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SYMMETRIC AND ROW SCALES
PARTIAL PIVOTING STRATEGIES

V. Cortés and J. M. Peña

Abstract. Row and symmetric scaled partial pivoting strategies present nice stability
properties for some classes of matrices. In this paper both kinds of strategies are com-
pared. Following [17], the average normalized growth factor for random matrices asso-
ciated to Gauss elimination with scaled partial pivoting strategies for several norms is
approximated by power functions. For nonsingular M-matrices, an economic implemen-
tation of the symmetric scaled partial pivoting for the 1-norm is presented.
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§1. Introduction

Several pivoting strategies for Gauss elimination, such as partial and complete pivoting, have
been deeply studied. Their growth factor has been analyzed from several points of view.
The nice behaviour of a pivoting strategy introduced recently, and called rook pivoting, has
been analyzed in several papers (see, for instance, [4] and [13]–[15]). This paper considers
scaled partial pivoting strategies, which present very nice properties when dealing with some
important classes of matrices, as we shall recall and show in this paper. These pivoting
strategies have been frequently used in the literature and even in basic books such as [3]. In
[14], it is established that row scaled partial pivoting is generally successful when the larger
elements of the coefficient matrix of a linear system Ax = b are uniformly distributed across
its rows and columns. One of the attractive features of scaled partial pivoting (SPP) is that the
accuracy of the computed solution of a linear system by SPP is essentially independent of row
scaling of the coefficient matrix. Thus, if the matrix is ill-conditioned due to bad row scaling,
then a highly accurate solution can usually be obtained with SPP. A nice explanation of the
advantages of SPP comes from the underlying hyperplane geometry of Gauss elimination
(see [7] and [14]), as recalled in Section 2.

There are two types of SPP strategies: row SPP and symmetric SPP strategies (see defini-
tions in Section 2). In this paper we compare the properties of these two types of strategies.
Besides, there is scarce literature about their stability properties when applied to general or
random matrices. This is another topic considered in this paper. Rice (see [16, p. 44]) and
Poole and Neal [13] noted that if the elements of the coefficient matrix of a linear system are
of uniform size, the computations are more robust. In [17] and [5], the average normalized
growth factor for random matrices has been analyzed for several pivoting strategies different
from SPP. We analyze the average normalized growth factor for SPP strategies.

In general, a drawback of SPP is its high computational cost. It requires O(n3) elementary
operations in addition to the computational cost of the Gauss elimination of an n × n matrix.
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However, its implementation for special classes of matrices can have lower computational
cost.

Let us now mention two classes of matrices playing an important role in many applica-
tions where SPP strategies present very nice properties. In the first case (with sign regular
matrices), the implementation of the pivoting strategy was performed in [10] and the good
properties correspond to row SPP. The second case (with M-matrices) is a novelty of this
paper and now the good properties correspond to symmetric SPP. The two classes of matrices
are:

• Nonsingular sign regular matrices. An n × n matrix A is sign regular if, for each k with
1 ≤ k ≤ n, all minors of order k have the same sign. Due to their variation diminishing
properties, these matrices present important applications in many fields, such as Approxi-
mation Theory, Statistics or Computer Aided Geometric Design (see references in [10]). In
[10] it was proved that row SPP for any strictly monotone vector norm can be implemented
increasing the computational cost of Gauss elimination with O(n) elementary operations,
a cost considerably lower than that of partial pivoting. In addition the growth factor is
optimal (see Corollary 2.4).

• Nonsingular M-matrices. A nonsingular matrix A is an M-matrix if it has positive diagonal
entries, nonpositive off-diagonal entries and A−1 is nonnegative. Nonsingular M-matrices
present many applications to Numerical Analysis, Dynamic Systems, Economics and Lin-
ear Programming, among other fields. In Section 3, we show how to implement with low
computational cost (increasing the computational cost of Gauss elimination with O(n2) el-
ementary operations) the symmetric SPP for ‖ · ‖1 in the class of nonsingular M-matrices.
We also show that the growth factor is optimal.

