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α-THEORY FOR
NEWTON-MOSER METHOD

José M. Gutiérrez, Miguel A. Hernández and Natalia Romero
Abstract. We study the semilocal convergence of Newton-Moser method to solve non-
linear equations F(x) = 0 defined in Banach spaces. The method defines a sequence {xn}

that under appropriate conditions converges to a solution of the aforesaid equation. In
fact, by following the known as α-theory, we give conditions on the starting point x0 and
on the derivatives of the operator F in order to establish such convergence. Finally, as an
application, we apply this theory to the study of a kind of integral equations.
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§1. Introduction

Newton-Moser method is a method to numerically solve nonlinear equations. In order to
consider the more general case, let us consider a nonlinear equation

F(x) = 0, (1)

where F is an operator defined between two Banach spaces X and Y . Let us assume that x∗ is
a simple root of (1).

Newton-Moser method is an iterative method defined by xn+1 = xn − BnF(xn), n ≥ 0,
Bn+1 = 2Bn − BnF′(xn+1)Bn, n ≥ 0,

(2)

where x0 is a given point in X and B0 is a given linear operator from Y to X.
The method exhibits several attractive features. First, it avoids the calculus of inverse

operators that appears in Newton’s method, xn+1 = xn − F′(xn)−1F(xn), n ≥ 0. So it is not
necessary to solve a linear equation at each iteration. Second, it has quadratic convergence,
the same as Newton’s method. Third, in addition to solve the nonlinear equation (1), the
method produces successive approximations {Bn} to the value of F′(x∗)−1, being x∗ a solution
of (1). This property is very helpful when one investigates the sensitivity of the solution to
small perturbations.

We find the origin of the method in a Moser’s work [6] for investigating the stability of
the N-body problem in Celestial Mechanics. The main difficulty in this, and similar problems
involving small divisors, is the solution of a system of nonlinear partial differential equations.
In fact, Moser proposed the following method xn+1 = xn − AnF(xn), n ≥ 0,

An+1 = An − An(F′(xn)An − I), n ≥ 0,
(3)
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for a given x0 ∈ X, a given A0 ∈ L(Y, X), the set of linear operators from Y to X, and where I
is the identity operator in X.

Notice that the first equation is similar to Newton’s method, but replacing the operator
F′(xn)−1 by a linear operator An. The second equation is Newton’s method applied to equation
gn(A) = 0 where gn : L(Y, X) → L(X,Y) is defined by gn(A) = A−1 − F′(xn). So {An} gives
us an approximation of F′(xn)−1.

Method (3), firstly proposed by Moser, has a rate of convergence of (1+
√

5)/2 for simple
roots. However, the variant (2) later introduced by Ulm [9] reaches quadratic convergence.
Notice that in (2) F′(xn+1) appears instead of F′(xn).

Since then, method (2) has been also considered by other authors. For instance, Hald [4]
showed the quadratic convergence of the method. Later, Petzeltova [7] studied the conver-
gence of the method under Kantorovich-type conditions.

Recently, in [2] a system of recurrence relations is given in order to analyze the conver-
gence of Newton-Moser method (2) under estimations at one point. This theory, introduced
by Smale [8], is an alternative to Kantorovich theory [5] to study the semilocal convergence
of iterative processes to solve nonlinear equations. Roughly speaking, if x0 is an initial value
such that the sequence {xn} satisfies

‖xn − x∗‖ ≤
(1
2

)2n−1
‖x0 − x∗‖ ,

then x0 is said to be an approximate zero of F. The following conditions were introduced by
Smale [8] in order to prove that x0 is an approximated zero∥∥∥F′(x0)−1F(x0)

∥∥∥ ≤ β, (4a)

sup
k≥2

( 1
k!

∥∥∥F′(x0)−1F(k)(x0)
∥∥∥)1/(k−1)

≤ γ, (4b)

α = βγ ≤ 3 − 2
√

2. (4c)

Wang and Zhao [10] pointed that condition (4) is too restrictive. Instead of (4) they assume∥∥∥F′(x0)−1F(x0)
∥∥∥ ≤ β, (5a)

1
k!

∥∥∥F′(x0)−1F(k)(x0)
∥∥∥ ≤ γk, k ≥ 2, (5b) the equation φ(t) = 0 has at least a positive

solution, where φ(t) = β − t +
∑

k≥2
γktk.

