On the hydrostatic StOKES APPROXIMATION WITH NON HOMOGENEOUS DIRICHLET CONDITIONS

Fabien Dahoumane

Abstract

We deal with the hydrostatic Stokes approximation with non homogeneous Dirichlet boundary conditions. While investigated the homogeneous case, we build a shifting operator of boundary values related to the divergence operator, and solve the non homogeneous problem in a domain with sidewalls.

Keywords: Hydrostatic approximation, De Rham's lemma, shifting operator, primitive equations, non homogeneous Dirichlet conditions.
AMS classification: 35Q30, 35B40, 76D05, 34C35.

§1. Introduction

Let us consider $\Omega \subset \mathbb{R}^{3}$ a bounded domain defined by

$$
\begin{equation*}
\Omega=\left\{x=\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{3} \mid x^{\prime} \in \omega \text { and }-h\left(x^{\prime}\right)<x_{3}<0\right\}, \tag{1}
\end{equation*}
$$

where $\omega \subset \mathbb{R}^{2}$ is a bounded Lipschitz-continuous domain and h, defined in ω, is a mapping satisfying the following assumption.
Assumption 1. The mapping h is positive and Lipschitz-continuous on ω. Besides, there is a constant $\alpha>0$ such that

$$
\begin{equation*}
\inf _{x^{\prime} \in \omega} h\left(x^{\prime}\right) \geqslant \alpha \tag{2}
\end{equation*}
$$

Therefore, Ω has a Lipschitz-continuous boundary Γ splitted into three parts, each one with a positive measure: the surface Γ_{S}, the bottom Γ_{B}, and sidewalls Γ_{L}, defined by:

$$
\begin{aligned}
& \Gamma_{S}=\omega \times\{0\}, \quad \Gamma_{B}=\left\{\left(x^{\prime},-h\left(x^{\prime}\right)\right) \mid x^{\prime} \in \omega\right\} \\
& \Gamma_{L}=\left\{x \in \mathbb{R}^{3} \mid x^{\prime} \in \partial \omega \text { and }-h\left(x^{\prime}\right)<x_{3}<0\right\} .
\end{aligned}
$$

Finally, we denote by \boldsymbol{n} the unit external vector normal to Γ. Below, the drawing of the domain Ω.

Let $\boldsymbol{f}^{\prime}=\left(f_{1}, f_{2}\right): \Omega \rightarrow \mathbb{R}^{2}, \Phi: \Omega \rightarrow \mathbb{R}$, and $\boldsymbol{g}=\left(\boldsymbol{g}^{\prime}, g_{3}\right): \Gamma \rightarrow \mathbb{R}^{3}$ be given functions, Φ and \boldsymbol{g} satisfying adequate compatibility conditions (see (7)). In this paper, we study the hydrostatic Stokes approximation consisting in seeking $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{3}$ and $p: \omega \rightarrow \mathbb{R}$

$$
(\mathcal{S H})\left\{\begin{array}{rrrl}
-\Delta \boldsymbol{u}^{\prime}+\nabla^{\prime} p=\boldsymbol{f}^{\prime}, & \partial_{3} p=0, & \nabla \cdot \boldsymbol{u}=\Phi & \text { in } \Omega, \\
& \boldsymbol{u}^{\prime}=\boldsymbol{g}^{\prime}, & u_{3} n_{3}=g_{3} & \text { on } \Gamma .
\end{array}\right.
$$

Here $\nabla^{\prime}=\left(\partial_{x_{1}}, \partial_{x_{2}}\right)$ denotes the gradient operator with respect to the variables x_{1} and x_{2}.
When Φ and g_{3} are identically equal to 0 , some authors have considered $(\mathcal{S H})$ as a reduced Stokes-type system. Indeed, let us consider the case of homogeneous conditions. The simplifications of $(\mathcal{S H})$ come from the hydrostatic pressure hypothesis:

$$
\begin{equation*}
\frac{\partial p}{\partial x_{3}}=0 \text { in } \Omega \tag{3}
\end{equation*}
$$

ensuring that p_{S}, the pressure at $x_{3}=0$, is in fact the real unknown. Moreover, by integrating with respect to x_{3} the incompressibility equation:

$$
\begin{equation*}
\nabla \cdot \boldsymbol{u}=0 \text { in } \Omega \tag{4}
\end{equation*}
$$