We now introduce some basic notations. Given k, l ∈ {1, 2, . . . , n}, let α (resp., β) be any
increasing sequence of k (resp., l) positive integers less than or equal to n. Let A be a real
square matrix of order n. Then we denote by A[α|β] the k × l submatrix of A containing rows
numbered by α and columns numbered by β. Besides let A[α] B A[α|α]. Gauss elimination
transforms a linear system Ax = b into an equivalent upper triangular linear system Ux = c.
Gauss elimination with a given pivoting strategy, for nonsingular matrices A, consists of a
succession of at most n − 1 major steps resulting in a sequence of matrices as follows:

A = A(1) −→ Ã(1) −→ A(2) −→ Ã(2) −→ · · · −→ A(n) = Ã(n) = U,

where A(t) = (a(t)
i j )1≤i, j≤n has zeros below its main diagonal in the first t − 1 columns. The ma-

trix Ã(t) = (ã(t)
i j )1≤i, j≤n is obtained from the matrix A(t) by reordering the rows and/or columns

t, t + 1, . . . , n of A(t) according to the given pivoting strategy and satisfying ã(t)
tt , 0. To ob-

tain A(t+1) from Ã(t) we produce zeros in column t below the pivot element ã(t)
tt by subtracting

multiples of row t from the rows beneath it. Rows 1, 2, . . . , t are not altered. If P is the permu-
tation matrix associated to the pivoting strategy and B B PA, then the Gauss elimination of B
can be performed without row exchanges and we say that we have performed a row pivoting
strategy. Finally, if B = PT AP we say that we have performed a symmetric pivoting strat-
egy. In Section 4.2.9 of [8], symmetric pivoting strategies are applied to symmetric matrices.
However, in this paper we can apply them to unsymmetric matrices.
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§2. Row SPP strategies versus symmetric SPP strategies

A row (resp., symmetric) scaled partial pivoting strategy for a norm ‖·‖ consists of an implicit
scaling by the norm ‖ · ‖ followed by partial (resp., symmetric and partial) pivoting. Let r(t)

i
denote the ith row (t ≤ i ≤ n) of the submatrix A(t)[t, t + 1, . . . , n]. For each t (1 ≤ t ≤ n − 1),
these strategies look for the first integer it (t ≤ it ≤ n) satisfying

|a(t)
it t
|

‖r(t)
it
‖

= max
t≤i≤n

|a(t)
it |

‖r(t)
i ‖

(resp.,
|a(t)

it it
|

‖r(t)
it
‖

= max
t≤i≤n

|a(t)
ii |

‖r(t)
i ‖

).

We shall deal with monotone vector norms. As examples of monotone vector norms, we
can consider the vector norms ‖ · ‖2, ‖ · ‖1, ‖ · ‖∞. In the particular case of ‖ · ‖2, the associated
SPP strategy for Gauss elimination is called Euclidean scaled partial pivoting (ESPP) and has
a nice geometric interpretation remarked in [13]. This strategy leads to a triangular system
where the hyperplane of Rn associated to its ith equation (i = 1, 2, . . . , n) is well oriented with
respect to the xi-axis. We mean that, in step i, we select as the ith hyperplane the one which
is the most orthogonal to the xi-axis (observe that the strategy is based on direction cosines).

Let us compare row SPP and symmetric SPP strategies with respect to theoretical bounds
for the growth factor. Given a matrix M, |M| will denote the matrix whose entries are given
by the absolute values of the entries of M. The growth factor is an indicator of the stability
of Gauss elimination. Given an n × n nonsingular matrix A, let us consider the growth factor
given by

ρn(A) B
‖|L| |U |‖∞
‖A‖∞

, (1)

where LU is the triangular factorization of the matrix B = PAQ and P,Q are the permutation
matrices associated to the pivoting strategy. Amodio and Mazzia (see [2] p. 398) introduced
the number

ρN
n (A) B

maxt ‖A(t)‖∞

‖A‖∞
(2)

and have shown its nice behavior for the error analysis of Gauss elimination.
In Corollary 4.2 of [12] it was found an upper bound for the growth factor associated to

row SPP strategy for ‖ · ‖1: it satisfies ρN
n (A) ≤ 2n−1, analogously to the theoretical bound

satisfied by partial pivoting (see [2]). The following example shows that, in contrast, the
growth factor of symmetric SPP strategies can be arbitrarily large even for 2 × 2 matrices.
Example 1. Let us consider ε > 0, the matrix A and the upper triangular matrix U obtaining
after applying Gauss elimination with any symmetric SPP strategy (which does not produce
row and column exchanges):

A =

(
ε 1
1 ε

)
, U =

(
ε 1
0 ε − 1/ε

)
.

Observe that ρN
2 (A) =

(1/ε)−ε
1+ε

= 1−ε
ε

is arbitrarily large.
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Let us mention that we shall see at the end of this section that the growth factor of sym-
metric SPP strategies for random matrices is not as catastrophic as in the previous example.

