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EXISTENCE OF A SOLUTION TO A CLASS
OF PSEUDOPARABOLIC PROBLEMS

Ngonn Seam and Guy Vallet

Abstract. In this paper we are interested, on the one hand, in problems involving a
nonlinearity of form f(0,u) ; on the other hand, we are interested in Barenblatt’s type
equations [5] too.

By the way of an implicit time-discretization, we would prove the existence of a
solution to the following problem: f (du,)—A¢(u)—€eAdu, = g with a Lipschitz-continuous
function ¢.
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§1. Introduction

In this paper, we are interested in the mathematical analysis of the pseudoparabolic Cauchy
problem:

J(@Ou) — Ap (u) — eAdu = g, u(0,.) = uo, ey

where f and ¢ are Lipschitz-continuous functions with f non-decreasing.

This study has its roots in the analysis of problems with a nonlinearity of form f(d,u).
Such a term has been previously introduced by G. I. Barenblatt in [5] for elasto-plastic porous
media. It has been revisited by S. N. Antontsev et al. [1, 2, 3, 4] or G. Vallet [8] concerning
a constrained stratigraphic models in geology.

An implicit time-discretization scheme is used to prove the existence of a solution in a
suitable functional space. As an application, by passing to the limits with respect to €, one
proves the existence of a solution to the Barenblatt’s equation.

Let us consider in the sequel a bounded domain Q ¢ R¢ with a Lipschitz-boundary I. For
any 7 > 0, let us denote Q a cylinder defined by Q := ]0, T[ x Q.
Moreover, one assumes that:

f is a non-decreasing Lipschitz-continuous function, (Hy)
¢gisaC ! (R)-Lipschitz-continuous function such that ¢(0) = 0, (H,)
e > 0and uy € Hy(Q), (H3)

geL*(Q). (H)

We shall write M = ||¢'||co.
Let us define now what is a solution to our pseudoparabolic problem.
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Definition 1. A solution to (1) is any u € H'(0, T, Hé (©)) such that u(0, -) = ug and, for all v
in H\(Q),

f {f @uyv+¢' () VuVv + eVOuVv) dx = f gvdx. 2)
Q Q

The main result of this paper is that

Theorem 1. There exists a solution to Problem (1).

§2. Existence of a solution

2.1. Semi-discretized processes

Consider a positive integer N and denote by # = T/N. In this section, we are interested
in proving the existence of the sequence of approximation by the way of an implicit semi-
discretization scheme.

Each step of the scheme consist in solving a nonlinear elliptic problem. In a first par,
the case of a bounded f would be consider. Then, thanks to some truncation arguments, the
general case would be obtained.

Proposition 2. Under the hypothesis (Hy) to (H3) and by assuming moreover that f is a
bounded function, if h is small enough (h < €/(M + 1)), for any g € L*(Q), there exists an
element u in H(l] (Q) such that, for all vin H('] (Q),

ff(u_uo)vdx+f¢’(u)Vqu,dx+erM_MOVvdx=fgvdx~ €)
o 7 o Q h Q

This element is unique as soon as ¢’ is a Lipschitz-continuous function.

Proof. The existence of a solution of (2) is classically obtained by using the Schauder-
Tikhonov fixed point theorem in the framework of separable reflexive B-spaces. In order
to do it, let us denoted ¥ the mapping defined by ¥ : Hé «Q) — Hé(Q), S +— ug, where ug
is the unique solution of the following linear problem: find ug € HOl () such that, for all
vE H(l) (Q),

L(¢’(S)+%)Vuvadx:Lgvdx—j;f(s;Mo)vdx+§LVrovdx. O

As soon as h < €/(M + 1), this linear problem is coercive in H(l)(Q). It is well-posed and ¥
exists. Choosing v = ug a test function, one gets that

”uS””Hé(Q) < Cl = C(Q’”f”oo’g5 €, l/l(),]’l), (5)

and ¥ conserve the closed ball BHé(Q)(O, Cy).