and taking into account the boundary conditions over u_{3}, it appears that the vertical velocity u_{3} is given by the horizontal velocity \boldsymbol{u}^{\prime}. In this case, the equations of $(\mathcal{S H})$ can be reduced to the following system:

$$
\left\{\begin{align*}
-\Delta \boldsymbol{u}^{\prime}+\nabla^{\prime} p_{S}=\boldsymbol{f}^{\prime} & \text { in } \Omega, \tag{5}\\
\nabla^{\prime} \cdot \int_{-h\left(x^{\prime}\right)}^{0} \boldsymbol{u}^{\prime}\left(x^{\prime}, x_{3}\right) d x_{3}=0 & \text { in } \omega, \\
\boldsymbol{u}^{\prime}=0 & \text { on } \Gamma .
\end{align*}\right.
$$

Then, we get back to u_{3} and the global pressure p by setting

$$
\begin{equation*}
x \in \Omega, \quad u_{3}(x)=\int_{x_{3}}^{0} \nabla^{\prime} \cdot \boldsymbol{u}^{\prime}\left(x^{\prime}, \xi\right) d \xi, \quad p(x)=p_{S}\left(x^{\prime}\right) \tag{6}
\end{equation*}
$$

However, studying (5) yields real difficulties when the mapping h vanishes on $\partial \omega$. Previous works dealing with (5) use assumption (2). Weak solutions to (5) was investigated in [5, 4]. Results of [5, 4] are then reviewed in [3], where the author deals with some models close to (5).

The purpose of the paper is to present a proof of the following thoerem, in a simplified case. The complete proof is given in [1]. Before, we introduce the space

$$
X=H^{1}(\Omega)^{2} \times H\left(\partial_{x_{3}}, \Omega\right)
$$

and its hilbertian norm $\|\boldsymbol{u}\|_{X}=\left(\left\|\boldsymbol{u}^{\prime}\right\|_{H^{1}(\Omega)^{2}}^{2}+\left\|u_{3}\right\|_{H\left(\partial_{x_{3}}, \Omega\right)}^{2}\right)^{1 / 2}$, where $H\left(\partial_{x_{3}}, \Omega\right)$ is defined in Subsection 2.2.
Theorem 2. Assume assumption (2). Let $\boldsymbol{f}^{\prime} \in H^{-1}(\Omega)^{2}, \Phi \in L^{2}(\Omega), \boldsymbol{g}^{\prime} \in H^{1 / 2}(\Gamma)^{2}$ and $g_{3} \in L^{2}(\Gamma)$ such that $g_{3}=0$ on Γ_{L}, and satisfying the following compatibility condition:

$$
\begin{equation*}
\int_{\Gamma} \boldsymbol{g}^{\prime} \cdot \boldsymbol{n}^{\prime} d \sigma+\int_{\Gamma} g_{3} d \sigma=\int_{\Omega} \Phi d x \tag{7}
\end{equation*}
$$

Then, there is a unique pair $(\boldsymbol{u}, p) \in X \times\left(L^{2}(\Omega) / \mathbb{R}\right)$ solution to Problem $(\mathcal{S H})$ and satisfying the estimate,

$$
\begin{equation*}
\|\boldsymbol{u}\|_{X}+\|p\|_{L^{2}(\Omega) / \mathbb{R}} \leqslant C\left\{\left\|\boldsymbol{f}^{\prime}\right\|_{H^{-1}(\Omega)^{2}}+\|\Phi\|_{L^{2}(\Omega)}+\left\|\boldsymbol{g}^{\prime}\right\|_{H^{1 / 2}(\Gamma)^{2}}+\left\|g_{3}\right\|_{L^{2}(\Gamma)}\right\} \tag{8}
\end{equation*}
$$

where $C>0$ is a constant depending only on Ω.

The outline of the paper is as follows. In Section 2 we set the appropriate functional framework. In particular, we recall the definition and structure of the anisotropic space $H\left(\partial_{x_{3}}, \Omega\right)$, which is the adapted space for u_{3}. Moreover, we introduce the usual integration operators M and F (see (14) and (15)), useful in our study, to provide an adapted lemma of De Rham (see Lemma 7). Finally, we prove Theorem 2 in Section 3.

§2. Functional framework

We assume the reader to be familiar with the classical notations and properties of Lebesgue and Sobolev spaces on a regular open set.

