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EXISTENCE OF A SOLUTION TO A CLASS
OF PSEUDOPARABOLIC PROBLEMS

Ngonn Seam and Guy Vallet

Abstract. In this paper we are interested, on the one hand, in problems involving a
nonlinearity of form f (∂tu) ; on the other hand, we are interested in Barenblatt’s type
equations [5] too.

By the way of an implicit time-discretization, we would prove the existence of a
solution to the following problem: f (∂ut)−∆φ(u)−ε∆∂ut = gwith a Lipschitz-continuous
function φ.
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§1. Introduction

In this paper, we are interested in the mathematical analysis of the pseudoparabolic Cauchy
problem:

f (∂tu) − ∆φ (u) − ε∆∂tu = g, u(0, .) = u0, (1)

where f and φ are Lipschitz-continuous functions with f non-decreasing.
This study has its roots in the analysis of problems with a nonlinearity of form f (∂tu).

Such a term has been previously introduced by G. I. Barenblatt in [5] for elasto-plastic porous
media. It has been revisited by S. N. Antontsev et al. [1, 2, 3, 4] or G. Vallet [8] concerning
a constrained stratigraphic models in geology.

An implicit time-discretization scheme is used to prove the existence of a solution in a
suitable functional space. As an application, by passing to the limits with respect to ε, one
proves the existence of a solution to the Barenblatt’s equation.

Let us consider in the sequel a bounded domain Ω ⊂ Rd with a Lipschitz-boundary Γ. For
any T � 0, let us denote Q a cylinder defined by Q := ]0,T [ ×Ω.
Moreover, one assumes that:

f is a non-decreasing Lipschitz-continuous function, (H1)

φ is a C1(R)-Lipschitz-continuous function such that φ(0) = 0, (H2)

ε > 0 and u0 ∈ H1
0(Ω), (H3)

g ∈ L2 (Q) . (H4)

We shall write M = ||φ′||∞.
Let us define now what is a solution to our pseudoparabolic problem.
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Definition 1. A solution to (1) is any u ∈ H1(0,T,H1
0(Ω)

)
such that u(0, ·) = u0 and, for all v

in H1
0(Ω), ∫

Ω

{
f (∂tu) v + φ′ (u)∇u∇v + ε∇∂tu∇v

}
dx =

∫
Ω

gv dx. (2)

The main result of this paper is that

Theorem 1. There exists a solution to Problem (1).

§2. Existence of a solution

2.1. Semi-discretized processes

Consider a positive integer N and denote by h = T/N. In this section, we are interested
in proving the existence of the sequence of approximation by the way of an implicit semi-
discretization scheme.

Each step of the scheme consist in solving a nonlinear elliptic problem. In a first par,
the case of a bounded f would be consider. Then, thanks to some truncation arguments, the
general case would be obtained.

Proposition 2. Under the hypothesis (H1) to (H3) and by assuming moreover that f is a
bounded function, if h is small enough (h < ε/(M + 1)), for any g ∈ L2(Ω), there exists an
element u in H1

0(Ω) such that, for all v in H1
0(Ω),∫

Ω

f
(u − u0

h

)
v dx +

∫
Ω

φ′ (u)∇u∇v, dx + ε

∫
Ω

∇
u − u0

h
∇v dx =

∫
Ω

gv dx. (3)

This element is unique as soon as φ′ is a Lipschitz-continuous function.

Proof. The existence of a solution of (2) is classically obtained by using the Schauder-
Tikhonov fixed point theorem in the framework of separable reflexive B-spaces. In order
to do it, let us denoted Ψ the mapping defined by Ψ : H1

0(Ω) → H1
0(Ω), S 7→ uS , where uS

is the unique solution of the following linear problem: find uS ∈ H1
0 (Ω) such that, for all

v ∈ H1
0(Ω),∫

Ω

(
φ′ (S ) +

ε

h

)
∇uS∇v dx =

∫
Ω

gv dx −
∫

Ω

f
(S − u0

h

)
v dx +

ε

h

∫
Ω

∇u0∇v dx. (4)

As soon as h < ε/(M + 1), this linear problem is coercive in H1
0(Ω). It is well-posed and Ψ

exists. Choosing v = uS a test function, one gets that∥∥∥uS n

∥∥∥
H1

0 (Ω) ≤ C1 = C
(
Ω, ‖ f ‖∞ , g, ε, u0, h

)
, (5)

and Ψ conserve the closed ball B̄H1
0 (Ω)(0,C1).