In Theorem 2.2 of [9] it was proved that, given a nonsingular matrix A, if there exists a
permutation matrix P such that the LU-factorization of the matrix B = PA satisfies |LU | =
|L| |U |, then P is associated with the row scaled partial pivoting for any strictly monotone
vector norm. This can be used to derive nice backward error bounds (see [9]). This happens,
for instance, with the class of sign-regular matrices, as shown in [10]. The following result
shows that the growth factors defined in (1) and (2) are optimal under the previous hypothesis.

Proposition 1. Let A be an n × n nonsingular matrix. If there exists a permutation matrix P
such that the LU-factorization of the matrix PA satisfies |LU | = |L| |U |, then P is associated
to the row SPP for a strictly monotone vector norm ‖ · ‖ and this strategy satisfies

ρn(A) = 1, ρN
n (A) = 1.

Proof. The first part of the proposition is consequence of Theorem 2.2 of [9]. The result
ρn(A) = 1 follows from the hypothesis |LU | = |L| |U |.

Since P is the permutation matrix associated to the row SPP strategy, the Gauss elimina-
tion of B B PA can be performed without row exchanges and so, if B = LU with L a lower
triangular matrix with unit diagonal and U a nonsingular upper triangular matrix, then

B(t)[t, . . . , n] = L[t, . . . , n]U[t, . . . , n]

and
B(t)[1, . . . , t − 1|1, . . . , n] = U[1, . . . , t − 1|1, . . . , n].

From the previous formulas, we can conclude that ‖A(t)‖∞ = ‖B(t)‖∞ ≤ ‖|L| |U |‖∞ = ‖A‖∞ for
all t = 1, . . . , n − 1. Thus, ρN

n (A) = 1. �

An analogous result to Proposition 1 does not hold for symmetric SPP strategies.

Example 2. The following nonsingular matrix A has associated a permutation matrix P such
that the LU-factorization of the matrix PAPT satisfies |PAPT | = |L| |U |:

A =

 1 1 4
1/2 2 3
4 3 20

 , P =

0 1 0
1 0 0
0 0 1

 , L =

 1 0 0
1/2 1 0
3/2 13/3 1

 , U =

2 1/2 3
0 3/4 5/2
0 0 14/3

 .
However, P is not associated to the symmetric SPP strategy for ‖ · ‖1. This strategy is associ-
ated to the permutation matrix Q and it can also be checked that |QAQT | , |L̃||Ũ |, where L̃Ũ
is the LU-factorization of the matrix QAQT :

Q =

0 0 1
0 1 0
1 0 0

 , L̃ =

 1 0 0
3/20 1 0
1/5 8/31 1

 , Ũ =

20 3 4
0 31/20 −1/10
0 0 7/31

 .
As an application of Proposition 1, let us see that the pivoting strategy introduced in [10]

for nonsingular sign regular matrices and called first-last pivoting presents optimal growth
factors (1) and (2). Let us also recall that this pivoting strategy increases the computational
cost of Gauss elimination in only O(n) elementary operations.
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Corollary 2. Let A be an n × n nonsingular sign regular matrix. The growth factors (1) and
(2) of the first-last pivoting satisfy

ρn(A) = 1, ρN
n (A) = 1. (3)

Proof. By Corollary 3.5 of [10], the permutation matrix P associated with the first-last piv-
oting strategy satisfies that PA admits an LU-decomposition PA = LU with |PA| = |L| |U |.
By Corollary 3.6 of [9], this matrix P coincides with the permutation matrix associated with
any scaled partial pivoting strategy for a strictly monotone vector norm. Then, by Proposition
2.2, the growth factors (1) and (2) of the first-last pivoting satisfy (3). �

Another good property for backward stability is diagonal dominance. In fact, nice sta-
bility properties satisfied when the resultant matrix U is diagonally dominant by rows are
described in [11]. In Section 3, we shall see that this happens when we apply symmetric SPP
to a nonsingular M-matrix.

As commented in the introduction, SPP strategies present very good stability properties
for some special classes of matrices capable of good properties in this sense. Here we analyze
the behavior for random matrices. The behavior is worse than with partial pivoting but better
than with other strategies considered in [17].