2.1. Computations of surface integrals

For any function $\mu: \Gamma \rightarrow \mathbb{R}$, we define the functions μ_{S} or $(\mu)_{S}$ and μ_{B} or $(\mu)_{B}$ by setting

$$
x^{\prime} \in \omega, \quad \mu_{S}\left(x^{\prime}\right)=\mu\left(x^{\prime}, 0\right), \quad \mu_{B}\left(x^{\prime}\right)=\mu\left(x^{\prime},-h\left(x^{\prime}\right)\right) .
$$

We start with an important tool which enables us to replace any integrals defined on Γ_{S} and Γ_{B} by one defined on ω.
Lemma 3. The mapping $\mu \mapsto\left(\mu_{S}, \mu_{B}\right)$ is linear and continuous from $L^{2}(\Gamma)$ into $L^{2}(\omega)^{2}$. Moreover, one has by definition of the measure $d \sigma$:

$$
\begin{equation*}
\int_{\Gamma_{S}} \mu d \sigma=\int_{\omega} \mu_{S} d x^{\prime} \quad \text { and } \quad \int_{\Gamma_{B}} \mu d \sigma=\int_{\omega} \mu_{B} \sqrt{1+|\nabla h|^{2}} d x^{\prime} . \tag{9}
\end{equation*}
$$

Proof. This result follows from straightforward calculating.
Remark 1. Notice that the integrals in (9) are well defined since ω is bounded. Next, the third component of the normal n_{3} satisfies $n_{3}=1$ on $\Gamma_{S}, n_{3}=0$ on Γ_{L} and $\left(n_{3}\right)_{B}\left(1+|\nabla h|^{2}\right)^{1 / 2}=-1$ on ω. Moreover, $\left(n_{i}\right)_{B}\left(1+|\nabla h|^{2}\right)^{1 / 2}=-\partial_{x_{i}} h$ in ω. Therefore,

$$
\begin{align*}
\forall \mu \in L^{2}(\Gamma), \quad \int_{\Gamma} \mu n_{3} d \sigma & =\int_{\omega} \mu_{S} d x^{\prime}-\int_{\omega} \mu_{B} d x^{\prime} . \tag{10}\\
\int_{\Gamma_{B}} \mu n_{i} d \sigma & =-\int_{\omega} \mu \frac{\partial h}{\partial x_{i}} d x^{\prime} . \tag{11}
\end{align*}
$$

2.2. The anisotropic space $H\left(\partial_{x_{3}}, \Omega\right)$

Let us recall here some useful results that can be found in [6]. Set

$$
H\left(\partial_{x_{3}}, \Omega\right)=\left\{u \in L^{2}(\Omega) \left\lvert\, \frac{\partial u}{\partial x_{3}} \in L^{2}(\Omega)\right.\right\}
$$

which is a Hilbert space endowed with norm $\|u\|_{H\left(\partial_{x_{3}}, \Omega\right)}=\left(\|u\|_{L^{2}(\Omega)}^{2}+\left\|\partial_{x_{3}} u\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}$. For any $u \in H\left(\partial_{x_{3}}, \Omega\right)$, we have $u n_{3} \in H^{-1 / 2}(\Gamma)$. Then, setting

$$
H_{0}\left(\partial_{x_{3}}, \Omega\right)=\left\{u \in L^{2}(\Omega) \left\lvert\, \frac{\partial u}{\partial x_{3}} \in L^{2}(\Omega)\right. \text { and } u n_{3}=0\right\},
$$

the following Green's formula holds

$$
\begin{equation*}
\forall u \in H\left(\partial_{x_{3}}, \Omega\right), \forall v \in H_{0}\left(\partial_{x_{3}}, \Omega\right), \quad \int_{\Omega} u \frac{\partial v}{\partial x_{3}} d x=-\int_{\Omega} v \frac{\partial u}{\partial x_{3}} d x \tag{12}
\end{equation*}
$$

as well as the Poincare's Inequality

$$
\begin{equation*}
\forall u \in H_{0}\left(\partial_{x_{3}}, \Omega\right), \quad\|u\|_{L^{2}(\Omega)} \leqslant\|h\|_{L^{\infty}(\omega)}\left\|\frac{\partial u}{\partial x_{3}}\right\|_{L^{2}(\Omega)} . \tag{13}
\end{equation*}
$$

