α-THEORY FOR Newton-Moser method

José M. Gutiérrez, Miguel A. Hernández and Natalia Romero

Abstract

We study the semilocal convergence of Newton-Moser method to solve nonlinear equations $F(x)=0$ defined in Banach spaces. The method defines a sequence $\left\{x_{n}\right\}$ that under appropriate conditions converges to a solution of the aforesaid equation. In fact, by following the known as α-theory, we give conditions on the starting point x_{0} and on the derivatives of the operator F in order to establish such convergence. Finally, as an application, we apply this theory to the study of a kind of integral equations.

Keywords: Newton's method, Moser's method, semilocal convergence.
AMS classification: 45G10, 47H17, 65J15.

§1. Introduction

Newton-Moser method is a method to numerically solve nonlinear equations. In order to consider the more general case, let us consider a nonlinear equation

$$
\begin{equation*}
F(x)=0, \tag{1}
\end{equation*}
$$

where F is an operator defined between two Banach spaces X and Y. Let us assume that x^{*} is a simple root of (1).

Newton-Moser method is an iterative method defined by

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}-B_{n} F\left(x_{n}\right), \quad n \geq 0, \tag{2}\\
B_{n+1}=2 B_{n}-B_{n} F^{\prime}\left(x_{n+1}\right) B_{n}, \quad n \geq 0,
\end{array}\right.
$$

where x_{0} is a given point in X and B_{0} is a given linear operator from Y to X.
The method exhibits several attractive features. First, it avoids the calculus of inverse operators that appears in Newton's method, $x_{n+1}=x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right), n \geq 0$. So it is not necessary to solve a linear equation at each iteration. Second, it has quadratic convergence, the same as Newton's method. Third, in addition to solve the nonlinear equation (1), the method produces successive approximations $\left\{B_{n}\right\}$ to the value of $F^{\prime}\left(x^{*}\right)^{-1}$, being x^{*} a solution of (1). This property is very helpful when one investigates the sensitivity of the solution to small perturbations.

We find the origin of the method in a Moser's work [6] for investigating the stability of the N-body problem in Celestial Mechanics. The main difficulty in this, and similar problems involving small divisors, is the solution of a system of nonlinear partial differential equations. In fact, Moser proposed the following method

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}-A_{n} F\left(x_{n}\right), \quad n \geq 0, \tag{3}\\
A_{n+1}=A_{n}-A_{n}\left(F^{\prime}\left(x_{n}\right) A_{n}-I\right), \quad n \geq 0,
\end{array}\right.
$$

for a given $x_{0} \in X$, a given $A_{0} \in \mathcal{L}(Y, X)$, the set of linear operators from Y to X, and where I is the identity operator in X.

Notice that the first equation is similar to Newton's method, but replacing the operator $F^{\prime}\left(x_{n}\right)^{-1}$ by a linear operator A_{n}. The second equation is Newton's method applied to equation $g_{n}(A)=0$ where $g_{n}: \mathcal{L}(Y, X) \rightarrow \mathcal{L}(X, Y)$ is defined by $g_{n}(A)=A^{-1}-F^{\prime}\left(x_{n}\right)$. So $\left\{A_{n}\right\}$ gives us an approximation of $F^{\prime}\left(x_{n}\right)^{-1}$.

Method (3), firstly proposed by Moser, has a rate of convergence of $(1+\sqrt{5}) / 2$ for simple roots. However, the variant (2) later introduced by Ulm [9] reaches quadratic convergence. Notice that in (2) $F^{\prime}\left(x_{n+1}\right)$ appears instead of $F^{\prime}\left(x_{n}\right)$.

Since then, method (2) has been also considered by other authors. For instance, Hald [4] showed the quadratic convergence of the method. Later, Petzeltova [7] studied the convergence of the method under Kantorovich-type conditions.