Stability of Gauss elimination with partial pivoting on average was analyzed through
numerical experiments in [17]. In [5], the stability on average was studied for some pivoting
strategies intermediate between partial pivoting and rook pivoting (see [15], [4]). Here we
consider the stability on average of row SPP strategies. Following [17], we have considered
matrices whose elements are independent samples of the standard normal distribution of mean
0 and variance 1. In the numerical experiments these n × n matrices are selected at random,
with the sample size N diminishing with n to keep the computing time within reasonable
bounds. A typical set of dimensions and sample sizes are listed below, although for some of
our experiments the samples were larger:

dimension n 2 4 8 16 32 64 128 256 512 1024

sample size N 4096 2048 1024 512 256 128 64 32 20 10

We also modify the classical definition of growth factor due to Wilkinson dividing by the
standard deviation σA of the initial element distribution:

ρ̂ B
maxi, j,k |a

(k)
i j |

σA
,

which will be called the average normalized growth factor.
In [17] it was shown that the average normalized growth factor of the partial pivoting and

complete pivoting for random n × n matrices was very close to n2/3 and n1/2, respectively.
Now, let us show in Figure 1 and Table 1 the average normalized growth factor of some row
scaled partial pivoting strategies: ρ̂2 (corresponding to row SPP for ‖ · ‖2), ρ̂1 (corresponding
to row SPP for ‖ · ‖1) and ρ̂∞ (corresponding to row SPP for ‖ · ‖∞). The calculations were
performed with MATLAB.
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Figure 1: Approximations for ρ̂2 and ρ̂1 (left) and for ρ̂∞ (right)

n ρ̂2 ρ̂1 n0.718

2 1.5695 1.5763 1.6449

4 2.4725 2.4966 2.7057

8 3.8001 4.0399 4.4506

16 6.6124 7.0371 7.3208

32 12.0579 12.9469 12.0420

64 21.1924 21.7841 19.8078

128 35.3150 35.2997 32.5819

256 57.0067 54.9150 53.5940

512 85.2017 88.5132 88.1568

1024 141.0891 144.0571 145.0091

n ρ̂∞ n0.73

2 1.5534 1.6586

4 2.5188 2.7511

8 4.1648 4.5631

16 7.3439 7.5685

32 13.1250 12.5533

64 23.4446 20.8215

128 39.0697 34.5353

256 60.4346 57.2816

512 94.7647 95.0095

1024 147.0777 157.5865

Table 1: Approximations for ρ̂2 and ρ̂1 (left) and for ρ̂∞ (right)
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n ρ̃1 n0.73 ρ̃2 n0.728 ρ̃∞ n0.734

2 2.9984 1.6586 2.9867 1.6563 2.9397 1.6632

4 5.0854 2.7511 5.0893 2.7435 4.8774 2.7664

8 8.0621 4.5631 7.6822 4.5441 8.0890 4.6012

16 12.4662 7.5685 12.5019 7.5266 12.4775 7.6529

32 19.9420 12.5533 19.2773 12.4666 19.6611 12.7286

64 29.4259 20.8215 29.7842 20.6490 28.8675 21.1707

128 47.7391 34.5353 45.2706 34.2018 48.2033 35.2121

256 75.1349 57.2816 73.1623 56.6498 72.1990 58.5663

512 107.4418 95.0095 104.2726 93.8315 101.2777 97.4101

1024 139.9168 157.5865 139.6121 155.4169 149.4781 162.0168

Table 2: Approximation for ρ̃1, ρ̃2, ρ̃∞

In Figure 1, we observe a very slightly better behavior in the cases of norms ‖ · ‖1 and ‖ · ‖2
than with ‖ ·‖∞, and slightly worse bounds than with partial pivoting. The average normalized
growth factor can be approximated by n0.718 for the two first norms and by n0.73 for ‖ · ‖∞.

Now, let us calculate the average normalized growth factor of some symmetric scaled
partial pivoting strategies: ρ̃1 (corresponding to symmetric SPP for ‖ · ‖1), ρ̃2 (corresponding
to symmetric SPP for ‖ · ‖2) and ρ̃∞ (corresponding to symmetric SPP for ‖ · ‖∞). The results
are given in Table 2. We note that, in the numerical experiments with symmetric scaled partial
pivoting, we have refused the test matrices that have some submatrix A(k)[k, . . . , n] of their
elimination process with null diagonal.

In Tables 1 and 2, we also observe that the behavior of the average normalized growth
factor for SPP strategies is nice as we previously expected because of the introduction com-
ments for matrices with uniform elements (see Rice (see [16] p. 44) and Poole and Neal
[13]). However, if we analyze the obtained approximations of the average normalized growth
factor, then we can say that row SPP strategies work better than symmetric SPP strategies for
random matrices.