(5c)

In [2] the semilocal convergence of Newton-Moser method is established from a system
of recurrence relations. However, a majorizing function, as the given in (5c), is not provided.
In this paper we present a majorizing function for Newton-Moser method and we give an
analysis of its convergence by following the patterns of the α-theory introduced by Smale.
The semilocal convergence hypothesis and the main theorem are shown in section 2.
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§2. Semilocal convergence results (α-theory)

In this section we study the semilocal convergence of Newton-Moser method (2) to solve the
nonlinear equation (1). Let us assume that F is a nonlinear operator defined from an open
subset Ω in a Banach space X to another Banach space Y . Let x0 ∈ Ω be a given point and
B0 ∈ L(Y, X) a given linear operator defined from Y to X.

Instead the aforesaid conditions (4) or (5), we consider the following ones:

‖B0F(x0)‖ ≤ γ0, (6a)
‖I − B0F′(x0)‖ ≤ β < 1, (6b)

‖B0F( j)(x0)‖ ≤ γ j, for j ≥ 2, (6c)
there exists R > 0 such that the series∑

j≥2
γ jt j/ j! is convergent for t ∈ [0,R),

(6d)

f (t̂) < 0, (6e)

where t̂ is the absolute minimum of the function

f (t) = γ0 + (β − 1)t +
∑
j≥2

1
j!
γ jt j, t ≥ 0. (7)

In addition, we consider the following scalar sequence
t0 = 0, b0 = −1,
tn+1 = tn − bn f (tn),
bn+1 = 2bn − bn f ′(tn+1)bn.

(8)

Condition (6e) allows us to say that function f (t) defined in (7) has at least one positive
root. Let us denote t∗ the smallest positive solution of f (t) = 0. With the rest of conditions in
(6), (7), (8), we can show that {tn} is an increasing monotone sequence to t∗ and

‖xn+1 − xn‖ ≤ tn+1 − tn, n ≥ 0. (9)

Consequently, as {tn} is a convergent sequence and {xn} is a sequence defined in a Banach
space, {xn} converges to a limit x∗, that can be shown it is a solution of the nonlinear equa-
tion (1).

In a more explicit way, the aforementioned comments are shown in the following results.

Theorem 1. Let us consider the scalar sequences {tn} and {bn} defined in (8). Then the
following relations hold:

1. bn < 0.

2. bn f ′(tn) < 1.

3. tn < tn+1 < t∗, where t∗ is the smallest positive root of (7).
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Proof. Firstly we notice that f ′′(t) > 0 for t > 0. Then, as f ′(0) = β−1 < 0 and limt→∞ f (t) =

∞, there exists a only value t̂ ∈ (0,∞) such that f (t̂) = 0. Then, condition (6d) guarantees the
existence of positive roots of function f (t) defined in (7).

Now we prove the aforementioned are true for n ≥ 0 by following an inductive reasoning.
For n = 0 these relations are obviously true. If we suppose they are true for a given value of
n, then bn+1 = bn(2 − bn f ′(tn+1)) < 0, since bn f ′(tn+1) < bn f ′(tn) < 1.

In addition, as (1 − bn f ′(tn+1))2 > 0, then bn+1 f ′(tn+1) = 2bn f ′(tn+1) − b2
n f ′(tn+1)2 < 1.

Now we have tn+2 − tn+1 = −bn+1 f (tn+1) > 0 and finally,

t∗ − tn+2 = (1 − bn+1 f ′(ηn+1))(t∗ − tn+1),

for ηn+1 ∈ (tn+1, t∗). As bn+1 f ′(ηn+1) < bn+1 f ′(tn+1) < 1, we conclude t∗ − tn+2 > 0 and the
induction is completed. �

Theorem 2. Under conditions (6), the scalar sequence {tn} defined in (8) is a majorizing
function for {xn} defined in (2), that is,

‖xn+1 − xn‖ ≤ tn+1 − tn, n ≥ 0. (10)

Consequently, {xn} converges to a limit x∗.

Proof. Formula (10) can be proved by following an inductive reasoning. In fact, we can
prove that the following inequalities hold for n ≥ 0:

(I) ‖I − BnF′(xn)‖ ≤ 1 − bn f ′(tn).

(II) ‖BnF(xn)‖ ≤ −bn f (tn).

(III) ‖BnF( j)(xn)‖ ≤ −bn f ( j)(tn), j ≥ 2.