Recently, in [2] a system of recurrence relations is given in order to analyze the convergence of Newton-Moser method (2) under estimations at one point. This theory, introduced by Smale [8], is an alternative to Kantorovich theory [5] to study the semilocal convergence of iterative processes to solve nonlinear equations. Roughly speaking, if x_{0} is an initial value such that the sequence $\left\{x_{n}\right\}$ satisfies

$$
\left\|x_{n}-x^{*}\right\| \leq\left(\frac{1}{2}\right)^{2^{n}-1}\left\|x_{0}-x^{*}\right\|,
$$

then x_{0} is said to be an approximate zero of F. The following conditions were introduced by Smale [8] in order to prove that x_{0} is an approximated zero

$$
\begin{gather*}
\left\|F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{0}\right)\right\| \leq \beta, \tag{4a}\\
\sup _{k \geq 2}\left(\frac{1}{k!}\left\|F^{\prime}\left(x_{0}\right)^{-1} F^{(k)}\left(x_{0}\right)\right\|\right)^{1 /(k-1)} \leq \gamma, \tag{4b}\\
\alpha=\beta \gamma \leq 3-2 \sqrt{2} . \tag{4c}
\end{gather*}
$$

Wang and Zhao [10] pointed that condition (4) is too restrictive. Instead of (4) they assume

$$
\begin{gather*}
\left\|F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{0}\right)\right\| \leq \beta, \tag{5a}\\
\frac{1}{k!}\left\|F^{\prime}\left(x_{0}\right)^{-1} F^{(k)}\left(x_{0}\right)\right\| \leq \gamma_{k}, k \geq 2, \tag{5b}\\
\left\{\begin{array}{l}
\text { the equation } \phi(t)=0 \text { has at least a positive } \\
\text { solution, where } \phi(t)=\beta-t+\sum_{k \geq 2} \gamma_{k} t^{k} .
\end{array}\right. \tag{5c}
\end{gather*}
$$

In [2] the semilocal convergence of Newton-Moser method is established from a system of recurrence relations. However, a majorizing function, as the given in (5c), is not provided. In this paper we present a majorizing function for Newton-Moser method and we give an analysis of its convergence by following the patterns of the α-theory introduced by Smale. The semilocal convergence hypothesis and the main theorem are shown in section 2.

§2. Semilocal convergence results (α-theory)

In this section we study the semilocal convergence of Newton-Moser method (2) to solve the nonlinear equation (1). Let us assume that F is a nonlinear operator defined from an open subset Ω in a Banach space X to another Banach space Y. Let $x_{0} \in \Omega$ be a given point and $B_{0} \in \mathcal{L}(Y, X)$ a given linear operator defined from Y to X.

Instead the aforesaid conditions (4) or (5), we consider the following ones:

$$
\begin{gather*}
\left\|B_{0} F\left(x_{0}\right)\right\| \leq \gamma_{0}, \tag{6a}\\
\left\|I-B_{0} F^{\prime}\left(x_{0}\right)\right\| \leq \beta<1, \tag{6b}\\
\left\|B_{0} F^{(j)}\left(x_{0}\right)\right\| \leq \gamma_{j}, \text { for } j \geq 2, \tag{6c}
\end{gather*}
$$

$$
\left\{\begin{array}{l}
\text { there exists } R>0 \text { such that the series } \\
\sum_{j \geq 2} \gamma_{j} t^{j} / j!\text { is convergent for } t \in[0, R), \tag{6e}\\
\qquad f(\hat{t})<0
\end{array}\right.
$$

where \hat{t} is the absolute minimum of the function

$$
\begin{equation*}
f(t)=\gamma_{0}+(\beta-1) t+\sum_{j \geq 2} \frac{1}{j!} \gamma_{j} t^{j}, \quad t \geq 0 \tag{7}
\end{equation*}
$$

In addition, we consider the following scalar sequence

$$
\left\{\begin{array}{l}
t_{0}=0, \quad b_{0}=-1 \tag{8}\\
t_{n+1}=t_{n}-b_{n} f\left(t_{n}\right) \\
b_{n+1}=2 b_{n}-b_{n} f^{\prime}\left(t_{n+1}\right) b_{n}
\end{array}\right.
$$

Condition (6e) allows us to say that function $f(t)$ defined in (7) has at least one positive root. Let us denote t^{*} the smallest positive solution of $f(t)=0$. With the rest of conditions in (6), (7), (8), we can show that $\left\{t_{n}\right\}$ is an increasing monotone sequence to t^{*} and

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \leq t_{n+1}-t_{n}, n \geq 0 \tag{9}
\end{equation*}
$$

Consequently, as $\left\{t_{n}\right\}$ is a convergent sequence and $\left\{x_{n}\right\}$ is a sequence defined in a Banach space, $\left\{x_{n}\right\}$ converges to a limit x^{*}, that can be shown it is a solution of the nonlinear equation (1).

