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TESTING NUMERICAL METHODS FOR
SOLVING INTEGRAL EQUATIONS

Miguel Pasadas and Miguel L. Rodríguez
Abstract. Many modeling problems in physics and in a variety of engineering fields
lead to integral equations. We briefly describe the main classical techniques to obtain
approximated solutions of them: Nyström methods and projection methods. Moreover,
we introduce a new method to approximate the solution of integral equations based in
a variational scheme. We test these techniques with numerical examples and we show
several tables in order to measure the error obtained by the presented methods.
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§1. Introduction

Integral equations are equations involving an unknown function which appears under an in-
tegral sign. The theory of integral equations has close contacts with many different areas of
mathematics.

We consider the Fredholm integral equation of the second kind

f (t) = x(t) −
∫ 1

0
k(t, s)x(s) ds, 0 ≤ t ≤ 1. (1)

It is known that the expression (1) in operator form can be written

f = x − K x = (I − K)X.

Such equations occur widely in diverse areas of applied mathematics and physics, such as
potential theory and radiation heat transfer but also some other equations reducible to it,
and, in particular, the Lippman-Schwinger equation in potential scattering. In addition, many
problems in the fields of differential equations can be recast as integral equations.

It is usually to impose to the operator I − K certain assumptions in order to establish the
existence and uniqueness of solution of (1).

§2. Solving Fredholm integral equations of the second kind

The main numerical methods for solve these type of integral equations are Nyström meth-
ods or quadrature methods and the projection methods, based in approximate the numerical
integral.

The projection methods with the collocation and Galerkin methods as special case, are
a general tool that can also solve equations of the first kind. They are known as spectral
methods and pseudospectral methods respectively.
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The collocation method seeks an approximate solution from a finite dimensional space
by requiring that equation (1) to satisfy only at a finite number of points, called collocation
points. In collocation methods one can use e. g. interpolation functions in polynomial or
spline spaces. Because of the better convergence properties of splines, spline collocation is
superior to polynomial collocation.

The Galerkin method and Petrov–Galerkin method, with many variants [3], consists in
finding a best approximation to the exact solution of (1) in a finite dimensional space by the
minimizing of the so called energy functional. One of the advantages of the Petrov-Galerkin
method is that it allows to achieve the same order of convergence as the Galerkin method
with much less computational cost by choosing the test spaces to be spaces of piecewise
polynomials of lower degree.

Another method which is employed for the solution of integral equations on smooth
closed curves is the qualocation method. Qualocation method is a Petrov–Galerkin method
in which the outer integrals are performed numerically by special quadrature rules.

We have been developed another method in order to approximate the solution of (1). The
method is based in the minimization of a functional that involves (1) and that it is similar to
the Petrov–Galerkin method.

Our aim in this work is to detail the computational part of distinct solving methods and
to show different examples in order to compare them. Throughout this overview, we will
assume that the integral equations have a unique solution to be determined.

§3. Preliminaries and notations

The Euclidean norm and inner product in Rn will be denoted respectively by 〈·〉 and 〈·, ·〉 .
Moreover, we designate by Hk (0, 1) the Sobolev space of order k, which is equipped with the
inner product and norm

((u, v))k =

k∑
i=0

∫ 1

0
u(i)(t)v(i)(t) dt, ‖u‖k = (u, u)1/2

k ,

the semi–inner products and semi-norms

(u, v) j =

∫ 1

0
u( j)(x)v( j)(x) dx, |u| j = (u, u)1/2

j , ∀ j = 0, . . . , k.

Let k(t, s) ∈ H3(0, 1) × L2(0, 1) be a given function, and we designate by K the integral
operator associated with k(t, s),

Ku(t) =

∫ 1

0

∫ 1

0
k(t, s)u(s) ds dt, ∀u ∈ H3(0, 1).

