. Acad. Sci. Paris 337, 8 (2003), 559-564.
[9] Yosida, K. Functional analysis, fourth ed. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 123.

Ngonn Seam and Guy Vallet
LMA, University of Pau
IPRA BP 1155 Pau Cedex (France)
seamngonn@yahoo.fr and guy.vallet@univ-pau.fr