In a more explicit way, the aforementioned comments are shown in the following results.
Theorem 1. Let us consider the scalar sequences $\left\{t_{n}\right\}$ and $\left\{b_{n}\right\}$ defined in (8). Then the following relations hold:

1. $b_{n}<0$.
2. $b_{n} f^{\prime}\left(t_{n}\right)<1$.
3. $t_{n}<t_{n+1}<t^{*}$, where t^{*} is the smallest positive root of (7).

Proof. Firstly we notice that $f^{\prime \prime}(t)>0$ for $t>0$. Then, as $f^{\prime}(0)=\beta-1<0$ and $\lim _{t \rightarrow \infty} f(t)=$ ∞, there exists a only value $\hat{t} \in(0, \infty)$ such that $f(\hat{t})=0$. Then, condition (6 d) guarantees the existence of positive roots of function $f(t)$ defined in (7).

Now we prove the aforementioned are true for $n \geq 0$ by following an inductive reasoning. For $n=0$ these relations are obviously true. If we suppose they are true for a given value of n, then $b_{n+1}=b_{n}\left(2-b_{n} f^{\prime}\left(t_{n+1}\right)\right)<0$, since $b_{n} f^{\prime}\left(t_{n+1}\right)<b_{n} f^{\prime}\left(t_{n}\right)<1$.

In addition, as $\left(1-b_{n} f^{\prime}\left(t_{n+1}\right)\right)^{2}>0$, then $b_{n+1} f^{\prime}\left(t_{n+1}\right)=2 b_{n} f^{\prime}\left(t_{n+1}\right)-b_{n}^{2} f^{\prime}\left(t_{n+1}\right)^{2}<1$. Now we have $t_{n+2}-t_{n+1}=-b_{n+1} f\left(t_{n+1}\right)>0$ and finally,

$$
t^{*}-t_{n+2}=\left(1-b_{n+1} f^{\prime}\left(\eta_{n+1}\right)\right)\left(t^{*}-t_{n+1}\right),
$$

for $\eta_{n+1} \in\left(t_{n+1}, t^{*}\right)$. As $b_{n+1} f^{\prime}\left(\eta_{n+1}\right)<b_{n+1} f^{\prime}\left(t_{n+1}\right)<1$, we conclude $t^{*}-t_{n+2}>0$ and the induction is completed.

Theorem 2. Under conditions (6), the scalar sequence $\left\{t_{n}\right\}$ defined in (8) is a majorizing function for $\left\{x_{n}\right\}$ defined in (2), that is,

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \leq t_{n+1}-t_{n}, n \geq 0 \tag{10}
\end{equation*}
$$

Consequently, $\left\{x_{n}\right\}$ converges to a limit x^{*}.

Proof. Formula (10) can be proved by following an inductive reasoning. In fact, we can prove that the following inequalities hold for $n \geq 0$:
(I) $\left\|I-B_{n} F^{\prime}\left(x_{n}\right)\right\| \leq 1-b_{n} f^{\prime}\left(t_{n}\right)$.
(II) $\left\|B_{n} F\left(x_{n}\right)\right\| \leq-b_{n} f\left(t_{n}\right)$.
(III) $\left\|B_{n} F^{(j)}\left(x_{n}\right)\right\| \leq-b_{n} f^{(j)}\left(t_{n}\right), j \geq 2$.

Notice that (II) is equivalent to (10).
The aforesaid inequalities are clear for $n=0$, just by taking into account (6). Now, if we assume they are true for $0,1, \ldots, n$, then we can prove they are also true for $n+1$.

Firstly, by (2), we have the following relationships:

$$
\begin{gather*}
I-B_{n+1} F^{\prime}\left(x_{n+1}\right)=\left(I-B_{n} F^{\prime}\left(x_{n+1}\right)\right)^{2}, \\
I-B_{n} F^{\prime}\left(x_{n+1}\right)=I-B_{n} F^{\prime}\left(x_{n}\right)-\sum_{j \geq 1} \frac{1}{j!} B_{n} F^{(j+1)}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)^{j}, \\
\left\|I-B_{n} F^{\prime}\left(x_{n+1}\right)\right\| \leq 1-b_{n} f^{\prime}\left(t_{n+1}\right), \tag{11}\\
\left\|I-B_{n+1} F^{\prime}\left(x_{n+1}\right)\right\| \leq\left(1-b_{n} f^{\prime}\left(t_{n+1}\right)\right)^{2}=1-b_{n+1} f^{\prime}\left(t_{n+1}\right) .
\end{gather*}
$$