2.3. Definition and properties of the operators M and F.

Let u be a function defined in Ω. We consider the following operators

$$
\begin{array}{cl}
x^{\prime} \in \omega, \quad M u\left(x^{\prime}\right)=\int_{-h\left(x^{\prime}\right)}^{0} u\left(x^{\prime}, x_{3}\right) d x_{3}, \\
x=\left(x^{\prime}, x_{3}\right) \in \Omega, \quad F u(x)=\int_{x_{3}}^{0} u\left(x^{\prime}, \xi\right) d \xi, \quad G u(x)=\int_{-h\left(x^{\prime}\right)}^{x_{3}} u\left(x^{\prime}, \xi\right) d \xi . \tag{15}
\end{array}
$$

Proposition 4. The operator M is linear and continuous from $L^{2}(\Omega)$ into $L^{2}(\omega)$, and from $H^{1}(\Omega)$ into $H^{1}(\omega)$. Then, one has for $i=1,2$:

$$
\begin{array}{ll}
\forall u \in H^{1}(\Omega), & \frac{\partial}{\partial x_{i}}(M u)=M\left(\frac{\partial u}{\partial x_{i}}\right)+\frac{\partial h}{\partial x_{i}} u_{B} \text { in } \omega ; \\
\forall u \in H_{0}^{1}(\Omega), & \frac{\partial}{\partial x_{i}}(M u)=M\left(\frac{\partial u}{\partial x_{i}}\right) \text { in } \omega . \tag{17}
\end{array}
$$

Moreover, the following relation holds:

$$
\begin{equation*}
\forall u \in H_{0}\left(\partial_{x_{3}}, \Omega\right), \quad M\left(\frac{\partial u}{\partial x_{3}}\right)=0 \text { in } \omega . \tag{18}
\end{equation*}
$$

Proof. Let $u \in L^{2}(\Omega)$. By applying Fubini's Theorem, we deduce that $M u \in L^{2}(\omega)$ and $\|M u\|_{L^{2}(\omega)} \leqslant\|h\|_{L^{\infty}(\omega)}\|u\|_{L^{2}(\Omega)}$. Therefore, the mapping M is linear and continuous from $L^{2}(\Omega)$ into $L^{2}(\omega)$. Next, for u in $H^{1}(\Omega)$ and $i=1,2$, one has for any $\psi \in \mathcal{D}(\omega)$:

$$
\int_{\omega} M u \frac{\partial \psi}{\partial x_{i}} d x^{\prime}=\int_{\Omega} u \frac{\partial \psi}{\partial x_{i}} d x=-\int_{\Omega} \frac{\partial u}{\partial x_{i}} \psi d x+\int_{\Gamma} u \psi n_{i} d \sigma .
$$

Then, (11) gives

$$
\begin{equation*}
\int_{\Gamma_{B}} u \psi n_{i} d \sigma=-\int_{\omega} u_{B} \psi \frac{\partial h}{\partial x_{i}} d x^{\prime}, \tag{19}
\end{equation*}
$$

since ψ does not depend on x_{3} and since $\psi=0$ on Γ_{L}. Thus

$$
\int_{\omega} M u \frac{\partial \psi}{\partial x_{i}} d x^{\prime}=-\int_{\omega}\left[M\left(\frac{\partial u}{\partial x_{i}}\right)+u_{B} \frac{\partial h}{\partial x_{i}}\right] \psi d x^{\prime} .
$$

Thus (16) holds in $\mathcal{D}^{\prime}(\omega)$. From Proposition 3 and the fact that h is Lipschitz-continuous, (16) holds in $L^{2}(\omega)$. The same arguments prove that M is a linear mapping from $H^{1}(\Omega)$ in $H^{1}(\omega)$. When u belongs to $H_{0}^{1}(\Omega)$, the function u_{B} vanishes on ω. Therefore, we get (17). Finally, (18) follows from a computation using relation (12).

Proposition 5. The operator F is linear and continuous from $L^{2}(\Omega)$ into $L^{2}(\Omega)$ and G is the adjoint operator to F. Next, the operator F is continuous from $L^{2}(\Omega)$ into $H\left(\partial_{x_{3}}, \Omega\right)$, and

$$
\begin{equation*}
\forall u \in L^{2}(\Omega), \quad \frac{\partial}{\partial x_{3}}(F u)=-u \text { in } \Omega . \tag{20}
\end{equation*}
$$

Moreover, the following relation holds:

$$
\begin{equation*}
\forall u \in H_{0}\left(\partial_{x_{3}}, \Omega\right), \quad F\left(\frac{\partial u}{\partial x_{3}}\right)=-u \text { in } \Omega . \tag{21}
\end{equation*}
$$