Let (S,) be a sequence that converges weakly in Hé(Q) towards S. Up to a subsequence
still denoted in the same way, it can be assumed that S, converges strongly in L>(Q2) and a.e.
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in Q. Furthermore, the functions ¢’ and f are continuous and bounded, then owing to the
theorem of Lebesgue, we can prove that, for all v in Hé Q),
d

[ ot [(E5%)oar ma wisovemg v @@), ©

Moreover, according to (5), the sequence (us, ) is bounded in Hé (Q). Thus, y in HO1 (Q) exists,
as well as a subsequence, still indexed by n, extracted from (us, ), such that, ug, converges
weakly in H;(Q) toward y. Then, we have that
IR . 2.0 \¢ Us, —Uo X —Uo
Vus — Vy in (L (Q)) and V= v
Passing to the limits in (4) with S, by using (6) and (7), we obtain that y is a solution to
problem (4) with S. By uniqueness of such a solution, one gets that y = ug.

Thus by a compactness argument, all the sequences converge weakly in Hé(Q) toward
us, i.e. us, — ug weakly in H(l)(Q). Then the mapping ¥ is sequentially weakly weakly
continuous in HO1 (). Thus the fixed point theorem of Schauder-Tikhonov proves that ¥ has
at most a fixed point; i.e. there exists S in H(l) () such that ug = S and a solution to (3) exists.

Let us prove now that this solution is unique. Let us consider u another solution of (3).
Thus we obtain by subtraction, for all v in Hj(€),

0= fg[f(u_huo)—f(ﬁ_huo)}vdx+L(¢'(u)+;)V(u—?DVvdx

+ f (@ () — ¢ (@) VaVodx.
Q

d

in (LZ(Q)) @)

®)

For a giving 4 > 0, let us denote by p,(r) = (r—u)*/r; p, is non-decreasing Lipschitz
function with p/(r) = 51,
Therefore, as v = p, (u —u) is a suitable test function, its comes that

— — I
0= fg[f(u_hu())—f(u_huo)}py(u—md)Hﬂj{;g>ﬂ}(¢'(u)+;)%dx

+,uf MVIZV(M—TI)dx.
{u—u>p}

lu —

Since f is a non-decreasing function and as & < €/(M + 1), it comes that

¥ u—f W w-s @ V- 7)
Sy T =) T [ S

. f ' () — ¢ @)
- {u—u>u} |u—7ﬂ2

Let us denote by F,(r) = In (1 + (r — u)* /). F,, is a Lipchitz-continuous function, F, (u —u) €

H}(€) and one gets that
f Vi dx.
< Ja

Valdx < 16"l f Vildx.
Q

f VF, (u-) dx < ||¢”
Q
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Thanks to Poincaré inequality, the sequence (F# (u —TD)ﬂ is bounded in L*(Q) indepen-

dently of u. Note that the sequence (Fi/, (u—u)), is non-decreasing, and converges al-
most everywhere in R U {400} to +o01 {u-m-0}- Hence, the theorem of Beppo Levi leads to

meas ({u >u}) = 0. Then (u —u)" =0, i.eu <.
Permutating u and u thereinbefore gives u < u as well and the solution is unique. O

Proposition 3. Under the hypothesis (H}) to (H3), if h is small enough (h < €/(M + 1)), for
any g € L*(Q), there exists an element u in Hé(Q) such that, for all vin Hé(Q),

ff(u—uo)vdx+fV¢(M)Vvdx+6fvu_u0Vvdx=fgvdx~ ©
a h Q Q h e

This element is unique as soon as ¢’ is a Lipschitz-continuous function.

Proof. The proof of the uniqueness result of the solution is identical to the one proposed
previously.

Concerning the result of existence, consider for any positive n, f, = max (—n, min (n, f)).
The corresponding solutions, given by the above proposition, are denoted by u,. Applying
the test function v = (u,, — up)/h to (3), one gets that

fg[ﬂ(@)—fn(m] i dx+js;[/’l¢/(un)+g]

Up — U

sfwamm - w—fﬁwuww
Q Q

2
U, — Uy
v2 dx

Uy — Uy dx

Up — Up
h

< [Ilg = faO)ll 2 + M ||“°”H<'>(Q>] : H©@
0

Since f is non-decreasing, f;, too, h < €/(M + 1) and thanks to Poincaré’s inequality, one gets

that

Uy, — Ug
h

o < gl + 1f(O)] Ymeas(€2) + M [luolly: q) - (10)
0

Therefore, a sub-sequence still indexed by n can be extracted, such that u, converges in
Hé (Q) weakly to u, strongly in L*(Q) and a.e. in Q. Moreover, one has that