Let (S n) be a sequence that converges weakly in H1
0(Ω) towards S . Up to a subsequence

still denoted in the same way, it can be assumed that S n converges strongly in L2(Ω) and a.e.
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in Ω. Furthermore, the functions φ′ and f are continuous and bounded, then owing to the
theorem of Lebesgue, we can prove that, for all v in H1

0(Ω),∫
Ω

f
(S n − u0

h

)
v dx→

∫
Ω

f
(S − u0

h

)
v dx and φ′ (S n)∇v→ φ′ (S )∇v

(
L2(Ω)

)d
, (6)

Moreover, according to (5), the sequence
(
uS n

)
is bounded in H1

0(Ω). Thus, χ in H1
0(Ω) exists,

as well as a subsequence, still indexed by n, extracted from
(
uS n

)
, such that, uS n converges

weakly in H1
0(Ω) toward χ. Then, we have that

∇uS n ⇀ ∇χ in
(
L2(Ω)

)d
and ∇

uS n − u0

h
⇀ ∇

χ − u0

h
in

(
L2(Ω)

)d
. (7)

Passing to the limits in (4) with S n by using (6) and (7), we obtain that χ is a solution to
problem (4) with S . By uniqueness of such a solution, one gets that χ = uS .

Thus by a compactness argument, all the sequences converge weakly in H1
0(Ω) toward

uS , i.e. uS n ⇀ uS weakly in H1
0(Ω). Then the mapping Ψ is sequentially weakly weakly

continuous in H1
0(Ω). Thus the fixed point theorem of Schauder-Tikhonov proves that Ψ has

at most a fixed point; i.e. there exists S in H1
0(Ω) such that uS = S and a solution to (3) exists.

Let us prove now that this solution is unique. Let us consider û another solution of (3).
Thus we obtain by subtraction, for all v in H1

0(Ω),

0 =

∫
Ω

[
f
(u − u0

h

)
− f

(
û − u0

h

)]
v dx +

∫
Ω

(
φ′ (u) +

ε

h

)
∇

(
u − û

)
∇v dx

+

∫
Ω

(
φ′ (u) − φ′

(̂
u
))
∇û∇v dx.

(8)

For a giving µ � 0, let us denote by pµ(r) = (r − µ)+/r; pµ is non-decreasing Lipschitz
function with p′µ(r) =

µ
r2 1{r�µ}.

Therefore, as v = pµ
(
u − û

)
is a suitable test function, its comes that

0 =

∫
Ω

[
f
(u − u0

h

)
− f

(
û − u0

h

)]
pµ

(
u − û

)
dx + µ

∫
{u−û>µ}

(
φ′ (u) +

ε

h

) ∣∣∣∇ (
u − û

)∣∣∣2
|u − û|2

dx

+ µ

∫
{u−û>µ}

φ′ (u) − φ′
(̂
u
)

|u − û|2
∇û.∇

(
u − û

)
dx.

Since f is a non-decreasing function and as h � ε/(M + 1), it comes that∫
{u−û>µ}

∣∣∣∇ (
u − û

)∣∣∣2
|u − û|2

dx �
∫
{u−û>µ}

|φ′ (u) − φ′
(̂
u)

∣∣∣2
2|u − û|2

|∇û|2dx +

∫
{u−û>µ}

|∇(u − û|2)
2|u − û|2

dx

�

∫
{u−û>µ}

|φ′ (u) − φ′
(̂
u)

∣∣∣2
|u − û|2

|∇û|2dx � ||φ′′||∞

∫
Ω

|∇û|2dx.

Let us denote by Fµ(r) = ln (1 + (r − µ)+/µ). Fµ is a Lipchitz-continuous function, Fµ
(
u − û

)
∈

H1
0(Ω) and one gets that ∫

Ω

∣∣∣∇Fµ
(
u − û

)∣∣∣2 dx �
∥∥∥φ′′∥∥∥

∞

∫
Ω

|∇û|2 dx.
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Thanks to Poincaré inequality, the sequence
(
Fµ

(
u − û

))
µ

is bounded in L2(Ω) indepen-

dently of µ. Note that the sequence
(
F1/n

(
u − û

) )
n is non-decreasing, and converges al-

most everywhere in R ∪ {+∞} to +∞ 1{u−û�0}. Hence, the theorem of Beppo Levi leads to
meas

(
{u > û}

)
= 0. Then

(
u − û

)+
= 0, i.e u � û.