Finally, we assume that f ∈ C(0, 1) and K is a compact operator on C(0, 1), and that 1 is not
an eigenvalue of K .
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§4. Mixed Variational Method

This method can be briefly described as follows. For each h ∈ R+ and N ∈ N fixed, with
h = 1/N, let

∆h = {0 = t0 < · · · < tN = 1}, ti = i h,

be a subset of distinct points of [0, 1]
We denote by S (3, 2; ∆h) the space of the splines of degree 3 and class 2 associated with

∆h, i.e.
S (3, 2; ∆h) = {s ∈ C2(0, 1) : s|[ti−1,ti] ∈ P3[ti−1, ti], i = 1, . . . ,N}.

A basis of this finite dimensional space is given by B-splines functions.
Given a1 = 0, a2 = p, a3 = 1, being p a knot of ∆h, we define the operator ρ : H3(0, 1)→

R3 by
ρv =

(
(I − K)v (ai)

)
i=1,2,3

and let β = ( f (ai))i=1,2,3.
For each h ∈ R+, we define

Gh = {u ∈ Xh : ρu = β}

and the vectorial space
G0

h = {u ∈ Xh : ρu = 0}.
It is said that xh is an approximated solution of (1) if xh is a solution of the problem xh ∈ Gh,

∀v ∈ Gh, J(xh) ≤ J(v),
(2)

where J is the functional defined on H3(0, 1) by

J(v) = |(I − K)v − f |23 .

The next result guarantees the existence and the uniqueness of the solution of Problem (2).
Theorem 1. Problem (2) has a unique solution characterized as the unique solution of the
following variational problem: find xh such that xh ∈ Gh,

∀v ∈ G0
h,

(
(I − K)σN , (I − K)v

)
3 =

(
(I − K)v, f

)
3.

Proof. It is clear that GN is a nonempty closed convex subset of S (3, 2; ∆N). Now, we con-
sider the form a : S (3, 2; ∆N) × S (3, 2; ∆N)→ R given by a(u, v) = 2 (((u, v))).
Note that the application a is bilinear, symmetric, continuous and coercive since S (3, 2; ∆N)
is a finite dimensional space. Let ϕ(v) = ((I − K)v, f )3 be a linear form, which is clearly
continuous. Now, Stampacchia’s Theorem (see [2]) can be applied and we conclude the
proof. �

As a consequence of this result we can obtain that there exists a unique (xh, τ) ∈ Xh × R
3

such that for all v ∈ Xh

((I − K)xh, (I − K)v)3 + 〈τ, ρv〉 = ( f , (I − K)v)3, (3)

where xh is the unique solution of Problem (2).
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§5. Computation of the methods

We detail the computation of the methods described above. In all cases, we seek an approxi-
mate function xh(t) ∈ Xh where Xh is a finite dimensional subspace.

The approximated solution of the integral equation (1) can be written as

xh(t) =

n∑
i=1

αiφi(t), t ∈ D,

where {φ1, . . . , φh} is a basis of Xh. The question is how we can determinate the unknown
coefficients αi, i = 1, . . . , n, by using the above methods.

Collocation method. We choose distinct node points t1, . . . , tn ∈ [0, 1] and we impose that

f (ti) − λxh(ti) −
∫ 1

0
k(ti, s)xh(s) ds = 0, i = 1, . . . , n.

Then, we have now a linear system of n equations with unknown αi.

Galerkin method. We impose that

〈(λI − K)xh, φ j〉 = 〈 f , φ j〉, ∀ j = 1, . . . , n.

The coefficients αi are determined by solving

n∑
i=1

αi

(
〈λ φi, φ j〉 − 〈Kφi, φ j〉

)
= 〈 f , φ j〉, ∀ j = 1, . . . , n.

Nyström method. It requires the choice of some approximate quadrature rule. By using a
numerical scheme, from∫ 1

0
k(t, s)xh(s) ds ≈

n∑
j=1

ω jk(t, t j)xh(t j), 0 ≤ j ≤ n,

we obtain the linear system

λxh(ti) + k(ti, t j) xh(t j) = f (ti), i = 1, . . . , n.

Here the set ω j are the weights of the quadrature rule, while the n points t j are the abscissas.
An interesting approach of this method can be found in [1].

Mixed Variational method. By replacing in (3), we have for all v ∈ Xh

n∑
i=1

αi((I − K)φi, (I − K)v)3 + 〈τ, ρv〉 = ( f , (I − K)v)3,
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subject to the restrictions

xh(a j) −
∫ 1

0
k(a j, s) xh(s) ds = f (a j), j = 1, 2, 3.