Uy — Ugy

I <|

fil PNl [1glliz) + 17O Vimeas(@) + Mol | . (1)

HY©)
Since f,(*5) converges a.e. to f(*5*), it ensures that f (u,) converges in L*(Q) toward
f(u) (and weakly in H'(Q)). Furthermore, since ¢ is a Lipschitz-continous function, ¢(u,)
converges weakly to ¢(u) in L?(Q), and, passing to the limits in the variational formulation
stating u,, one gets (9). O

Inductively, the following result can be proved:
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Theorem 4. Let us consider N € N* with N > T(M + 1)/, h = T/N and (¢*) c L*(Q).
Then, under the hypothesis (H)—(H3), there exists a sequence (uk)k in Hé (Q) with u® = up
and such that, for all v € H(])(Q),

Wk WKk
ff(T)vdx+fV¢(uk+l)Vvdx+erTVvdx=fgk”vdx. (12)
Q Q Q Q

This sequence is unique as soon as ¢’ is a Lipschitz-continuous function.

2.2. Existence of a solution

In order to prove the existence of a solution, let us introduce some notations. For any sequence
v¥, let us denote in the sequel

N- N=Ip ket
Z 1[fk Tt [ and U = Z [ (t -+ U l[tk»tkﬂ[’

k=0 k=0

where #;, = kh and
N-1

1 [UrDh
E f g(t’ -)dt l[tka[kﬂ['
k=0

Lemma 5. Assume that h < €/(M + 1). Then,

(i) The sequence (u") is bounded in L*(0, T} H(Q)) and (@) is bounded in H'(0, T Hy(Q)N
L=(0,T; Hy ().

(ii) There exists C > 0 such that for all t in [0, T, Hﬁh(t) - uh(t)”Hl(g) < Cvh
0

(iii) There exists a set Z of full measure in 10, T[ such that, for any t in Z, 0,W'(t) is bounded

in H\(Q).
Proof. Thanks to (10), one has that
ol 65 |20, + 1F (O] V/meas(Q) + M [Ju"| (13)
h =19 g Hy@)”
HY (@
and, if kK > 0,
k+1 k k=11 ix i
ut —u —u
p <Nl N2y + € + Mlluollzgy ey + Mt Z (14)
HY(@) i=0 HY(©
Then, one gets that
n k+1 _ k|2 n n Ll TS R 2
uw-——u k+1]|2 2,2
Dl =4 ke ||L2(Q)+C(MO)T+4M h h[z }
k=0 H(©Q) k=0 k=1 0 Hy(Q)
n_ k= ui+l — 2
< C(g,up) + apm? <C(g,u )e4M T
k=1 i=0 H}(Q)
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thanks to the discrete Gronwall lemma. This yields

N-1
||uk+l - ukHiIé(Q) < hC(g, o)’ (15)

>~

and (i)—(ii) hold.
Moreover, (14) yields, for any ¢ € [#, ty+1[, to

||a;ﬁh(z)||§,& @ = 4" O], + Cluo) + 4M>C (g ug)e™ . (16)

If moreover ¢ belongs to the set of Lebesgue of g in L?(0, T; L*(Q)), d,u" () is bounded in
H}(Q) and (iii) holds. o

Theorem 6. Under the hypotheses (H,)—(H,), there exists u in H' (O, T, H(l] (Q)) such that,
forallvin Hé(Q),

ff(é,u)vdx+fV¢(u)Vvdx6+fV@,qudxzfgvdx, (17)
Q Q o o)

with u(0, -) = uo.

Proof. Leading from Lemma 5-(i), there exists u in H'(0, T; Hj(€)), such that, up to a sub-
sequences still denoted in the same way, one may assume that 7" converges to u weakly in
H 1(0, T;Hé(Q)). Then, for any ¢ in [0, T1], w(7) converges weakly in H(l)(Q) toward u(t).
Then, Lemma 5-(ii) ensures that 1" () converges weakly to u(f) in Hé (Q). Moreover, since ¢
is a Lipschitz-countinuous function, ¢(u"(t)) converges weakly to ¢(u(t)) in Hé(Q) too.