Proof. Let $u \in L^{2}(\Omega)$. Thanks to Fubini's Theorem, we deduce that $F u \in L^{2}(\Omega)$ and from Poincaré's Inequality we have $\|F u\|_{L^{2}(\Omega)} \leqslant\|h\|_{\infty}\|u\|_{L^{2}(\Omega)}$ by. Hence F is linear and continuous from $L^{2}(\Omega)$ into $L^{2}(\Omega)$. Again Fubini's Theorem ensures that

$$
\begin{equation*}
\forall u, v \in L^{2}(\Omega), \quad \int_{\Omega} v F u d x=\int_{\Omega} u G v d x . \tag{22}
\end{equation*}
$$

Next, (22) gives that for any $\varphi \in \mathcal{D}(\Omega)$,

$$
\int_{\Omega} \frac{\partial \varphi}{\partial x_{3}} F u d x=\int_{\Omega} u G\left(\frac{\partial \varphi}{\partial x_{3}}\right) d x=\int_{\Omega} u \varphi d x
$$

Hence (20) holds in $\mathcal{D}^{\prime}(\Omega)$ and $\partial_{x_{3}}(F u) \in L^{2}(\Omega)$. Moreover, we deduce from above that the operator F is continuous from $L^{2}(\Omega)$ into $H\left(\partial_{x_{3}}, \Omega\right)$. Finally, we use the same arguments as above and relation (12) to prove (21).

Remark 2. Let $u \in H^{1}(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$. Thanks to Proposition 5 and (10), one gets:

$$
\begin{aligned}
\int_{\Omega} G\left(\frac{\partial u}{\partial x_{3}}\right) \varphi d x & =\int_{\Omega} u \varphi d x+\int_{\Gamma_{S} \cup \Gamma_{B}} u n_{3} F \varphi d \sigma \\
& =\int_{\Omega} u \varphi d x+\int_{\omega} u_{S}(F \varphi)_{S} d x^{\prime}-\int_{\omega} u_{B}(F \varphi)_{B} d x^{\prime}
\end{aligned}
$$

By observing that $(F \varphi)_{S}=0$ and $(F \varphi)_{B}=M \varphi$ in ω, one has

$$
\int_{\Omega} G\left(\frac{\partial u}{\partial x_{3}}\right) \varphi d x=\int_{\Omega} u \varphi d x-\int_{\Omega} u_{B} \varphi d x,
$$

which provides that,

$$
\begin{equation*}
\forall u \in H^{1}(\Omega), \quad G\left(\frac{\partial u}{\partial x_{3}}\right)=u-\widetilde{u_{B}} \text { in } \Omega . \tag{23}
\end{equation*}
$$

We conclude this subsection by giving additional properties on M and F. Precisely, we prove the following relation between the operators M and F.
Proposition 6. Let $u \in L^{2}(\Omega)$. Then, the following assertions are equivalent:
(i) $M u=0$ in $L^{2}(\omega)$.
(ii) $(F u) n_{3}=0$ in $H^{-1 / 2}(\Gamma)$.

Proof. Given $u \in L^{2}(\Omega)$, Proposition 5 ensure that $(F u) n_{3}$ is in $H^{-1 / 2}(\Gamma)$. Next, (23) gives for any $v \in H^{1}(\Omega)$:

$$
\begin{aligned}
\left\langle(F u) n_{3}, v\right\rangle_{H^{-1 / 2}(\Gamma), H^{1 / 2}(\Gamma)}=\int_{\Omega} \frac{\partial v}{\partial x_{3}} F u d x-\int_{\Omega} u v d x & =\int_{\Omega} u G\left(\frac{\partial v}{\partial x_{3}}\right) d x-\int_{\Omega} u v d x \\
& =\int_{\Omega} u\left(v-\widetilde{v_{B}}\right) d x-\int_{\Omega} u v d x .
\end{aligned}
$$

Therefore, one obtains a relation between F and M :

$$
\begin{equation*}
\forall(u, v) \in L^{2}(\Omega) \times H^{1}(\Omega), \quad\left\langle(F u) n_{3}, v\right\rangle=-\int_{\omega} v_{B} M u d x^{\prime}, \tag{24}
\end{equation*}
$$

which proves that (i) implies (ii). Conversely, for any ψ in $\mathcal{D}(\omega)$ and applying (24) with $v=\psi$, we get

$$
\int_{\omega} \psi M u d x^{\prime}=\int_{\omega} v_{B} M u d x^{\prime}=-\left\langle(F u) n_{3}, v\right\rangle=0 .
$$

Then (ii) implies (i): this completes the proof of Proposition 6.