Notice that (II) is equivalent to (10).
The aforesaid inequalities are clear for n = 0, just by taking into account (6). Now, if we

assume they are true for 0, 1, . . . , n, then we can prove they are also true for n + 1.
Firstly, by (2), we have the following relationships:

I − Bn+1F′(xn+1) = (I − BnF′(xn+1))2,

I − BnF′(xn+1) = I − BnF′(xn) −
∑
j≥1

1
j!

BnF( j+1)(xn)(xn+1 − xn) j,

‖I − BnF′(xn+1)‖ ≤ 1 − bn f ′(tn+1), (11)

‖I − Bn+1F′(xn+1)‖ ≤ (1 − bn f ′(tn+1))2 = 1 − bn+1 f ′(tn+1).

Then, (I) happens for n + 1.
Secondly,

BnF(xn+1) = (I − BnF′(xn))BnF(xn) +
∑
j≥2

1
j!

BnF( j)(xn)(xn+1 − xn) j.
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Consequently,

‖BnF(xn+1)‖ ≤ (1 − bn f ′(tn))(−bn f (tn)) +
∑
j≥2

1
j!

(−bn f ( j)(tn))(tn+1 − tn) j

= −bn f (tn)) − bn f ′(tn)(tn+1 − tn) +
∑
j≥2

1
j!

(−bn f ( j)(tn))(tn+1 − tn) j = −bn f (tn+1).

Then, by taking norms in Bn+1F(xn+1) = (2I − BnF′(xn+1))BnF(xn+1), we show that (II) also
holds for n + 1. In fact,

‖Bn+1F(xn+1)‖ ≤ −(2 − bn f ′(tn+1)(bn f (tn+1)) = −bn+1 f (tn+1).

Finally,

‖Bn+1F( j)(xn+1)‖ ≤ (2 − bn f ′(tn+1))
∑
k≥0

1
k!

(−bn f (k+ j)(tn))(tn+1 − tn)k

= −(2 − bn f ′(tn+1))(bn f ( j)(tn+1)) = −bn+1 f ( j)(tn+1).

Then (III) also holds and the induction is complete.
Now, as {tn} is a increasing sequence that converges to t∗, and the sequence {xn} is defined

in a Banach space, {xn} converges to a limit x∗. �

Theorem 3. Let x∗ be the limit of the sequence {xn} defined in (2). Then, if ‖B0‖ ≤ 1, x∗ is a
solution of (1), that is F(x∗) = 0.

Proof. Notice that ‖B0‖ ≤ 1 = −b0. Then, taking into account (11) and the relationship
Bn = (I + (I − Bn−1F′(xn))Bn−1, we can show that ‖Bn‖ ≤ −bn for n ≥ 0.

In addition, as Bn+1 − Bn = ((I − BnF′(xn+1))Bn, we have ‖Bn+1 − Bn‖ ≤ bn+1 − bn for
n ≥ 0 and then {Bn} is a Cauchy sequence. Consequently, there exists a linear operator B∗

such that B∗ = limn→∞ Bn, B∗F′(x∗) = I. Then (see [5, Th. 2, p. 153]) there exists F′(x∗)−1

and ‖F′(x∗)−1‖ ≤ −1/ f ′(t∗). This fact, together with (II) in the proof of Theorem 2 guarantees
that F(x∗) = 0. �

§3. Application to Fredholm integral equations

In this section we consider the following integral equation:

x(t) = z(t) + λ

∫ b

a
k(t, s)H(x(s)) ds, t ∈ [a, b],

where z is a given continuous function, H is an analytic function, k is a kernel continuous
in its two variables and λ is a real parameter. This equation can be written as a equation
F(x) = 0, where F : X → X is an operator defined on X = C[a, b], the space of continuous
functions in the interval [a, b]. The expression of such operator is the following:

F(x)(t) = x(t) − z(t) − λ
∫ b

a
k(t, s)H(φ(s)) ds, t ∈ [a, b]. (12)
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In the space of continuous functions in [a, b] we consider the max-norm:

‖g‖ = max
t∈[a,b]

|g(t)|, g ∈ C[a, b].

For the kernel k we define

‖k‖ = max
t∈[a,b]

∫ b

a
|k(t, s)| ds.