Permutating u and û thereinbefore gives û � u as well and the solution is unique. �

Proposition 3. Under the hypothesis (H1) to (H3), if h is small enough (h < ε/(M + 1)), for
any g ∈ L2(Ω), there exists an element u in H1

0(Ω) such that, for all v in H1
0(Ω),∫

Ω

f
(u − u0

h

)
v dx +

∫
Ω

∇φ (u)∇v dx + ε

∫
Ω

∇
u − u0

h
∇v dx =

∫
Ω

gv dx. (9)

This element is unique as soon as φ′ is a Lipschitz-continuous function.

Proof. The proof of the uniqueness result of the solution is identical to the one proposed
previously.

Concerning the result of existence, consider for any positive n, fn = max (−n,min (n, f )).
The corresponding solutions, given by the above proposition, are denoted by un. Applying
the test function v = (un − u0)/h to (3), one gets that∫

Ω

[
fn

(un − u0

h

)
− fn(0)

] un − u0

h
dx +

∫
Ω

[hφ′ (un) + ε]
∣∣∣∣∣∇un − u0

h

∣∣∣∣∣2 dx

≤

∫
Ω

[g − fn(0)]
un − u0

h
dx −

∫
Ω

φ′ (un)∇u0∇
un − u0

h
dx

≤
[
‖g − fn(0)‖L2(Ω) + M ‖u0‖H1

0 (Ω)

]
.

∥∥∥∥∥un − u0

h

∥∥∥∥∥
H1

0 (Ω)
.

Since f is non-decreasing, fn too, h < ε/(M + 1) and thanks to Poincaré’s inequality, one gets
that ∥∥∥∥∥un − u0

h

∥∥∥∥∥
H1

0 (Ω)
≤ ‖g‖L2(Ω) + | f (0)|

√
meas(Ω) + M ‖u0‖H1

0 (Ω) . (10)

Therefore, a sub-sequence still indexed by n can be extracted, such that un converges in
H1

0(Ω) weakly to u, strongly in L2(Ω) and a.e. in Ω. Moreover, one has that∥∥∥∥∥ fn(
un − u0

h
)
∥∥∥∥∥

H1
0 (Ω)
≤

∥∥∥ f ′
∥∥∥
∞

[
‖g‖L2(Ω) + | f (0)|

√
meas(Ω) + M ‖u0‖H1

0 (Ω)

]
. (11)

Since fn( un−u0
h ) converges a.e. to f ( u−u0

h ), it ensures that f (un) converges in L2(Ω) toward
f (u) (and weakly in H1(Ω)). Furthermore, since φ is a Lipschitz-continous function, φ(un)
converges weakly to φ(u) in L2(Ω), and, passing to the limits in the variational formulation
stating un, one gets (9). �

Inductively, the following result can be proved:
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Theorem 4. Let us consider N ∈ N∗ with N > T (M + 1)/ε, h = T/N and (gk) ⊂ L2(Ω).
Then, under the hypothesis (H1)–(H3), there exists a sequence

(
uk)

k in H1
0(Ω) with u0 = u0

and such that, for all v ∈ H1
0(Ω),∫

Ω

f
(

uk+1 − uk

h

)
v dx +

∫
Ω

∇φ
(
uk+1

)
∇v dx + ε

∫
Ω

∇
uk+1 − uk

h
∇v dx =

∫
Ω

gk+1v dx. (12)

This sequence is unique as soon as φ′ is a Lipschitz-continuous function.

2.2. Existence of a solution
In order to prove the existence of a solution, let us introduce some notations. For any sequence
vk, let us denote in the sequel

vh =

N−1∑
k=0

vk+11[tk ,tk+1[ and ṽh =

N−1∑
k=0

[
vk+1 − vk

h
(t − tk) + vk

]
1[tk ,tk+1[,

where tk = kh and

gh =

N−1∑
k=0

1
h

∫ (k+1)h

kh
g(t, ·)dt 1[tk ,tk+1[.

Lemma 5. Assume that h < ε/(M + 1). Then,

(i) The sequence
(
uh) is bounded in L∞

(
0,T ; H1

0(Ω)
)

and
(̃
uh) is bounded in H1(0,T ; H1

0(Ω))∩
L∞

(
0,T ; H1

0(Ω)
)
.

