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SIMULATION OF RAINFALL EVENTS
AND OVERLAND FLOW

Olivier Delestre and François James

Abstract. We are interested in simulating overland flow on agricultural fields during rain-
fall events. The model considered is the shallow water system (or Saint-Venant equations)
without infiltration, complemented with a friction term. In this context, we definitely
have to cope with dry/wet interfaces and water inflow on dry soil. We present a simpli-
fied one-dimensional model, discretized with a well-balanced finite volume method, and
we describe the specific additional features needed to deal with dry/wet transitions and
steady-state solutions due to topography and friction. The method as well as the choice
of the friction term are tested and discussed both on analytical solutions and experimental
results.
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Introduction

Rain on agricultural fields can yield to overland flow. This flow may have some undesirable
effects. At the field scale, we can have soil erosion and pollutant transport. Downstream the
fields, roads and houses may be damaged. To prevent these effects, control measures can be
taken, such as grass strips. But one must know how the water is flowing in order to place
efficiently these developments. In the spirit of [6, 7], we try to model these phenomenon by
using the shallow water (or Saint-Venant) equations. Efficient numerical simulations are of
great help in this context, because field measurements, such as velocities or water heights,
are very difficult to obtain, especially during the rain event, which is quite unpredictible.

The aim of this paper is not to give a complete account on the problem, which has to be
thaught of as a multi-scale problem: one has to deal with roughness induced at the decimeter
scale (e.g. by furrows on agricultural surfaces), flows at the scale of ten square meters, which
is the scale of the numerical topography data, and also the agricultural field itself, whose
surface is of the order of the hectare. We give here a short review of the shallow water
equations, with emphasis on some specific aspects in this context. Namely, since the rain is
an intermittent phenomenon, we definitely have to cope with dry/wet transitions, a problem
analogous to the vacuum apparition in gas dynamics. More classically in shallow water
problems, we have to take into account carefully the interactions between the soil topography
and the friction of water on the soil, which eventually lead to steady-state solutions that have
to be computed accurately.

For this introduction to the topic, we deliberately use a simplified model, firstly by con-
sidering one-dimensional flows. This is enough to understand the ideas of the numerical
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methods, which can be developed in two space dimensions on a rectangular mesh. Next,
from a more practical viewpoint, we neglect importants phenomena, which deserve a com-
plete modelling: infiltration and soil erosion. Infiltration appears as a supplementary source
term in the shallow water equations, and can be treated quite easily, when a relevant model is
chosen. Erosion is a much more complex problem.

We begin by a short review of the shallow water system, recalling a few basic properties.
Next, we describe numerical methods adapted to the situation, in particular we discuss briefly
the discretization of the friction terms. Finally, we give several illustrations of the results.
First we justify the choice of the method by comparison with analytical solutions. Next, we
show an attempt of recovering experimental results, with a clear evidence that the choice of
the friction laws is not obvious. The last section is devoted to an unstability phenomenon
wich occurs when perturbating steady-state solutions (with rain for instance): the so-called
roll-waves.

§1. Model

The model we consider here are the so-called shallow-water equations, which are convenient
for small heights of water, according to the following scheme

xO

h(t,x)

z(x)

u(t,x)

z+hz

The unknowns are here the velocity of the water u(t, x), and its height h(t, x). The shape of the
bottom is also called the topography, it is a given function z. For our specific application, the
model has to be complemented by taking int account friction on the soil and rain. Therefore
the equations are

∂th + ∂x(hu) = R(t), ∂t(hu) + ∂x

(
hu2 +

gh2

2

)
= −gh

(
∂xz + S f

)
, (1)

where g is the gravity constant, R(t) the rain intensity, assumed constant in space, and S f (h, u)
the friction term. Notice that infiltration in the soil can be accounted by a source term in the
first equation like R(t) − I(t, x), where I is a given function. We shall denote by q = hu the
water flow, or discharge. The typical practical configuration we consider is a channel with
finite length L, so that the system must be set on the interval ]0, L[, and complemented with
boundary conditions at inflow and outflow we do not detail here, see an example in Section 3.