Thanks to Lemma 5-(iii), for any ¢ in Z, up to a sub-sequence indexed by #;, A (1)
converges weakly in Hé (Q) towards a given &(¢) and strongly in L*(Q).

Then, there exists k such that (12) leads, for any v € H&(Q), to

f £ (0" ) vdx + f Ve (u(1)) Vodx + € f Vo (Vo dx = f g"(wdx.  (18)
Q Q Q Q

By passing to the limits in the above equation, on gets that £(¢) is a solution in in H(l)(Q)
to the variational problem:

VveHé(Q), ff(f(t))vdx+6fVf(t)Vudx:fgvdx—fqﬁ’ (u()) Vu(r)Vodx. (19)
Q Q Q Q

Then, since f is non-decreasing, this implies that such a solution is unique. As A1) is
a bounded sequence in H(l) (Q), one concludes that 9,1"(r) converges toward £(f) weakly in
Hé(Q).

Therefore, & : 10,T[ — Hé(Q) is a weakly measurable function. Then, thanks to the
theorem of Pettis ([9, p. 131]), it is a measurable function.
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For any v in H(l) Q), fg Vo,u"(t)Vvdx converges a.e. in 10, T[ toward fQ VE&(@)Vodx. Since
||, Vo' () Vudx| < ||a,’ﬁh(t)||ﬂol @ 1@, it is bounded in L[2(0,T) and [7, Lemma 1.3,
p-12] ensures that

T T
Ya € L*0,T), f f OV (). Vvdxdt — f f a(H)VE(D).Vodxdt.
0 Q 0 Q

Since (8" is bounded in L2(0, T; Hé(Q)), an argument of density leads to the weak
convergence in L*(0, T; Hé (Q)) of d;u" toward £. Thus by uniqueness of the weak limit, one
obtains that d,u = ¢ and that there exists a solution. O

§3. Application to Barenblatt’s equation

As an application, let us return to the existence of a solution to Barenblatt’s equation:

f(afu) - Au = g»
where f(r) = rif r > 0 and f(r) = ar (@ > 0) if r < 0, with @ # 1 a priori.

Our method consists in passing to the limits in the pseudoparabolic problem (2) with
respect to e toward 0, when ¢ = Id, g in L*(Q) and ug in Hé Q).
By using the test function v = 9,u. in (2), we obtain, for any ¢, the following estimate:

1 1
F(Oue)dsute+€[VAue)* dx+= f \Vu()]> dx = f gOue dx+= f [Vuol|* dx. (20)
QX104 2 Ja ax10.4 2 Ja

Thus, the sequence () is bounded in H'(Q)NL>(0, T; Hj(Q)) as well as (f (d,u) ) in LA(Q).
Indeed, for all ¢,

1 1
min(1, @) 0| dx dt + = f [Vuc(t) dx < = f \Vuo|* dx + f gOuc dxdt.
10,4[%Q 2 Ja 2 Ja 10,41xQ

Up to a sub-sequence still indexed by €, one assumes that there exists u in H'(Q) N
L=(0,T; Hy()), weak limit in H'(Q) and weak-* limit in L*(0, T; Hy()) of (u,); as well as
¥, weak limit in L2(Q) of f(due).

On the one hand, one has y — Au = g, i.e. du— Au = g+ du — y := h. Since h € L*(Q)
with the initial condition in Hé (Q), one gets

1 1
f |0,ul dx dt + = f V(T dx = = f [Vuo|? dx + f lg + O — x10udxdt.  (21)
0 2 Ja 2 Ja 0

On the other hand, since (u.(T)) bounded in Hé(Q) and as u.(T) converges toward u(T)
in L*(Q), it converges weakly in H}(Q) and passing to the limits in (20) yields

1 1
lim sup f F(Ou)due dxdt + = f IVu(T)* dx < = f [Vuol* dx + f gOudxdt.
e—0 0 2 Ja 2 Ja (&)

Thus, limsup e — OfQ f(Oue)Oiue dxdt < fQ)(a,u dxdt. Then, according to H. Brézis
[6, Prop. 2.5, p. 271, ¥ = f(0;u) and u is a solution to the problem.
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