Then, (I) happens for $n+1$.
Secondly,

$$
B_{n} F\left(x_{n+1}\right)=\left(I-B_{n} F^{\prime}\left(x_{n}\right)\right) B_{n} F\left(x_{n}\right)+\sum_{j \geq 2} \frac{1}{j!} B_{n} F^{(j)}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)^{j} .
$$

Consequently,

$$
\begin{aligned}
\left\|B_{n} F\left(x_{n+1}\right)\right\| & \leq\left(1-b_{n} f^{\prime}\left(t_{n}\right)\right)\left(-b_{n} f\left(t_{n}\right)\right)+\sum_{j \geq 2} \frac{1}{j!}\left(-b_{n} f^{(j)}\left(t_{n}\right)\right)\left(t_{n+1}-t_{n}\right)^{j} \\
& \left.=-b_{n} f\left(t_{n}\right)\right)-b_{n} f^{\prime}\left(t_{n}\right)\left(t_{n+1}-t_{n}\right)+\sum_{j \geq 2} \frac{1}{j!}\left(-b_{n} f^{(j)}\left(t_{n}\right)\right)\left(t_{n+1}-t_{n}\right)^{j}=-b_{n} f\left(t_{n+1}\right) .
\end{aligned}
$$

Then, by taking norms in $B_{n+1} F\left(x_{n+1}\right)=\left(2 I-B_{n} F^{\prime}\left(x_{n+1}\right)\right) B_{n} F\left(x_{n+1}\right)$, we show that (II) also holds for $n+1$. In fact,

$$
\left\|B_{n+1} F\left(x_{n+1}\right)\right\| \leq-\left(2-b_{n} f^{\prime}\left(t_{n+1}\right)\left(b_{n} f\left(t_{n+1}\right)\right)=-b_{n+1} f\left(t_{n+1}\right) .\right.
$$

Finally,

$$
\begin{aligned}
\left\|B_{n+1} F^{(j)}\left(x_{n+1}\right)\right\| & \leq\left(2-b_{n} f^{\prime}\left(t_{n+1}\right)\right) \sum_{k \geq 0} \frac{1}{k!}\left(-b_{n} f^{(k+j)}\left(t_{n}\right)\right)\left(t_{n+1}-t_{n}\right)^{k} \\
& =-\left(2-b_{n} f^{\prime}\left(t_{n+1}\right)\right)\left(b_{n} f^{(j)}\left(t_{n+1}\right)\right)=-b_{n+1} f^{(j)}\left(t_{n+1}\right) .
\end{aligned}
$$

Then (III) also holds and the induction is complete.
Now, as $\left\{t_{n}\right\}$ is a increasing sequence that converges to t^{*}, and the sequence $\left\{x_{n}\right\}$ is defined in a Banach space, $\left\{x_{n}\right\}$ converges to a limit x^{*}.

Theorem 3. Let x^{*} be the limit of the sequence $\left\{x_{n}\right\}$ defined in (2). Then, if $\left\|B_{0}\right\| \leq 1, x^{*}$ is a solution of (1), that is $F\left(x^{*}\right)=0$.

Proof. Notice that $\left\|B_{0}\right\| \leq 1=-b_{0}$. Then, taking into account (11) and the relationship $B_{n}=\left(I+\left(I-B_{n-1} F^{\prime}\left(x_{n}\right)\right) B_{n-1}\right.$, we can show that $\left\|B_{n}\right\| \leq-b_{n}$ for $n \geq 0$.

In addition, as $B_{n+1}-B_{n}=\left(\left(I-B_{n} F^{\prime}\left(x_{n+1}\right)\right) B_{n}\right.$, we have $\left\|B_{n+1}-B_{n}\right\| \leq b_{n+1}-b_{n}$ for $n \geq 0$ and then $\left\{B_{n}\right\}$ is a Cauchy sequence. Consequently, there exists a linear operator B^{*} such that $B^{*}=\lim _{n \rightarrow \infty} B_{n}, B^{*} F^{\prime}\left(x^{*}\right)=I$. Then (see [5, Th. 2, p. 153]) there exists $F^{\prime}\left(x^{*}\right)^{-1}$ and $\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\| \leq-1 / f^{\prime}\left(t^{*}\right)$. This fact, together with (II) in the proof of Theorem 2 guarantees that $F\left(x^{*}\right)=0$.