2.4. Some properties related to the mean divergence operator

For any vector field $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$, we define

$$
\nabla^{\prime} \cdot M \boldsymbol{u}^{\prime}=\sum_{i=1,2} \partial_{x_{i}}\left(M u_{i}\right)
$$

and the corresponding space $\boldsymbol{V}_{M}=\left\{\boldsymbol{v}^{\prime} \in H_{0}^{1}(\Omega)^{2} \mid \nabla^{\prime} \cdot M \boldsymbol{v}^{\prime}=0\right.$ in $\left.\omega\right\}$.
Lemma 7. If $f^{\prime} \in H^{-1}(\Omega)^{2}$ satisfies

$$
\forall \boldsymbol{v}^{\prime} \in \boldsymbol{V}_{M}, \quad\left\langle\boldsymbol{f}^{\prime}, \boldsymbol{v}^{\prime}\right\rangle_{H^{-1}(\Omega)^{2}, H_{0}^{1}(\Omega)^{2}}=0
$$

then, there is $q \in L^{2}(\omega) / \mathbb{R}$ such that $\nabla^{\prime} \widetilde{q}=f^{\prime}$ in Ω. Moreover, there is a constant $C>0$ depending only on Ω such that

$$
\begin{equation*}
\|q\|_{L^{2}(\omega) / \mathbb{R}} \leqslant C\|\nabla \bar{q}\|_{H^{-1}(\Omega)} . \tag{25}
\end{equation*}
$$

Proof. Let us set $\boldsymbol{f}=\left(\boldsymbol{f}^{\prime}, 0\right)$. Let $\boldsymbol{v} \in H_{0}^{1}(\Omega)^{3}$ such that $\nabla \cdot \boldsymbol{v}=0$. Thanks to (17) and (18) one has $\boldsymbol{v}^{\prime} \in \boldsymbol{V}_{M}$. Therefore, using results from [2] from pages 22-25, there is a unique function p in $L^{2}(\Omega) / \mathbb{R}$ such that $\nabla p=f$. Then, since $\partial_{x_{3}} p=0$ in Ω, there is $q \in L^{2}(\omega) / \mathbb{R}$, such that $p=\widetilde{q}$ in Ω. Thus q satisfies $\nabla^{\prime} \widetilde{q}=f^{\prime}$ in Ω.

§3. Resolution of Problem $(\mathcal{S H})$ with homogeneous Dirichlet conditions

Proposition 8. Let $\boldsymbol{f}^{\prime} \in L^{2}(\Omega)^{2}$ and assume that Φ and \boldsymbol{g} are identically equal to 0 . Then, Problem $(\mathcal{S H})$ has a at least solution (\boldsymbol{u}, p) in the space $\boldsymbol{X} \times\left(L^{2}(\Omega) / \mathbb{R}\right)$.

Proof. Let us consider the solution (\boldsymbol{u}, p) related to the data $\boldsymbol{f}^{\prime}=0$. We multiply the first equation of $(\mathcal{S H})$ by \boldsymbol{u}^{\prime}. Then, using (12) and since $\nabla \cdot \boldsymbol{u}=0$ and $\partial_{x_{3}} p=0$ in Ω, one has

$$
\int_{\Omega} \nabla \boldsymbol{u}^{\prime}: \nabla \boldsymbol{u}^{\prime} d x=\int_{\Omega} p \nabla^{\prime} \cdot \boldsymbol{u}^{\prime} d x=-\int_{\Omega} p \frac{\partial u_{3}}{\partial x_{3}} d x=\int_{\Omega} u_{3} \frac{\partial p}{\partial x_{3}} d x=0 .
$$

Therefore $\nabla \boldsymbol{u}^{\prime}=0$ in Ω and, since Ω is connected, $\boldsymbol{u}^{\prime}=0$ in Ω. As $\nabla \cdot \boldsymbol{u}=0$ in Ω, we deduce that $\partial_{x_{3}} u_{3}=0$ in Ω, and from the inequality (13) we get $u_{3}=0$ in Ω. Next, since $\nabla^{\prime} p=\Delta \boldsymbol{u}^{\prime}=0$ in Ω, one obtains that $\nabla p=0$ in Ω, hence $p=0$ in Ω. Finally, the solution related to the data $\boldsymbol{f}^{\prime}=0$ is $\boldsymbol{u}=0$ and $p=0$, which proves that Problem $(\mathcal{S H})$ has at least one solution in $X \times\left(L^{2}(\Omega) / \mathbb{R}\right)$.