(ii) There exists C � 0 such that for all t in [0,T [,
∥∥∥̃uh(t) − uh(t)

∥∥∥
H1

0 (Ω) � C
√

h.

(iii) There exists a set Z of full measure in ]0,T [ such that, for any t in Z, ∂tũh(t) is bounded
in H1

0(Ω).

Proof. Thanks to (10), one has that∥∥∥∥∥∥uk+1 − uk

h

∥∥∥∥∥∥
H1

0 (Ω)
≤

∥∥∥gk+1
∥∥∥

L2(Ω) + | f (0)|
√

meas(Ω) + M
∥∥∥uk

∥∥∥
H1

0 (Ω) , (13)

and, if k > 0,∥∥∥∥∥∥uk+1 − uk

h

∥∥∥∥∥∥
H1

0 (Ω)
≤

∥∥∥gk+1
∥∥∥

L2(Ω) + C + M ‖u0‖H1
0 (Ω) + Mh

k−1∑
i=0

∥∥∥∥∥∥ui+1 − ui

h

∥∥∥∥∥∥
H1

0 (Ω)
. (14)

Then, one gets that

n∑
k=0

h

∥∥∥∥∥∥uk+1 − uk

h

∥∥∥∥∥∥2

H1
0 (Ω)
≤ 4

n∑
k=0

h
∥∥∥gk+1

∥∥∥2
L2(Ω) + C(u0)T + 4M2h2

n∑
k=1

h

 k−1∑
i=0

∥∥∥∥∥∥ui+1 − ui

h

∥∥∥∥∥∥
H1

0 (Ω)


2

≤ C(g, u0) + 4M2Th
n∑

k=1

k−1∑
i=0

h

∥∥∥∥∥∥ui+1 − ui

h

∥∥∥∥∥∥2

H1
0 (Ω)
≤ C(g, u0)e4M2T ,
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thanks to the discrete Gronwall lemma. This yields

N−1∑
k=0

∥∥∥uk+1 − uk
∥∥∥2

H1
0 (Ω) ≤ hC(g, u0)e4M2T , (15)

and (i)–(ii) hold.
Moreover, (14) yields, for any t ∈ ]tk, tk+1[, to∥∥∥∂tũh(t)

∥∥∥2
H1

0 (Ω) ≤ 4
∥∥∥gh(t)

∥∥∥2
L2(Ω) + C(u0) + 4M2C(g, u0)e4M2T . (16)

If moreover t belongs to the set of Lebesgue of g in L2(0,T ; L2(Ω)), ∂tũh(t) is bounded in
H1

0(Ω) and (iii) holds. �

Theorem 6. Under the hypotheses (H1)–(H4), there exists u in H1
(
0,T ; H1

0(Ω)
)

such that,
for all v in H1

0(Ω),∫
Ω

f (∂tu) v dx +

∫
Ω

∇φ (u)∇v dxε +

∫
Ω

∇∂tu∇vdx =

∫
Ω

gv dx, (17)

with u(0, ·) = u0.

Proof. Leading from Lemma 5-(i), there exists u in H1(0,T ; H1
0(Ω)

)
, such that, up to a sub-

sequences still denoted in the same way, one may assume that ũh converges to u weakly in
H1(0,T ; H1

0(Ω)
)
. Then, for any t in [0,T ], ũh(t) converges weakly in H1

0(Ω) toward u(t).
Then, Lemma 5-(ii) ensures that uh(t) converges weakly to u(t) in H1

0(Ω). Moreover, since φ
is a Lipschitz-countinuous function, φ(uh(t)) converges weakly to φ(u(t)) in H1

0(Ω) too.
Thanks to Lemma 5-(iii), for any t in Z, up to a sub-sequence indexed by ht, ∂tũht (t)

converges weakly in H1
0(Ω) towards a given ξ(t) and strongly in L2(Ω).

Then, there exists k such that (12) leads, for any v ∈ H1
0(Ω), to∫

Ω

f
(
∂tũht (t)

)
v dx +

∫
Ω

∇φ
(
uht (t)

)
∇v dx + ε

∫
Ω

∇∂tũht (t)∇v dx =

∫
Ω

ght (t)v dx. (18)

By passing to the limits in the above equation, on gets that ξ(t) is a solution in in H1
0(Ω)

to the variational problem:

∀v ∈ H1
0(Ω),

∫
Ω

f (ξ(t)) v dx + ε

∫
Ω

∇ξ(t)∇v dx =

∫
Ω

gvdx −
∫

Ω

φ′ (u(t))∇u(t)∇v dx. (19)

Then, since f is non-decreasing, this implies that such a solution is unique. As ∂tũh(t) is
a bounded sequence in H1

0(Ω), one concludes that ∂tũh(t) converges toward ξ(t) weakly in
H1

0(Ω).