§3. Application to Fredholm integral equations

In this section we consider the following integral equation:

$$
x(t)=z(t)+\lambda \int_{a}^{b} k(t, s) H(x(s)) d s, \quad t \in[a, b],
$$

where z is a given continuous function, H is an analytic function, k is a kernel continuous in its two variables and λ is a real parameter. This equation can be written as a equation $F(x)=0$, where $F: X \rightarrow X$ is an operator defined on $X=C[a, b]$, the space of continuous functions in the interval $[a, b]$. The expression of such operator is the following:

$$
\begin{equation*}
F(x)(t)=x(t)-z(t)-\lambda \int_{a}^{b} k(t, s) H(\phi(s)) d s, \quad t \in[a, b] \tag{12}
\end{equation*}
$$

In the space of continuous functions in $[a, b]$ we consider the max-norm:

$$
\|g\|=\max _{t \in[a, b]}|g(t)|, g \in C[a, b] .
$$

For the kernel k we define

$$
\|k\|=\max _{t \in[a, b]} \int_{a}^{b}|k(t, s)| d s
$$

In [3] Newton's method has been considered for studying the solution of (12). The two main problems of using Newton's method for solving a nonlinear equation is the choice of the initial approximation x_{0} and the calculus of the inverses $F^{\prime}\left(x_{k}\right)^{-1}$ (or the corresponding solution of a linear equation) at each step. In [3] the initial approximation is chosen as $x_{0}(t)=z(t)$ and then it is established a set of values for the parameter λ in order equation (12) has a solution. An estimate for the norm of $F^{\prime}\left(x_{0}\right)^{-1}$ is also given.

Now, in this section we use Newton-Moser method (2) for studying the solution of (12). We consider the same choice for the initial approximation, that is $x_{0}(t)=z(t)$, but the calculus of $F^{\prime}\left(x_{0}\right)^{-1}$ it is not required now.

To construct the majorizing function (7) we need to calculate the parameters γ_{0}, β and γ_{j}, $j \geq 2$, given in (6), by taking as starting point the function $x_{0}=z$. The derivatives of order j of (12) are j-linear operators from the space X^{j} on X given by:

$$
\begin{gathered}
F^{\prime}(x)\left[y_{1}\right](t)=y_{1}(t)-\lambda \int_{a}^{b} k(t, s) H^{\prime}(x(s)) y_{1}(s) d s, \\
F^{(j)}(x)\left[y_{1}, \ldots, y_{j}\right](t)=-\lambda \int_{a}^{b} k(t, s) H^{(j)}(x(s)) y_{1}(t) \cdots y_{j}(t) d s, j \geq 2 .
\end{gathered}
$$

Now we consider a particular integral equation of type (12). We take $x_{0}(t)=z(t)$ and $B_{0}=I$, the identity operator, as starting values for Newton-Moser method (2) and we study the existence of solutions for the corresponding majorizing equation $f(t)=0$, with f defined in (7). Notice that different convergence results could be obtained under different choices for $x_{0}(t)$ and B_{0}.

Let us consider the nonlinear integral equation

$$
\begin{equation*}
F(x)(t)=x(t)-1-\lambda \int_{0}^{1} \cos (\pi s t) x(s)^{m} d s \tag{13}
\end{equation*}
$$

We take $x_{0}(t)=1$ for all $t \in[0,1]$ and $B_{0}=I$. Then, $\gamma_{0}=|\lambda|, \beta=m|\lambda|$ and

$$
\gamma_{j}= \begin{cases}|\lambda| m(m-1) \cdots(m-j+1), & \text { if } 2 \leq j \leq m, \\ 0 & \text { if } j>m .\end{cases}
$$

Consequently the majorizing function (7) is given by

$$
f(t)=|\lambda|+(m|\lambda|-1) t+|\lambda| \sum_{j=2}^{m}\binom{m}{j} t^{j}=|\lambda|(1+t)^{m}-t .
$$

n	Newton-Moser method (2)	ρ
1	1.180118×10^{-1}	1.78711
2	2.14224×10^{-3}	1.84597
3	3.57016×10^{-5}	1.92453
4	1.30970×10^{-8}	1.96938
5	2.24399×10^{-15}	1.98755

Table 1: Error estimates (10) and the computational order of convergence (14)

If $m|\lambda|<1$ this function has an absolute minimum $\hat{t}=-1+(m|\lambda|)^{-1 /(m-1)}$ and, in addition, $f(\hat{t})<0$.

Then, according with the results of the previous section, we have established a result on the existence of solution for equations (13). In fact, if $|\lambda|<1 / m$, the integral equation (13) has a solution. In addition, this solution can be approximated by using Newton-Moser method (2) starting with $x_{0}(t)=1$ and $B_{0}=I$.