Concerning the friction term, it is a given function of h and u, two examples widely used
in hydrology (see for instance [6, 7, 8, 9]) are the Manning and the Darcy-Weisbach friction
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laws, which are given respectively by

S f = −
k2u|u|
h4/3 = −

k2q|q|
h10/3 , S f = −

ku|u|
8gh

= −
kq|q|
8gh3 , (2)

where k > 0 stands for the roughness coefficient. Both laws are derived from empirical
considerations, in particular in the context of pipelines. The problem of their relevance in the
present context of overland flow is difficult.

The system can be rewritten in a more compact form by setting

U =

(
h
q

)
, F(U) =

(
q

q2/h + gh2/2

)
, B =

(
R

−gh
(
∂xz + S f

)) .
We obtain therefore

∂tU + ∂xF(U) = ∂tU + F′(U)∂xU = B.

The system is by definition hyperbolic if the matrix F′(U) admits a basis of eigenvectors
with real eigenvalues, strictly hyperbolic if the eigenvalues are distinct. An easy computation
shows that the shallow water system is strictly hyperbolic provided h > 0, with eigenvalues
λ−(U) = u −

√
gh, λ+(U) = u +

√
gh. When h = 0, the system is no longer hyperbolic,

actually it is rather meaningless, since h = 0 means that there is no water, so that the velocity
u cannot be defined. This is exactly the problem of the vacuum in the Euler equations of fluid
mechanics, and leads to severe numerical problems, which cannot be avoided in our context
since we consider rain on dry soils.

At this point, we introduce an important quantity, the so-called Froude number

Fr =
u√
gh
. (3)

This dimensionless number plays the same role as the Mach number in fluid mechanics, and
allows to classify the flows:

– Fr < 1 subcritical flow, as in a river (corresponding to subsonic flow in fluid mechanics);

– Fr > 1 supercritical flow, as in a torrent (subsonic flow);

– Fr = 1 critical flow (transonic flow).

The differences between these flows can be easily experimented by observing the surface
waves obtained by throwing a stone in a river.

§2. Numerical method

The shallow water system is discretized by a finite volume method on a fixed time-space
grid. A time step ∆t > 0 and a space step ∆x > 0 are fixed, we set xi = i∆x, and the interval
]xi−∆x/2, xi +∆x/2[ will be referred to as the cell i. The finite volume scheme can be written
in a compact form as

d
dt

Ui +
1
∆t

(Fi+1/2 − Fi−1/2) = S i, (4)
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where the vector Ui is an approximation of the conservative variables in the cell i, Fi+1/2 is
the numerical flux at the interface between cells i and i + 1, and S i a discretization of the
source term. Boundary conditions are treated by the method of characteristics (see [4]). The
scheme is completely determined once the numerical flux and the source term discretization
have been fixed. These choices are not independant one from the other.

Indeed it is well-known that source terms in hyperbolic systems of conservation laws
give rise to serious problems. The main difficulty is to find schemes that preserve equilibria
(steady-states solutions). In system (1), the main problems are due to
– topography: pools, lakes;

– friction terms: balance between kinematics and friction.
The rain source term can be treated by a second-order accurate Strang type splitting.

Schemes that preserve equilibria are known as well-balanced schemes. The strategy to
obtain such schemes consists in choosing first a consistent numerical flux for the system
without source terms. Next, a correction is given to take into account equilibria. The reader
can find all the details and a large bibliography in the book [3]. We merely give a sketch of the
method here, with emphasis on the problem of friction. The numerical flux is the so-called
HLL flux, and the order 2 is obtained in space by a MUSCL type reconstruction, in time
by Runge Kutta (Heun) (see [3] for details). Notice that dry/wet transitions imply a specific
reconstruction for the water height, not only for the velocity as usual (see [1]).

First we consider the equilibria for topography. They are given by

hu = Cst, u2/2 + g(h + z) = Cst.

However a complete resolution of these equations would lead to a far too time consuming
scheme. Thus, following [3, 1, 2], we limit ourselves to the equibria at rest:

u = 0, g(h + z) = Cst.

This procedure is known as the (second order) hydrostatic reconstruction, and it turns out to
give good results at an acceptable numerical cost. We refer the reader interested into details
to the preceding references.

Now we turn to friction terms, which can be treated by two different means. The first one
aims at building a well-balanced scheme for friction as well as topography, is the apparent
topography method, introduced by [3]. It consists in building an modified topography zapp

which takes into account the friction, as follows:

zapp = z − b, with ∂xb = S f .