Taking v = φi, for i = 1, . . . , n, we obtain a linear system of order n + 3 with the unknown
α1, . . . , αn, τ1, τ2, τ3. The matrix form of such system is(

A D
Dt 0

) (
α
τ

)
=

(
f̂1
f̂2

)
,

where
A =

(
((I − K)φi, (I − K)φ j)3

)
1≤i, j≤n

,

D =

(
φi(a j) −

∫ 1

0
k(a j, s) φi(s) ds

)
1≤i≤n
1≤ j≤3

,

f̂1 = (( f , (I − K)φi)3)t
1≤i≤n , f̂2 = ( f (ai))t

1≤i≤3 .

§6. Numerical examples

We present several numerical experiments and we compare the results with the exact solution
of the integral equation.

Now, we have chosen the space of cubic spline functions for the numerical experiments.
For each N ∈ N let h = 1/N and let

∆N = {0 = t0 < . . . < tN = 1}, ti = i h, i = 0, . . . ,N,

be a subset of distinct points of [0, 1].
A basis of this S (3, 2; ∆N) is given by B-splines functions. We denote this basis as B =

{Bi : 1 ≤ i ≤ N + 3}. The general expression of Bi(t) is

Bi(t) =
1

6h3



(t − ti−2)3, if t ∈ [ti−2, ti−1],
h3 + 3h2(t − ti−1) + 3h(t − ti−1)2 − 3(t − ti−1)3, if t ∈ [ti−1, ti],
h3 + 3h2(ti+1 − t) + 3h(ti+1 − t)2 − 3(ti+1 − t)3, if t ∈ [ti, ti+1],
(ti+2 − t)3, if t ∈ [ti+1, ti+2],
0, otherwise.

We take φi(t) = Bi(t). In order to show the efficiency, we have computed an estimation in
several spaces of the error ‖xh(t)− x(t)‖, where x is the exact solution of the integral equation
(1) and xh is the approximated solution.

Example 1. We consider the simple test equation

x(t) −
∫ 1

0
x(s)(t2 − t − s2 + s) ds = −2t3 + 3t2 − t, t ∈ [0, 1].

with exact solution x(t) = −2t3 + 3t2 − t. See Table 1.
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Method
Computed error in Collocation Galerkin Variational

H0(0, 1) 0 0 0
H1(0, 1) 3.17(−14) 7.65(−10) 0
H2(0, 1) 8.16(−13) 2.47(−8) 2.45(−15)
H3(0, 1) 1.27(−11) 4.56(−7) 6.32(−15)
C0(0, 1) 6.35(−15) 1.08(−10) 0
C1(0, 1) 1.73(−13) 4.69(−9) 2.33(−15)
C2(0, 1) 3.71(−12) 1.20(−7) 5.46(−15)

Table 1: Table of the computed relative error for Example 1 for N = 4 equidistant knots.

Method
Computed error in Collocation Galerkin Variational

H0(0, 1) 4.34(−8) 1.05(−8) 3.71(−6)
H1(0, 1) 3.06(−6) 3.02(−6) 2.35(−5)
H2(0, 1) 2.97(−4) 3.07(−4) 3.17(−4)
H3(0, 1) 3.44(−2) 3.45(−2) 3.21(−2)
C0(0, 1) 1.25(−7) 1.61(−7) 5.22(−6)
C1(0, 1) 6.85(−6) 9.44(−6) 6.01(−5)
C2(0, 1) 1.02(−3) 1.54(−3) 7.31(−4)

Table 2: Table of the computed relative error for Example 2 for N = 4 equidistant knots.

Example 2. The following integral equation

x(t) −
∫ 1

0
x(s)e−t−s ds = et − e−t, t ∈ [0, 1].

has the exact solution x(t) = et. See Table 2.

6.1. Future work

We plan to do research in the following items:

1. The study of the mixed variational method for integral equations with Cauchy kernels.

2. Numerical experiments in distinct finite dimensional spaces as wavelets spaces.

3. The extension of the mixed variational method to the two dimensional case.
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