For instance, if we consider $m=5$ and $\lambda=\frac{1}{20}$ then, function

$$
f(t)=\frac{1}{20}\left(1-15 t+10 t^{2}+10 t^{3}+5 t^{4}+t^{5}\right)
$$

is the majorizing function of sequence $\left\{x_{n}\right\}$ and, $t^{*}=0.0701898$ is the smallest positive root of f.

Using the majorizing sequence $\left\{t_{n}\right\}$, we show in Table 1 a priori error estimates (10) and the computational order of convergence [1]:

$$
\begin{equation*}
\rho \approx \ln \frac{\left\|t_{n+1}-t^{*}\right\|}{\left\|t_{n}-t^{*}\right\|} / \ln \frac{\left\|t_{n}-t^{*}\right\|}{\left\|t_{n-1}-t^{*}\right\|}, \quad n \in \mathbb{N}, \tag{14}
\end{equation*}
$$

when Newton-Moser method (2) is applied to solve equation (13).
Now, from Theorem 3 the integral equation (13) has a solution x^{*} in $B(1,0.0701898)$ which is the limit of the iterations of Newton-Moser method (2) starting with $x_{0}(t)=1$ and $B_{0}=I$:

$$
\begin{aligned}
& x_{1}(t)=1+0.015915493 t^{-1} \sin (3.14159 t), \\
& x_{2}(t)=1+0.017615759 t^{-1} \sin (3.14159 t), \\
& x_{3}(t)=1+0.017633935 t^{-1} \sin (3.14159 t), \\
& x_{4}(t)=1+0.017633938 t^{-1} \sin (3.14159 t) .
\end{aligned}
$$

Considering iteration $x_{4}(t)$ as a numerical solution x^{*} of integral equation (13) and the computational order of convergence:

$$
\begin{equation*}
\rho_{n} \approx \ln \frac{\left\|x_{n+1}(t)-x^{*}\right\|}{\left\|x_{n}(t)-x^{*}\right\|} / \ln \frac{\left\|x_{n}(t)-x^{*}\right\|}{\left\|x_{n-1}(t)-x^{*}\right\|}, \quad n \in \mathbb{N}, \tag{15}
\end{equation*}
$$

Newton-Moser method reach computationally the R-order of convergence at least two. In fact, $\rho_{1}=1.95368$ and $\rho_{2}=1.97401$.

Acknowledgements

This paper has been supported by the Spanish Ministry of Science and Technology (Ref. MTM2008-01952/MTM).

References

[1] Grau-Sánchez, M., and Noguera, M. A variant of Cauchy's method with accelerated fifth-order convergence. Appl. Math. Lett. 17 (2004), 509-517.
[2] Gutiérrez, J. M., Hernández, M. A., and Romero, N. A note on a modification of Moser's method. Journal of Complexity 24 (2008), 185-197.
[3] Gutiérrez, J. M., Hernández, M. A., and Salanova, M. A. α-theory for nonlinear Fredholm integral equations. Grazer Mathematische Berichte 346 (2004), 187-196.
[4] Hald, O. H. On a Newton-Moser type method. Numer. Math. 23 (1975), 411-425.
[5] Kantorovich, L. V. Functional analysis. Pergamon Press, Oxford, 1982.
[6] Moser, J. Stable and random motions in dynamical systems with special emphasis on celestian mechanics, vol. 77 of Herman Weil Lectures, Annals of Mathematics Studies. Princeton Univ. Press, Princeton, New Jersey, 1973.
[7] Petzeltova, H. Remark on Newton-Moser type method. Commentationes Mathematicae Universitatis Carolinae 21 (1980), 719-725.
[8] Smale, S. Newton's method estimates from data at one point. The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics. SpringerVerlag, New York, 1986.
[9] Ulm, S. On iterative methods with successive aproximation of the inverse operator (Russian). Izv. Akad Nauk Est. SSR 16 (1967), 403-411.
[10] Wang, D. R., and Zhao, F. G. The theory of Smale's point estimation and its applications. J. Comput. Appl. Math. 60 (1995), 253-269.

José M. Gutiérrez, Miguel A. Hernández and Natalia Romero
Dep. Mathematics and Computation, University of La Rioja
C/ Luis de Ulloa s/n
26004 Logroño, Spain
\{jmguti, mahernan, natalia.romero\}@unirioja.es