We proceed then exactly as before, with this new topography (detailed computations for the
friction laws (2) can be found in [5]). This gives rise to a scheme which computes neatly
equilibrium states, but is not completely satisfactory on transition solutions, as we shall see
in the next section.

Therefore we turned to a splitting method, and we chose the semi-implicit treatment pro-
posed in [4], not only because it preserves steady states at rest, but also for its stability. For
the Darcy-Weisbach friction law (2)-right, it writes

qn+1
i +

f |qn
i |q

n+1
i

8hn
i hn+1

i

∆t = qn
i +

∆t
∆xi

(Fi+1/2G − Fi−1/2D),
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where the right-hand side is nothing more than the discharge obtained at each step of the
second order in time Runge-Kutta reconstruction. Notice also the simplicity of the method,
which gives an explicit value for qn+1

i . Now we illustrate these ideas on a set of analytical
solutions.

§3. Analytical solutions

Here we present briefly an adaptation to the 1 − d case and our friction laws of an idea
presented in [8, 9] for pseudo two dimensional cases. At steady states, we have ∂th = ∂tu =

∂tq = 0, thus the mass-conservation equation gives q = cst and we get the equation

∂xz =

(
q2

gh3 − 1
)
∂xh + S f (q, h) (5)

where S f (q, h) depends on the friction law chosen, for instance (2). For any given value of
the constants k and q, once we are given an explicit expression for h(x), then formula (5)
allows us to compute the topography corresponding to this steady state and this water height.
Other friction laws can of course be chosen.

As an example, we consider a channel of length 1000 m, with a specified water height
h(x) given by

h(x) =

(
4
g

)1/3 1 +
1
2

exp

−16
(

x
1000

−
1
2

)2 .
The friction model is the Manning law, with roughness coefficient k = 0.033. The topography
is calculated iteratively thanks to (5). To make use of the shallow water system, we have now
to impose boundary conditions. Since the flow is subcritical both at inflow x = 0 and outflow
x = 1000, we have to impose the value of one quantity at inflow and one at outflow. We
choose to put a discharge of q = 2 m2/s at inflow and a water height corresponding to the
value of h(1000) downstream.

We first compare the results obtained by the apparent topography and the semi-implicit
scheme in preserving the equilibrium state. It turns out that both methods preserve correctly
the steady state along time, as is evidenced by fig. 1.

Since for our application we are particularly interested in non-stationary solutions, we
have considered an initially dry soil and the upstream discharge q = 2 m2/s, and computed the
unsteady solution up to equilibrium. Both methods (apparent topography and semi-implicit
treatment) converge towards the steady state, with slightly better results with the apparent
topography method. However, before the steady state is reached, we have a wet/dry transition
(fig. 2). We note that the apparent topography method is not adapted to this transition: we
have a peak in the velocity profile (fig. 2-left), which appears also in the water height profile.
With the semi-implicit treatment, the water height profile is very clean (fig. 2-right).

In figure 3, two more examples of computation of steady states are displayed, both with
sub- and supercritical inflows and outflows, and using the semi-implicit method. The nu-
merical scheme deals in particular with transition from one regime to the other, including
hydraulic jumps (fig. 3-right).



130 Olivier Delestre and François James

Figure 1: Steady state solution, subcritical inflow and outflow: apparent topography +, semi-
implicit ×, analytical −.

Figure 2: Left: water front velocities at t = 200 s: apparent topography (+), semi-implicit
treatment (×). Right: water front height at t = 200s., semi-implicit
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Figure 3: Steady state solution, numerical (symbols) vs analytical (lines). Left: subcritical
inflow and supercritical outflow, right: supercritical inflow and subcritical outflow.
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Figure 4: Experimental configuration.

§4. Rainfall hydrograph test

In this section we present another test case, based on experimental measurements realized
thanks to the ANR project METHODE in a flume at the rain simulation facility at INRA-
Orléans. The flume is 4 m long with a slope of 5% (fig. 4). The simulation duration is 250 s.
The rainfall intensity R(x, t) is described by

R(x, t) =

50 mm/h if (x, t) ∈ [0, 3.95 m] × [5, 125 s],
0 otherwise.