Therefore, ξ : ]0,T [ → H1
0(Ω) is a weakly measurable function. Then, thanks to the

theorem of Pettis ([9, p. 131]), it is a measurable function.
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For any v in H1
0(Ω),

∫
Ω
∇∂tuh(t)∇v dx converges a.e. in ]0,T [ toward

∫
Ω
∇ξ(t)∇v dx. Since∣∣∣∫

Ω
∇∂tũh(t)∇v dx

∣∣∣ ≤ ∥∥∥∂tũh(t)
∥∥∥

H1
0 (Ω) ‖v‖H1

0 (Ω), it is bounded in L2 (0,T ) and [7, Lemma 1.3,
p.12] ensures that

∀α ∈ L2(0,T ),
∫ T

0

∫
Ω

α(t)∇∂tũh(t).∇v dx dt →
∫ T

0

∫
Ω

α(t)∇ξ(t).∇v dx dt.

Since (∂tũh) is bounded in L2(0,T ; H1
0(Ω)

)
, an argument of density leads to the weak

convergence in L2(0,T ; H1
0(Ω)

)
of ∂tũh toward ξ. Thus by uniqueness of the weak limit, one

obtains that ∂tu = ξ and that there exists a solution. �

§3. Application to Barenblatt’s equation

As an application, let us return to the existence of a solution to Barenblatt’s equation:

f (∂tu) − ∆u = g,

where f (r) = r if r > 0 and f (r) = αr (α > 0) if r ≤ 0, with α , 1 a priori.

Our method consists in passing to the limits in the pseudoparabolic problem (2) with
respect to ε toward 0, when φ = Id, g in L2(Q) and u0 in H1

0(Ω).
By using the test function v = ∂tuε in (2), we obtain, for any t, the following estimate:∫

Ω×]0,t[
f (∂tuε)∂tuε+ε|∇∂tuε |2 dx+

1
2

∫
Ω

|∇uε(t)|2 dx =

∫
Ω×]0,t[

g∂tuε dx+
1
2

∫
Ω

|∇u0|
2 dx. (20)

Thus, the sequence (uε) is bounded in H1(Q)∩L∞(0,T ; H1
0(Ω)) as well as

(
f (∂tuε)

)
in L2(Q).

Indeed, for all t,

min(1, α)
∫

]0,t[×Ω

|∂tuε |2 dx dt +
1
2

∫
Ω

|∇uε(t)|2 dx ≤
1
2

∫
Ω

|∇u0|
2 dx +

∫
]0,t[×Ω

g∂tuε dx dt.

Up to a sub-sequence still indexed by ε, one assumes that there exists u in H1(Q) ∩
L∞(0,T ; H1

0(Ω)), weak limit in H1(Q) and weak-* limit in L∞(0,T ; H1
0(Ω)) of (uε); as well as

χ, weak limit in L2(Q) of f (∂tuε).
On the one hand, one has χ − ∆u = g, i.e. ∂tu − ∆u = g + ∂tu − χ := h. Since h ∈ L2(Q)

with the initial condition in H1
0(Ω), one gets∫

Q
|∂tu|2 dx dt +

1
2

∫
Ω

|∇u(T )|2 dx =
1
2

∫
Ω

|∇u0|
2 dx +

∫
Q

[g + ∂tu − χ]∂tu dx dt. (21)

On the other hand, since (uε(T )) bounded in H1
0(Ω) and as uε(T ) converges toward u(T )

in L2(Ω), it converges weakly in H1
0(Ω) and passing to the limits in (20) yields

lim sup
ε→0

∫
Q

f (∂tuε)∂tuε dx dt +
1
2

∫
Ω

|∇u(T )|2 dx ≤
1
2

∫
Ω

|∇u0|
2 dx +

∫
Q
g∂tu dx dt.

Thus, lim sup ε → 0
∫

Q f (∂tuε)∂tuε dx dt ≤
∫

Q χ∂tu dx dt. Then, according to H. Brézis
[6, Prop. 2.5, p. 27], χ = f (∂tu) and u is a solution to the problem.
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