
Monografías Matemáticas García de Galdeano 35, 163–170 (2010)

STABILITY OF EQUATORIAL AND HALO
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Abstract. The presence of micron size dust particles is frequent in the solar system
and their dynamics have attracted the attention of researchers from the very beginning.
Indeed, dusty rings of giant planets can be modeled by very simple models that take
into account the movement of a single particle. One of these models is the so-called
generalized Störmer problem, where a charged particle is supposed to orbit a spherical
planet with magnetosphere. In this case, it is known the presence of equatorial and circular
halo orbits as well as their stability. However, planets are not perfect spheres, and their
oblateness must be taken into account. The aim of this paper is to show how the oblateness
of the body affects the existence and stability of equatorial and halo orbits.
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§1. Introduction

The understanding of the dynamics of planetary tiny dusty rings is usually studied by means
of a single particle model named, in the literature, the generalized Störmer problem [1]. This
model describes the dynamics of a dust particle orbiting a rotating magnetic planet and it
takes into account the gravitational and magnetic effects. In this work we will consider that
the magnetic field is a perfect magnetic dipole aligned along the north–south poles of the
planet and the planet’s magnetosphere is a rigid conducting plasma which rotates with the
same angular velocity as the planet, which entails that the charge is subject to a corotational
electric field. Finally we will suppose that the planet is not spherical. This last assumption
introduces an additional perturbation to the previous works of Howard et al. [4, 3], Dullin et
al. [1], Grotta–Ragazzo et al. [2], where the spherical case is considered. The aim of this
paper is to study the influence of the oblateness coefficient in the existence and stability of
circular orbits paralell to the equator or lying in it, that is to say, halo orbits and equatorial
orbits respectively.

The paper is structured in three sections. The first one includes the Hamiltonian formula-
tion of the problem. Second section is devoted to analyze the existence of equatorial and halo
orbits. Some results about the stability of circular orbits appear in the third section.

Now, we start with the formulation of the problem. After using dimensionless cylindrical
coordinates and momenta (ρ, z, φ, Pρ, Pz, Pφ) and adding the influence of the oblateness to the
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generalized Störmer problem, the system can be modeled by the following two degrees of
freedom Hamiltonian function (see [1, 5, 6] for details)

H =
1
2
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P2
ρ + P2

z +
P2
φ

ρ2

)
−

1
r
− δ

Pφ

r3 +
δ2

2
ρ2
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ρ2

r3 + 3J2
z2

2r5 −
J2

2r3 , (1)

where r is the distance of the particle to the center of the mass of the planet and lengths and
time are expressed, respectively, in units of the planetary radius R and the Keplerian frequency
wK =

√
M/R2. The problem depends on five parameters. Three external parameters: δ, the

ratio between magnetic and Keplerian interactions (charge–mass ratio); β, the ratio between
electrostatic and Keplerian interactions; and J2, the oblateness coefficient of the planet. The
sign of J2 indicates if the planet is oblate (J2 > 0) or prolate (J2 < 0). The other two
parameters are internal ones: Pφ, the angular momentum and H = E, the energy of the
system.

Circular periodic trajectories appear as equilibria of the Hamiltonian system
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or equivalently, as critical points of the generalized potential energy function (called effective
potential) that can be written as
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As it is usual in the literature, we introduce the particle angular velocity,

ω = φ̇ =
∂H

∂Pφ
=

Pφ

ρ2 −
δ

r3 ,

to eliminate Pφ, because ω is a more interesting parameter from the point of view of ap-
plications. To simplify the calculations, we also move to spherical variables (r, θ, φ) given
by

ρ = r sin θ, z = r cos θ, θ ∈ [0, π/2].

With these changes, circular orbits are obtained as the solutions of the nonlinear system
of equations −6J2 + 2r2 + (9J2 − 2δ(β − ω)r2 − 2r5ω2) sin2 θ = 0,

(−3J2 + 2δ(β − ω)r2 − r5ω2) sin 2θ = 0.
(2)

Two types of equilibria, or circular orbits, appear depending on whether sin 2θ is equal to
zero or not. The first one occurs for sin 2θ = 0 and then θ = 0 or θ = π/2. If θ = 0 then
ρ = 0 and it constitutes a degenerate case, only meaningful for J2 > 1/3. If θ = π/2 we find
the equatorial orbits. The second case takes place for sin 2θ , 0, and it gives rise to circular
orbits parallel to the equator, also called halo orbits.
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Figure 1: Regions of existence of equatorial orbits fixed β (left figure) and fixed J2 (central
and right figure) in the δ–ω plane.

§2. Circular orbits

An important question is to establish the conditions under which each type of circular orbit
exists. We start discussing the case of equatorial orbits.

2.1. Equatorial orbits
As θ = π/2, the second equation of the nonlinear system (2) is always verified and, for the first
equation to be satisfied, r must be a positive real root of the following polynomial equation
in the variable r

3 J2 + 2(1 − βδ + δω) r2 − 2ω2 r5 = 0. (3)

Each positive real root of (3) corresponds to an equatorial orbit. Langbort [7] and Dullin
et al. [1] have studied, respectively, some particular cases, when the particle is not charged
(δ = 0) and when the planet is spherical (J2 = 0). Assuming δ , 0 and J2 , 0, some different
results about the existence of equatorial orbits are obtained. They can be summarized in the
following propositions (for details the reader is referred to [6]).

Proposition 1. The region of existence of equatorial orbits enlarges for increasing values of
J2, fixed β. If J2 is fixed, the region of existence enlarges or diminishes with β depending on
the sign of the charge of the particle.