For this test, dry/wet transitions are involved, since on the one hand there is no rain on the
last 5 cm of the flume, on the other hand rain falls on a dry soil. The measured output is an
hydrograph, that is a plot of the discharge versus time (see fig. 5).

The mathematical model for this ideal overland flow is the following. We consider a
uniform plane catchment whose overall length in the direction of flow is L. The surface
roughness and slope are assumed to be constant in space and time. The friction law is the
Darcy-Weisbach one. We consider a constant rainfall excess such that

R(x, t) =

{
I for 0 ≤ t ≤ td, 0 ≤ x ≤ L,
0 otherwise,

where I is the rainfall intensity and td is the duration of the rainfall excess. First we com-
pute some explicit “naive” analytical solution to the problem. We notice that three phases
can clearly be identified on the hydrograph: a first non-steady step at the beginning of the
rainfall event, then a steady-state and lastly another non-steady step when rain stops. The
first and the second step solutions can be computed explicitly, and the “naive” solution is
obtained by assuming a simple concatenation of the two parts (we refer to [5] for the detailed
computations).
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Figure 5: Comparison between experimental measures (+) and numerical results (−).

Figure 6: Computed rainfall hydrographs for Darcy-Weisbach’s law (DW). Left: apparent
topography method (AT). Right: semi-implicit scheme.

At first we compare numerical results with the analytical “naive” solution. Once again,
with (fig. 6-a) we show that with the apparent topography method, we get a peak on the
discharge downstream that we do not get far from this transition. With the semi-implicit
method, we do not have this peak (fig. 6-b). This treatment gives good results close to the
“naive” exact solution. The hydrograph is well calculated (fig. 6-b), notice here the computed
hydrograph at the middle of the flume, a quantity hardly accessible by experiment.

Next, we propose a comparison between experimental measurements and numerical sim-
ulation (fig. 5), obtained with the Darcy-Weisbach friction law. We obtain a reasonable agree-
ment, but it turns out that it is impossible to fit correctly the shape of both the increasing and
decreasing parts of the hydrograph. This indicates clearly that the model has to be modified,
for instance by choosing alternative friction laws, but this is beyond the scope of this paper.
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Figure 7: Perturbed initial and final (t = 200 s) states for Fr=1.5 (top left), Fr=2 (top right),
Fr=3.7 (bottom).

§5. Roll waves

This section is devoted to some examples of the so-called “roll-waves”, a phenomenon which
results from the competition between topography and friction. Several steady regimes turn
out to be unstable, a slight perturbation generating a periodic travelling wave with shocks
(hydraulic jumps). In ref [10], Que and Xu gather a set of explicit computations in the simple
case of a constant steady states in inclined open channels with constant slope. They provide a
precise analysis for the linear stability, proving in particular the following criterion: the initial
constant state is linearly stable if and only if the Froude number (3) is smaller than 2.

We recover here these results, using the semi-implicit scheme described above, together
with hydrostatic reconstruction. The initial height of water is different for each case, but
the amplitude of the perturbation is the same. The “final states” showed here are computed
at time t = 200 s, since it turns out that the solution is stabilized at this time. All cases are
perfectly computed, the convergence rates for different values of the Froude number are given
in figure 8.

Comparisons between the initial perturbation and the final state are displayed in fig. 7.
For Fr = 2, the initial state is supposed to be exactly stable, the smaller amplitude of the
final result is due to the numerical diffusion. Notice the nonlinear effects (fig. 7, top right).
For Fr < 2 (top left), the initial perturbation completely disappears, for Fr > 2 (bottom), a
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Figure 8: Convergence rate to the final state, Fr≤ 2 (left), Fr>2 (right).

roll-wave appears, whose amplitude depends on the initial state (see fig. 8).

Conclusion

This preliminary study of overland flow due to rainfall events clearly enlights several specific
difficulties. First, from the numerical point of view, it seems that the apparent topography
method, which was designed in order to catch steady states, is not adapted for wet/dry transi-
tions. The semi-implicit treatment seems to be better in the problems we consider and gives
good results compared to experimental data. Next, the model itself has to be improved, in
particular regarding the empirical friction laws we used, which were not developed in this hy-
drological context. Finally, more realistic situations require infiltration and two-dimensional
simulations, which are in progress and already validated on analytical solutions. This will be
again compared with experimental data, as for the flume test.
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