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ARBITRARY HIGH ORDER SCHEMES
FOR THE SOLUTION OF THE LINEAR

ADVECTION EQUATION
B. Latorre, P. García-Navarro, J. Murillo and J. Burguete

Abstract. In this work an arbitrary high order formulation for solving the linear advection
equation with constant coefficients is presented. The conservative formulation is explicit,
one step, and provides information at the sub-mesh scale. High order accuracy in space
and time is achieved by means of polynomial representation of the states in each cell and
conservative functional approximation of the exact solution of the advection equation.
Altough high order methods are widely used when high precision of the numerical results
is required, in this work we study the use of high order methods to compute faster than
first order methods when low or middle precision of the numerical results is required.
Numerical results for one-dimensional problems using schemes up to order of accuracy 5
are presented.

Keywords: Linear advection, high-order schemes, CFA, computational efficiency, Legen-
dre polynomials.

§1. Introduction

The study of mixing in fluid flows is a complex problem involving different phenomena that
can be faced under different degrees of approximation. For many hydraulic and environmen-
tal applications it is widely assumed that the fate of a tracer concentration can be modeled
by means of the differential tracer mass conservation equation. This contains information on
the mechanism of advection by the average flow velocity as well as molecular diffusion and
turbulence mixing. The latter are often formulated as general diffusion or dispersion terms
in the equation [6]. Using the mass conservation equation for the fluid flow it can be simpli-
fied to get the most widely used non-conservative form known as the convection-dispersion
equation.

It is possible to solve numerically the advection-diffusion equation by discretizing the
complete equation or by solving separately the advection and the diffusion. In this work,
letting aside the technique that could be applied to the diffusive part, we are concerned with
an efficient and accurate treatment of the convective part.

Finite volume methods rely on an integral formulation of the conservation law. The evo-
lution of the cell averaged value of the conserved variable is evaluated through an estimation
of the fluxes at the cell edges. Godunov’s method, for instance, evaluates the flux using the
exact solution of the Riemann problem at the edge [3]. Several approximate Riemann solvers
have been proposed in order to generate efficient schemes [5], [4]. High order finite volume
methods use also high order spatial reconstrucions at the grid cells in order to improve the
evaluation of the numerical fluxes and Taylor time series or Runge-Kutta time integrations.
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The limiting procedure to avoid oscillations follows the same criteria than in finite differ-
ences. A well known second order finite volume method is the MUSCL-Hancock scheme
[10]. Ben-Artzi [1] and Toro [8] proposed methods based on the solution of the generalized
Riemann plobem (piecewise polynomial), up to second order [1] and arbitrary high order
(ADER) [8] [7] [9] in space and time. The ADER formulation offers the main advantage of
requiring a single time step, however, it is associated to the necessity of following the steps
of high order reconstruction, high order limitation, flux estimation and finally the storage of
a single cell averaged value. This is a disadvantage common to all finite volume methods.

Dumbser [2] introduced the ADER methodolgy in the discontinuos Galerkin finite ele-
ment framework. The variable is represented at every cell as a linear combination of basis
functions leading to high order discretization avoiding the reconstruction step. Time accuracy
is achieved in a single step thanks to the ADER formulation that transforms time derivatives
into space derivatives. The finite element formulation projects the conservation law on every
basis function in the time-space domain and evaluates the resulting integrals by means of
quadrature formulae, allowing the resolution in both structured and unstructured grids.

This work presents a high order discretization technique analogous to the finite element
methodology, based on Legendre polynomials. High order in space is achieved thanks to the
polynomial representation within each cell avoiding the reconstruction step. High order in
time is achieved in a single step by a conservative functional approximation (CFA technique)
of the exact solution of the conservation law and a direct evaluation of the resulting integrals
that does not require quadrature formulae. The resulting scheme is efficient in the sense that
it requires a minimum number of mathematical operations. The scheme of order N to solve
the linear advection equation in D dimensions requires 2DN2D multiplications and additions
per cell to calculate the evolution of the variable in a time step.

§2. Spatial discretization and sub-grid information

The numerical schemes considered in this work start from the basis that the information stored
in a cell is a functional approximation, of a certain order of accuracy, of the spatial distribu-
tion of the variable within that cell. The numerical scheme is built to calculate the system
evolution by providing an approximation of the new spatial distribution of the variable, at
every cell, in the next time step.