Proof. The proof of this proposition, as well as the subsequent ones, is based on the analysis
of the discriminant of the polynomial in equation (3), and on the fact that the radius of the
orbit must be greater than one to be meaningful. Therefore, two curves appear delimiting the
region of existence of equatorial orbits:

3125J3
2ω

4 + 32(1 − βδ + δω)5 = 0, (4)

2 − 2βδ + 3J2 + 2δω − 2ω2 = 0. (5)

A detailed discussion of (4) and (5), in terms of the parameters β and J2, yields the desired
result. An illustration is given in Figure 1. �
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Figure 2: Number of equatorial orbits for β = 0.9 and different values of J2 < 0.

In the proof of Proposition 1 it can be seen that for a prolate planet there may exist two
positive real roots of the equation (3). In this case, it is interesting to know when these two
roots give rise to two meaningful equatorial orbits, with radius greater than one. In this sense
we obtain the following result.

Proposition 2. If J2 < 0, there is a region where two equatorial orbits with r > 1 exist at the
same time.

Proof. The region is defined by the contact points of the limiting curves (4) and (5). As the
contact points are function of β and J2, this region varies as the parameters change, as it is
showed in Figure 2. �

It is worth noting that the region with two equatorial orbits is, in general, small in com-
parison with the region with only one equatorial orbit.

2.2. Halo orbits
The discussion about the existence of halo orbits is more difficult. Now, as θ , π/2, none of
the equations (2) vanishes identically and we are left to the equivalent system:

−3J2 + 2δ(β − ω)r2 − r5ω2 = 0, (6)

sin2 θ =
6J2 − 2r2

9J2 − 2δ(β − ω)r2 − 2r5ω2)
. (7)

The influence of J2 in the region of existence of halo orbits can be summarized in the
following two propositions.

Proposition 3. The region of existence of halo orbits diminishes as J2 increases for fixed β.
Besides, if J2 > 0, there is a range of charge-mass ratio not allowed for a particle to be in
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Figure 3: Region of existence of halo orbits for fixed β.
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Figure 4: Region of existence of halo orbits for fixed J2.

halo orbit. If J2 is fixed, the region enlarges or diminishes with β depending on the sign of
the charge.

Proof. The result follows from analysis of polynomial equation (6) and equation (7), taking
into account that 0 ≤ sin2 θ ≤ 1 and r > 1. As in the equatorial case, we find several limiting
curves which depend on the parameters β and J2. We arrive to the desired conclusion by the
discussion of the limiting curves. Figures 3 and 4 illustrate the results, where Figure 3 shows
the difference between oblate and prolate cases. Note how the gap of charge-mass ratios
increases with the oblateness. �

Proposition 3 considers halo orbits with r > 1, which is a strong constrain for non-
spherical bodies. Besides, it focuses on the existence of at least one halo orbit, but not in the
number of them. Next proposition solves these aspects, which are illustrated in Figure 5.

Proposition 4. There is a region where two halo orbits exist at the same time if J2 > 1/3.
This limit reduces to J2 > 1/8 if the body is a homogeneous ellipsoid of revolution.
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Figure 5: Region of existence of halo orbits for an oblate planet.

§3. Stability

Beyond the existence of circular orbits, their stability is an important question, as it deter-
mines the persistence of them with time. In this way, the stability follows from their charac-
ter as critical points of the effective potential. Thus, if the Hessian matrix has two positive
eigenvalues at the corresponding equilibrium, it is stable. The entries of the Hessian matrix
are given by the second order partial derivatives of the effective potential

∂2Ueff

∂r2 =
(δ2 + 2βδr3 − 6δωr3 + 3ω2r6) sin2 θ + 18J2r cos2 θ − 6J2r − 2r3

r6 ,

∂2Ueff

∂θ2 =
2(δ + ωr3)2 + [2δ2 − 3J2r + ω2r6 + 2δ(β + ω)r3] cos 2θ

r4 ,

∂2Ueff

∂r∂θ
=
−2δ2 + 9J2r − 2δ(β − 2ω)r3 + 2ω2r6

r5 sin θ cos θ.

3.1. Stability of equatorial orbits
Here we will only discuss the stability of equatorial orbits. In this case the crossed derivative
vanishes and the stability decouples in the radial direction (along the equator) and the vertical
direction (away the equator), given by the eigenvalues

λr = δ2 − 6J2r − 2r3 + 2βδr3 − 6δr3ω + 3r6ω2,

λθ = 3J2 − 2βδr2 + 2δr2ω + r5ω2.

Exploiting the idea that if λr = 0 or λθ = 0, a change in the stability occurs, we arrive to
the following results which are illustrated in Figures 6, 7 and 8.

Proposition 5. The area of radial stability enlarges when J2 decreases, fixed β. The contrary
for the stability away the equator.

Proposition 6. For fixed J2, the region of stability, both radial and away the equator, enlarges
if β increases and the charge is negative. For positive charged particles the region of stability
away the equator diminishes for increasing β.
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Figure 6: Regions of radial and vertical stability (respectively, left and right graphs) for
equatorial orbits fixed β.
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Figure 7: Regions of radial and vertical stability (respectively, left and right graphs) for
equatorial orbits fixed J2.
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Figure 8: Changes of stability in the region with two equatorial orbits.
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Proposition 7. In the region with two equatorial orbits, the larger one suffers two changes
of stability in the radial direction for positive charged particles.
Proposition 8. If λr = 0, a saddle-center bifurcation takes place, whereas, if λθ = 0, there is
a pitchfork bifurcation.
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