Theorem 9. Let \boldsymbol{f}^{\prime} in $H^{-1}(\Omega)^{2}$ and assume that Φ and \boldsymbol{g} are identically equal to 0 . Then, Problem $(\mathcal{S H})$ has a unique solution (\boldsymbol{u}, p) in the space $\boldsymbol{X} \times\left(L^{2}(\Omega) / \mathbb{R}\right)$. Moreover, there is a constant $C>0$ such that

$$
\begin{equation*}
\left\|\boldsymbol{u}^{\prime}\right\|_{H^{1}(\Omega)^{2}}+\left\|u_{3}\right\|_{H\left(\partial_{x_{3}}, \Omega\right)}+\|p\|_{L^{2}(\Omega) / \mathbb{R}} \leqslant C\left\|\boldsymbol{f}^{\prime}\right\|_{H^{-1}(\Omega)^{2}} \tag{26}
\end{equation*}
$$

To prove Theorem 9, we need Lemma 7 and the proposition stated below.
Lemma 10. Let $\boldsymbol{u}=\left(\boldsymbol{u}^{\prime}, u_{3}\right)$ with \boldsymbol{u}^{\prime} in $H_{0}^{1}(\Omega)^{2}$ and u_{3} in $H\left(\partial_{x_{3}}, \Omega\right)$. Then the following assertions are equivalent
(i) $\nabla \cdot \boldsymbol{u}=0$ in $\Omega, \quad u_{3} n_{3}=0$ in $H^{-1 / 2}(\Gamma)$.
(ii) $\nabla^{\prime} \cdot\left(M \boldsymbol{u}^{\prime}\right)=0$ in $\omega, \quad u_{3}=F\left(\nabla^{\prime} \cdot \boldsymbol{u}^{\prime}\right)$ in Ω.

Proof. Assume that (i) holds. Then, (18) and (21) yield

$$
M\left(\nabla^{\prime} \cdot \boldsymbol{u}^{\prime}\right)=0 \quad \text { and } \quad u_{3}=F\left(\nabla^{\prime} \cdot \boldsymbol{u}^{\prime}\right)
$$

Moreover, thanks to (17) one has $M\left(\nabla^{\prime} \cdot \boldsymbol{u}^{\prime}\right)=\nabla^{\prime} \cdot M \boldsymbol{u}^{\prime}$, from which follows (ii). Conversely, one has by $(20), \nabla \cdot \boldsymbol{u}=0$. Since $M\left(\nabla^{\prime} \cdot \boldsymbol{u}^{\prime}\right)=0$, Proposition 6 ensures that $n_{3} F\left(\nabla^{\prime} \cdot \boldsymbol{u}^{\prime}\right)=0$ in $H^{-1 / 2}(\Gamma)$. Hence $u_{3} n_{3}=0$ in $H^{-1 / 2}(\Gamma)$.

From Lemma 10 and the fact that p does not depend on x_{3}, solving Problem $(\mathcal{S H})$ reduces to solve the following problem:

$$
\text { Find }\left(\boldsymbol{u}^{\prime}, p_{S}\right) \in H_{0}^{1}(\Omega)^{2} \times\left(L^{2}(\omega) / \mathbb{R}\right) \text { such that: }
$$

$$
\left\{\begin{align*}
-\Delta \boldsymbol{u}^{\prime}+\nabla^{\prime} p_{S}=\boldsymbol{f}^{\prime} & \text { in } \Omega \tag{27}\\
\nabla^{\prime} \cdot M \boldsymbol{u}^{\prime}=0 & \text { in } \omega \\
\boldsymbol{u}^{\prime}=0 & \text { on } \Gamma .
\end{align*}\right.
$$

We get back to p and u_{3} thanks to (6). The existence and uniqueness of the solution to (27) is given by the following proposition.

