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AXIAL COUETTE FLOW OF SECOND
GRADE FLUID DUE TO A LONGITUDINAL

TIME DEPENDENT SHEAR STRESS
M. Nazar, M. Athar and W. Akhtar

Abstract. The axial flow of a second grade fluid through an infinite straight circular
cylinder is considered. The flow of the fluid is due to the longitudinal shear stress that is
prescribed on the boundary of the cylinder. The velocity field and the resulting shear stress
are determined by means of the finite Hankel and Laplace transforms. The corresponding
solutions for Newtonian fluids, performing the same motion, are obtained as limiting case
from our general solutions. Graphical illustrations are presented for the velocity field and
the shear stress for both the second grade and Newtonian fluids.
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§1. Introduction

In many engineering fields, such as oil exploitation, polymer chemical industry, bio-engi-
neering is necessary to study the non-Newtonian fluid flows. The second grade fluid is the
common viscoelastic fluid in industrial fields, such as polymer solutions. The most exact
solutions in this field correspond to the case when the velocity is given by the boundary. The
first exact solutions for second grade fluids, in which a constant shear stress is given on the
boundary, seem to be those of Bandelli and Rajagopal [2].

The aim of this paper is to study the flow of a second grade fluid in a circular infinite
cylinder due to a longitudinal time dependent shear stress. We establish both the velocity
field and the resulting shear stress corresponding to the motion of the fluid. These solutions
can be easily specialized to give the solutions to the Newtonian fluids performing the same
motion. Finally, for comparison, the profiles of the velocity v(r, t) and the shear stress τ(r, t),
for the Newtonian and second grade fluids are plotted as functions of r for different values of
the time t.

§2. Governing equations

The constitutive equation of the second grade fluids is given by [4, 5, 6, 10]

T = −pI + µA1 + α1A2 + α2A2
1, (1)

where T is the Cauchy stress tensor, p is the pressure, I is the unit tensor, µ is the dynamic
viscosity, α1 and α2 are the normal stress moduli and A1, A2 are the kinematic tensors. A2 is
defined by

A2 = Ȧ1 + A1(grad v) + (grad v)T A1, (2)
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where v is the velocity field, A1 = grad v + (grad v)T and the superscript T denotes the
transpose operator. In cylindrical coordinates (r, θ, z), the velocity of the axial flow is given
by [4]

v = v(r, t) = v(r, t)ez, (3)

where ez is the unit vector in the z-direction. For such flows the constraint of incompressibility
is automatically satisfied. Since the velocity field is independent of θ and z, we also assume
that the extra-stress tensor S is independent of these variables. Furthermore, if the fluid is
assumed to be at rest at the moment t = 0, then

S(r, 0) = 0. (4)

Equalities (1), (2) and (3) lead to the constitutive relationship [2]

τ(r, t) = (µ + α1∂t)
∂v(r, t)
∂r

, (5)

where τ(r, t) = S rz(r, t) is the shear stress which is different of zero.
In the absence of body forces and a pressure gradient in the z−direction, the balance of

the linear momentum leads to the relevant equation

ρ
∂v(r, t)
∂t

=

(
∂

∂r
+

1
r

)
τ(r, t), (6)

where ρ is the constant density of the fluid.
Eliminating τ(r, t) among Eqs. (5) and (6), we attain to the governing equation

∂v(r, t)
∂t

= (ν + α∂t)
(
∂2

∂r2 +
1
r
∂

∂r

)
v(r, t), (7)

where ν = µ/ρ is the kinematic viscosity of the fluid and α = α1/ρ.