The spatial representation of the variables at every grid cell is based on the mathemat-
ical concept of Hilbert space, an infinite-dimensional function space, defined over a spatial
domain. The particular basis functions used in the present work are Legendre polynomials
Pn(x), defined in the spatial domain x ∈ [−1, 1]. Their orthogonality is given by the property:

〈Pm, Pn〉 =

∫ 1

−1
Pm(x)Pn(x) dx =

2
2n − 1

δm,n (1)

with the norm

‖Pn‖ =
√
〈Pn, Pn〉 =

√
2

2n − 1
. (2)

One useful property of the Legendre polynomials in the context of the present work is
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that, for n > 1 they do not have net area:∫ 1

−1
Pn(x) dx =

∫ 1

−1
Pn(x)P1(x) dx = 〈Pn, P1〉 = 2 δn, 1. (3)

An approximation of order of accuracy N of a square-integrable function g(x) in the in-
terval x ∈ [−1, 1] can be obtained as linear combination of the N first Legendre polynomials:

ḡ(x) =

N∑
n=1

gnPn(x) ≈ g(x), (4)

with the coefficients

gn =
2n − 1

2
〈g, Pn〉. (5)

It is important to note that the mentioned approximation is conservative. To prove this
property, fundamental to the conservative character of the numerical scheme, equation (4) is
integrated using (5) and (3):∫ 1

−1
ḡ(x) dx =

N∑
n=1

gn

∫ 1

−1
Pn(x) dx =

N∑
n=1

gn〈Pn, P1〉 = 2g1 =

∫ 1

−1
g(x) dx. (6)

Due to the restrictions on the domain where the Hilbert space is defined, it is necessary,
to move from a global to a local coordinate system within each cell, that is adapted to the
domain of orthogonality of the basis functions. For that purpose x′ will be used to denote the
global coordinate and x to denote the local, cell adapted, coordinate.

To summarize, for the scheme of order of accuracy N, the state of the system at time t
will be represented by means of the storage of N numbers at every grid cell n q t

i representing
the spatial distribution of the variable as linear combination of the Legendre polynomials

qi(x, t) =

N∑
n=1

nqt
iPn(x). (7)

2.1. Time evolution
The form to build a numerical scheme able to solve the time evolution of a given spatial
distribution based on the Legendre polynomial representation is next presented. The linear
advection equation in one dimension for a function q(x′, t) is

∂tq(x′, t) + λ∂xq(x′, t) = 0, (8)

with λ constant and positive. Instead of seeking an approximation of the individual terms in
the equation, the existing exact solution is used as the basis of the advective method, that can
be expressed in local coordinate

q(x, t + ∆t) = q(x − 2c, t), (9)
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where c is the CFL number

c =
|λ|∆t
∆x′

. (10)

Hence, starting from the known initial conditions, already expressed in local coordinates
(7), we are interested in an expression for the solution at time t = t + ∆t.

To achieve that, the pure transport formulated by (9) of the initial condition (7) is per-
formed leading to the exact solution in cell i:

q̃i(x, t + ∆t) =

qi−1(x + 2 − 2c, t) if − 1 < x < 2c − 1,
qi(x − 2c, t) if 2c − 1 < x < 1.

(11)

Finally a conservative functional approximation of (11) is performed in order to reach the
updated set of coefficients in the grid cell:

qi(x, t + ∆t) =

N∑
n=1

nqt+∆t
i Pn(x), (12)

with the coefficients
nqt+∆t

i =
2n − 1

2

∫ 1

−1
q̃i(x, t + ∆t)Pn(x) dx. (13)

2.2. Updating scheme
The exact calculation of the integrals present in the definition of the coefficients (13) leads to
the following updating numerical scheme of order accuracy N:

nqt+∆t
i =

N∑
j=1

jqt
i−1Ln, j(c) +

N∑
j=1

jqt
iRn, j(c), (14)

where c is the CFL number (10) used to evaluate the left matrix L:

L(c) = T (c, 1 − c) (15)

and the right matrix R:
R(c) = T (1 − c,−c). (16)

Both L and R matrix are written in terms of a translation matrix T :

Ti, j(a, b) = a
2 j − 1

2

min(i, j)∑
n=1

2
2n − 1

Ai,n(a, b)A j,n(a,−b), (17)

where A is a matrix with the property

Pi(ax + b) =

N∑
n=1

Ai,n(a, b)Pn(x). (18)
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To illustrate the procedure, the expression of the auxiliary matrix A up to third order of
accuracy is next provided:

A(a, b) =

 1 0 0
b a 0
d 3ab a2

 , d =
a2 + 3b2 − 1

2
, (19)

and the corresponding T matrix

T (a, b) = a


1 −3b 5d
b a2 − 3b2 5

(
bd − a2b

)
d 3

(
a2b − bd

)
a4 − 15a2b2 + 5d2

 , d =
a2 + 3b2 − 1

2
. (20)

The numerical scheme (14) is conditionally stable provided that c ≤ 1 for all orders of
accuracy. This is dictated by the advection rule assumed (11) that only holds for c ≤ 1. The
scheme is exact when c = 1 in the sense that it transports exactly the polynomial distribution
within every grid cell.