Proposition 11. Let \boldsymbol{f}^{\prime} in $H^{-1}(\Omega)^{2}$. There is a unique solution $\left(\boldsymbol{u}^{\prime}, p_{S}\right)$ in the space $H_{0}^{1}(\Omega)^{2} \times$ $\left(L^{2}(\omega) / \mathbb{R}\right)$ to Problem (27). Moreover, there is a constant $C>0$ such that

$$
\begin{equation*}
\left\|\boldsymbol{u}^{\prime}\right\|_{H^{1}(\Omega)^{2}}+\left\|p_{S}\right\|_{L^{2}(\omega) / \mathbb{R}} \leqslant C\left\|\boldsymbol{f}^{\prime}\right\|_{H^{-1}(\Omega)^{2}} . \tag{28}
\end{equation*}
$$

Proof. Any solution $\left(\boldsymbol{u}^{\prime}, p_{S}\right)$ in the space $H_{0}^{1}(\Omega)^{2} \times\left(L^{2}(\omega) / \mathbb{R}\right)$ satisfies the following variational formulation:

$$
\begin{equation*}
\forall \boldsymbol{v}^{\prime} \in \boldsymbol{V}_{M}, \int_{\Omega} \nabla \boldsymbol{u}^{\prime}: \nabla \boldsymbol{v}^{\prime} d x=\left\langle\boldsymbol{f}^{\prime}, \boldsymbol{v}^{\prime}\right\rangle_{H^{-1}(\Omega)^{2}, H_{0}^{1}(\Omega)^{2}} \tag{29}
\end{equation*}
$$

Conversely, any solution $\boldsymbol{u}^{\prime} \in \boldsymbol{V}_{M}$ to (29) is such that

$$
\forall \boldsymbol{v}^{\prime} \in \boldsymbol{V}_{M}, \quad\left\langle-\Delta \boldsymbol{u}^{\prime}-\boldsymbol{f}^{\prime}, \boldsymbol{v}^{\prime}\right\rangle_{H^{-1}(\Omega)^{2}, H_{0}^{1}(\Omega)^{2}}=0 .
$$

Therefore, Lemma 7 provides a unique p_{S} in $\left(L^{2}(\omega) / \mathbb{R}\right)$ such that $\left(\boldsymbol{u}^{\prime}, p_{S}\right)$ is a solution to (27). Then, by Lax-Milgram's lemma, there is a unique \boldsymbol{u}^{\prime} in \boldsymbol{V}_{M} satisfying (29) and $\left\|\nabla \boldsymbol{u}^{\prime}\right\|_{L^{2}(\Omega)} \leqslant$ $C\left\|\boldsymbol{f}^{\prime}\right\|_{H^{-1}(\Omega)^{2}}$, hence $\left\|\boldsymbol{u}^{\prime}\right\|_{H^{1}(\Omega)^{2}} \leqslant C\left\|\boldsymbol{f}^{\prime}\right\|_{H^{-1}(\Omega)^{2}}$ by Poincaré's Inequality, where $C>0$ denotes is a constant depending only on Ω. To finish, we deduce (28) from (25) since

$$
\left\|p_{S}\right\|_{L^{2}(\omega) / \mathbb{R}} \leqslant C\left\|\nabla \widetilde{p_{S}}\right\|_{L^{2}(\Omega)} \leqslant C\left\|\boldsymbol{f}^{\prime}\right\|_{H^{-1}(\Omega)^{2}}
$$

Thanks to Proposition 11 and Lemma 10, $(\mathcal{S H})$ admits a unique solution $(\boldsymbol{u}, p) \in X \times$ $\left(L^{2}(\Omega) / \mathbb{R}\right)$. Combining results from Proposition 11 and Proposition 5, we get (8). This complete the proof of Theorem 8.

References

[1] Dahoumane, F., Amrouche, C., and Vallet, G. On the hydrostatic Stokes approximation with non homogeneous boundary conditions. DEA (2009, to appear).
[2] Girault, V., and Raviart, P. A. Finite element methods for the Navier-Stokes equations, vol. 5 of Springer Series in Computational Mathematics. Springer Verlag, 1986.
[3] Lewandowski, R. Analyse mathématique et océanographie. Masson, 1997.
[4] Lions, J.-L., Temam, R., and Wang, S. New formulation of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992), 1007-1053.
[5] Lions, J.-L., Temam, R., and Wang, S. On the equations of the large scale ocean. Nonlinearity 5 (1992), 237-288.
[6] Temam, R. Sur la stabilité et la convergence de la méthode des pas fractionnaires. Ann. Math. Pura ed Applicata LXXIX (1968), 191-379.

Dahoumane Fabien
Laboratoire de Mathématiques Appliquées
Université de pau et des pays de l'Adour
I.P.R.A, B.P. 1155

64130 Pau Cedex, France
fabien.dahoumane@univ-pau.fr