§3. Axial flow through an infinite circular cylinder

Let us consider an incompressible second grade fluid at rest in an infinite circular cylinder of
radius R. At time t = 0+, the cylinder is suddenly pulled with a time dependent shear stress.
Due to the shear, the fluid is gradually moved. It’s velocity being of the form (3) and imposed
initial and boundary conditions are

v(r, 0) = 0 ; r ∈ [0,R) , (8)

τ(R, t) = (µ + α1∂t)
∂v(R, t)
∂r

= f t, t > 0. (9)

Applying Laplace transform to Eqs. (7), (9) and using (8), we obtain

qv̄(r, q) = (ν + αq)
(
∂2

∂r2 +
1
r
∂

∂r

)
v̄(r, q), (10)

∂v̄(r, q)
∂r

∣∣∣∣∣
r=R

=
f

q2(µ + α1q)
. (11)



Axial Couette flow of second grade fluid due to a longitudinal time dependent shear stress 215

In order to obtain an analytical solution of the problem (10) and (11), the finite Hankel
transform method is used. We define the Hankel transform of the function v̄(r, q) by [3]

v̄H (rn, q) =

∫ R

0
rv̄(r, q)J0(rrn) dr, (12)

where rn, n = 1, 2, 3, ldots, are the positive roots of the equation

J1(Rr) = 0. (13)

In the above relation, Jν(·) is the Bessel function of the first kind of order ν [7]. Multiply-
ing now both sides of Eq. (10) by rJ0(rrn), integrating then with respect to r from 0 to R and
taking into account the condition (11) and the equality∫ R

0
r
(
∂2

∂r2 +
1
r
∂

∂r

)
v̄(r, q)J0(rrn)dr = −r2

n v̄H (rn, q) + RJ0(Rrn)
∂v̄(R, q)
∂r

,

we find that
v̄H (rn, q) =

R f
ρ

J0(Rrn)
1

q2(q + αr2
nq + νr2

n)
. (14)

We rewrite Eq. (14) as
v̄H (rn, q) = v̄1H (rn, q) + v̄2H (rn, q), (15)

where
v̄1H (rn, q) =

R f J0(Rrn)
r2

n

1
q2(µ + α1q)

(16)

and
v̄2H (rn, q) = −

R f J0(Rrn)
q

1
r2

n(µ + α1q)(q + αr2
nq + νr2

n)
. (17)

The inverse Hankel transform of the function v̄1H (rn, q) and v̄2H (rn, q) are

v̄1(r, q) =
r2 f
2R

1
q2(µ + α1q)

, v̄2(r, q) =
2

R2

∞∑
n=1

J0(rrn)
J2

0(Rrn)
v̄2H (rn, q). (18)

From (15)-(18) we find that the Laplace transform of the velocity v(r, t), has the form

v̄(r, q) =
r2 f
2R

1
q2(µ + α1q)

−
2 f
R

∞∑
n=1

J0(rrn)
r2

n J0(Rrn)
1

q(µ + α1q)(q + αr2
nq + νr2

n)
. (19)

Applying the discrete inverse Laplace transform to Eq. (19), using the expansion

1
q(q + αr2

nq + νr2
n)

=
q−2

(1 + αr2
n) + νr2

nq−1 =

∞∑
k=0

(−νr2
n)k q−k−2

(1 + αr2
n)k+1 , (20)

the convolution theorem and the formulae

L−1
{ 1

qa

}
=

ta−1

Γ(a)
, a > 0, L−1

{ qb

(qa − d)c

}
= Ga,b,c(d, t), Re(ac − b) > 0, (21)
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where Ga,b,c(d, t) are the generalized G-functions defined as [8]

Ga,b,c(d, t) =

∞∑
j=0

d j Γ(c + j)
Γ(c)Γ( j + 1)

t(c+ j)a−b−1

Γ[(c + j)a − b]
, (22)

we find that

v(r, t) =
f r2

2R

{
α1

µ2

[
exp

(
−
µt
α1

)
− 1

]
+

t
µ

}
−

2 f
α1R

∞∑
n=1

J0(rrn)
r2

n J0(Rrn)

∞∑
k=0

(−νr2
n)k

×

∫ t

0
G1,0,1

(
− µ/α1, s

)
G0,−k−2,k+1(−αr2

n, t − s) ds,

(23)

which can be simplified by using the following relations

G0,−k−2,k+1(−αr2
n, t) =

∞∑
j=0

(−αr2
n) j Γ(k + j + 1)

Γ(k + 1)Γ( j + 1)
tk+1

Γ(k + 2)
=

tk+1

(k + 1)!
1

(1 + αr2
n)k+1 , (24)

∞∑
k=0

(−νr2
n)kG0,−k−2,k+1(−αr2

n, t) =
−1
νr2

n

∞∑
k=0

(
−

νr2
nt

1 + αr2
n

)k+1 1
(k + 1)!