In [3] Newton’s method has been considered for studying the solution of (12). The two
main problems of using Newton’s method for solving a nonlinear equation is the choice of
the initial approximation x0 and the calculus of the inverses F′(xk)−1 (or the corresponding
solution of a linear equation) at each step. In [3] the initial approximation is chosen as
x0(t) = z(t) and then it is established a set of values for the parameter λ in order equation (12)
has a solution. An estimate for the norm of F′(x0)−1 is also given.

Now, in this section we use Newton-Moser method (2) for studying the solution of (12).
We consider the same choice for the initial approximation, that is x0(t) = z(t), but the calculus
of F′(x0)−1 it is not required now.

To construct the majorizing function (7) we need to calculate the parameters γ0, β and γ j,
j ≥ 2, given in (6), by taking as starting point the function x0 = z. The derivatives of order j
of (12) are j-linear operators from the space X j on X given by:

F′(x)[y1](t) = y1(t) − λ
∫ b

a
k(t, s)H′(x(s))y1(s) ds,

F( j)(x)[y1, . . . , y j](t) = −λ

∫ b

a
k(t, s)H( j)(x(s))y1(t) · · · y j(t) ds, j ≥ 2.

Now we consider a particular integral equation of type (12). We take x0(t) = z(t) and
B0 = I, the identity operator, as starting values for Newton-Moser method (2) and we study
the existence of solutions for the corresponding majorizing equation f (t) = 0, with f defined
in (7). Notice that different convergence results could be obtained under different choices for
x0(t) and B0.

Let us consider the nonlinear integral equation

F(x)(t) = x(t) − 1 − λ
∫ 1

0
cos(πst)x(s)m ds. (13)

We take x0(t) = 1 for all t ∈ [0, 1] and B0 = I. Then, γ0 = |λ|, β = m|λ| and

γ j =

|λ|m(m − 1) · · · (m − j + 1), if 2 ≤ j ≤ m,

0 if j > m.

Consequently the majorizing function (7) is given by

f (t) = |λ| + (m|λ| − 1)t + |λ|

m∑
j=2

(
m
j

)
t j = |λ|(1 + t)m − t.
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n Newton-Moser method (2) ρ

1 1.180118 × 10−1 1.78711
2 2.14224 × 10−3 1.84597
3 3.57016 × 10−5 1.92453
4 1.30970 × 10−8 1.96938
5 2.24399 × 10−15 1.98755

Table 1: Error estimates (10) and the computational order of convergence (14)

If m|λ| < 1 this function has an absolute minimum t̂ = −1+(m |λ|)−1/(m−1) and, in addition,
f (t̂) < 0.

Then, according with the results of the previous section, we have established a result on
the existence of solution for equations (13). In fact, if |λ| < 1/m, the integral equation (13) has
a solution. In addition, this solution can be approximated by using Newton-Moser method (2)
starting with x0(t) = 1 and B0 = I.

For instance, if we consider m = 5 and λ = 1
20 then, function

f (t) =
1

20

(
1 − 15t + 10t2 + 10t3 + 5t4 + t5

)
,

is the majorizing function of sequence {xn} and, t∗ = 0.0701898 is the smallest positive root
of f .

Using the majorizing sequence {tn}, we show in Table 1 a priori error estimates (10) and
the computational order of convergence [1]:

ρ ≈ ln
‖tn+1 − t∗‖
‖tn − t∗‖

/ ln
‖tn − t∗‖
‖tn−1 − t∗‖

, n ∈ N, (14)

when Newton-Moser method (2) is applied to solve equation (13).
Now, from Theorem 3 the integral equation (13) has a solution x∗ in B(1, 0.0701898)

which is the limit of the iterations of Newton-Moser method (2) starting with x0(t) = 1 and
B0 = I:

x1(t) = 1 + 0.015915493 t−1 sin(3.14159 t),

x2(t) = 1 + 0.017615759 t−1 sin(3.14159 t),

x3(t) = 1 + 0.017633935 t−1 sin(3.14159 t),

x4(t) = 1 + 0.017633938 t−1 sin(3.14159 t).

Considering iteration x4(t) as a numerical solution x∗ of integral equation (13) and the
computational order of convergence:

ρn ≈ ln
‖xn+1(t) − x∗‖
‖xn(t) − x∗‖

/
ln
‖xn(t) − x∗‖
‖xn−1(t) − x∗‖

, n ∈ N, (15)

Newton-Moser method reach computationally the R-order of convergence at least two. In
fact, ρ1 = 1.95368 and ρ2 = 1.97401.
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