It is worth noting that in a simulation with fixed ∆t and ∆x, matrices L and R are constant.
The scheme of order of accuracy N requires in this case 2N2 multiplications and additions per
cell and time step. Taking in to account that the maximum time step allowed is independent
of the order of accuracy, the total computational cost grows with the order of accuracy at a
rate N2.

§3. Numerical tests

3.1. Test 1
A Gaussian initial distribution is used as first test case to quantify the actual order of accuracy
of the different approximations:

q(x′, 0) = e−(x′−1)2/0.05. (21)

A domain x′ ∈ [0, 2] is considered and periodical boundary conditions assumed. The
advection velocity is chosen λ = 1 and a simulation time of t = 20 is performed so that the
Gaussian distribution crosses 10 times the computational domain. The exact solution is the
initial distribution at the same location. Using c = 0.95, simulations with different cell size
∆x have been performed and their error has been evaluated using the L1 norm as follows:

L1 =
1

2M

M∑
i=1

∫ 1

−1
|qi(x) − qExact(x)| dx, (22)

where M represent the cell number and the integrals in (22) are numerically computed.
The L1 error norm corresponding to numerical schemes of orders of accuracy 2, 3, 4 and

5 versus the grid spacing is represented in logarithmic scale in Figure 1. In all the cases, the
results have been fit to a straight line and the slope found is indicated in the figure.
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Figure 1: Error convergence of the CFA methods of order of accuracy 2, 3, 4 and 5 in the
numerical test 1.

3.2. Test 2

The same initial distribution (21) and the same domain x′ ∈ [0, 2] are considered with the fo-
cus on the computational efficiency of the different schemes. We are interested in comparing
the computational time required by the different schemes to achieve a target computational
accuracy. The error of the schemes is quantified using the L1 norm (22). Figure 2 displays the
shape of the numerical solutions corresponding to values of log(L1) = −1 and log(L1) = −2
compared to the exact solution in order to state the acceptable size of this error in practical
applications.

Two sets of computations, corresponding to a simulation time of t = 20 and t = 200,
have been made and are plotted in Figures 3 a) and 3 b) respectively. These figures are a
representation of the L1 errors produced by the CFA schemes of orders of accuracy 1, 2, 3,
4 and 5 as a function of the computational time used, in logarithmic scale. In general, given
a desired maximum error there is a scheme of a certain order of accuracy able to provide
the solution at the lowest cost. Also, the figures show that if, when starting by a first order
approach the numerical error is excessive, refining the grid is never the best option to reduce
the error. This tendency continues and indicates that, for longer simulations (either in larger
domains) higher order approximations gain in relative efficiency.

§4. Conclusions

A new approximation well suited for high order advection simulation has been presented.
The scheme is explicit and based on a single updating step. Piecewise polynomial spatial
discretization using Legendre polynomials provides the required spatial accuracy and the
subgrid information. The updating scheme is built from the functional approximation of the
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Figure 2: Shape of the numerical solutions corresponding to values of log(L1) = −1 and
log(L1) = −2 compared to the exact solution in order to visualize the size of the L1 error in
Test case 2.

exact solution of the advection equation and a direct evaluation of the resulting integrals.
The numerical details have been provided and the schemes have been validated using a

set of numerical experiments. Some of the test cases have been oriented to the convergence
analysis of the schemes of different order of accuracy with an special interest in the compu-
tational efficiency of the different options. The results from the schemes from 1st to 5th order
of accuracy have been presented showing that, in general, given a desired maximum error,
there is a scheme of a certain order of accuracy able to provide the solution at the lowest cost.
It is also worth remarking that if when starting by a first order approach the numerical error
is excessive, refining the grid is never the best option to reduce the error. It is also true that
for longer simulations (either in larger domains) higher order approximations gain in relative
efficiency.
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