=
1
νr2

n

[
1 − exp

(
−

νr2
nt

1 + αr2
n

)]
,

(25)

and

G1,0,1
(
− µ/α1, t

)
= exp

(
−
µt
α1

)
. (26)

Now the velocity field v(r, t) has form

v(r, t) =
f r2

2µR
(t −

α1

µ
) −

2 f
µνR

∞∑
n=1

[
1 − (1 + αr2

n) exp
(
−

νr2
nt

1 + αr2
n

)] J0(rrn)
r4

n J0(Rrn)
. (27)

§4. Calculation of the shear stress

Applying the Laplace transform to Eq. (5), we find that

τ̄(r, q) = (µ + α1q)
∂v̄(r, t)
∂r

. (28)

Differentiating Eq. (19) with respect to r and using the identity

d
dr

J0(rrn) = −rnJ1(rrn),

we find τ̄(r, q), after using Eq. (28)

τ̄(r, q) =
f r

Rq2 +
2 f
R

∞∑
n=1

J1(rrn)
rnJ0(Rrn)

1
q(q + αr2

nq + νr2
n)
. (29)
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Applying inverse Laplace transform to Eq. (29) by using (21) and (25), we get the shear
stress τ(r, t)

τ(r, t) =
f rt
R

+
2 f
νR

∞∑
n=1

J1(rrn)
r3

n J0(Rrn)

[
1 − exp

(
−

νr2
nt

1 + αr2
n

)]
. (30)

§5. Limiting case α1 → 0

Making α1 → 0 into Eqs. (27) and (30), we obtain the velocity field

v(r, t) =
f r2t
2Rµ

−
2 f

Rνµ

∞∑
n=1

J0(rrn)
r4

n J0(Rrn)

(
1 − e−νr

2
n t
)
, (31)

and the associated shear stress

τ(r, t) =
f rt
R

+
2 f
νR

∞∑
n=1

J1(rrn)
r3

n J0(Rrn)

(
1 − e−νr

2
n t
)
, (32)

corresponding to a Newtonian fluid, performing the same motion.
Eqs. (31) and (32) are identical with those found by W. Akhtar et al. [1].

§6. Conclusions

In this paper, the velocity field and the associated shear stress corresponding to the axial flow
of second grade fluids through a circular cylinder are determined. The motion is due to a
longitudinal shear stress which is prescribed on the boundary of the cylinder. More exactly,
at the moment t = 0+ the cylinder is pulled with a time dependent shear stress along its axis.

The solutions determined by means of the Laplace and finite Hankel transforms satisfy all
imposed initial and boundary conditions. The corresponding solutions for Newtonian fluids,
performing the same motion, are obtained as limiting case from our solutions. Finally, in
Figs. 1 and 2, the profiles of the velocity and shear stress of the second grade fluid ( curves
v(r) and τ(r)) and Newtonian fluid (curves vN(r) and τN(r)) are plotted as function of r for
different values of the time t. From these figures we have that for low values of the time t the
second grade fluid flows slower than the Newtonian fluid and this difference disappear when
the values of the time increase.

In all figures we consider R = 0.1, f = 2, ρ = 1260, µ = 1.48, α = 80. The units of
parameters in Figs. 1 and 2 are from SI units and the roots rn have been approximated with
[9] rn = (4n − 1)π/(4R).
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Figure 1: Velocity profiles v(r) for different values of the time t: v(r)– the second grade fluid,
vN(r)–the Newtonian fluid.

Figure 2: The profiles of the shear stress τ(r) for different values of the time t: τ(r)– the
second grade fluid, τN(r)– the Newtonian fluid.
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