§3. An economic implementation of symmetric SPP for nonsingular
M-matrices

In general, a disadvantage of SPP versus PP is the computational cost because SPP pivoting
strategies require O(n3) (instead of O(n2)) elementary operations in addition to the cost of
Gauss elimination. However, for special classes of matrices SPP strategies can require lower
computational cost. This already happened with the class of sign regular matrices, for which
an implementation of row SPP for ‖ · ‖1 with less computational cost than PP was presented
in [10]. This section is devoted to the important class of M-matrices.
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A nonsingular n×n matrix A is an M-matrix if it has positive diagonal entries, nonpositive
off-diagonal entries and A−1 is nonnegative. M-matrices have very important applications,
for instance, in iterative methods in numerical analysis, in the analysis of dynamical systems,
in economics and in mathematical programming. Let us see that we can implement for a
nonsingular n × n M-matrix the symmetric SPP for ‖ · ‖1 increasing the computational cost
of Gauss elimination in only O(n2) elementary operations, and that the corresponding growth
factor (2) is optimal. In Proposition 4.7 of [11], a similar computational cost was obtained
but with a pivoting strategy which was not a SPP strategy.

Theorem 3. Let A be a nonsingular n×n M-matrix and let us consider the linear system Ax =

b. Then the symmetric scaled partial pivoting for the norm ‖ · ‖1 leads to an upper triangular
matrix diagonally dominant by rows and can be implemented with a computational cost which
adds 3

2 (n2 −n) sums, 1
2 (n2 −n) multiplications, 1

2 (n2 −n) divisions and 1
2 (n2 + n) comparisons

to the computational cost of Gauss elimination without row or column exchanges. Moreover,
the growth factor (2) of this strategy satisfies that

ρN
n (A) = 1. (4)

Proof. By Proposition 4.3 (i) of [11] and Proposition 4.5 of [11], symmetric SPP for ‖ · ‖1
applied to a nonsingular M-matrix leads to an upper triangular matrix U diagonally dominant
by rows. Then, by Proposition 3.1 of [11], ‖A(t)‖∞ ≤ ‖A‖∞ for all t ∈ {1, . . . , n}. So, (4) holds.

For each t (1 ≤ t ≤ n− 1), the symmetric scaled partial pivoting for ‖ · ‖1 chooses as pivot
of the tth step the first integer it (t ≤ it ≤ n) such that

|a(t)
it it
|/(

∑
j≥t |a

(t)
it j|) = max

t≤i≤n
(|a(t)

ii |/(
∑

j≥t |a
(t)
it |)).

Let us recall that if we perform a row permutation and the same column permutation in a non-
singular M-matrix we again obtain a nonsingular M-matrix and that the Schur complements
of nonsingular M-matrices are also M-matrices (cf. [6]). So, when applying a symmetric
pivoting strategy to a nonsingular M-matrix A the resulting matrices A(t)[t, . . . , n] are also
nonsingular M-matrices and have positive diagonal entries. Clearly, it is also the first integer
between t and n such that∑

j≥t |a
(t)
it j|

a(t)
it it

= min
t≤i≤n

∑
j≥t |a

(t)
i j

a(t)
ii

= min
t≤i≤n

1 +

∑ j,i
j≥t |a

(t)
i j |

a(t)
ii

 ,
which in turn coincides with the first integer between t and n such that

1 −

∑ j,it
j≥t |a

(t)
i j |

a(t)
it it

= max
t≤i≤n

1 −
∑ j,i

j≥t |a
(t)
i j |

a(t)
ii

 = max
t≤i≤n

a(t)
ii −

∑ j,i
j≥t |a

(t)
i j |

a(t)
ii

. (5)

Taking into account that each matrix A(t)[t, . . . , n] is a nonsingular M-matrix, we know
that it has positive diagonal elements and nonpositive off-diagonal entries and so we conclude
from (5) that it is also the first integer between t and n such that∑

j≥t a(t)
it j

a(t)
it it

= max
t≤i≤n

∑
j≥t a(t)

i j

a(t)
ii

. (6)
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It remains to see that we can calculate the indices it (1 ≤ t ≤ n − 1) with the number
of additional elementary operations mentioned above. Let e B (1, . . . , 1)T and z B Ae. As
usual, we also denote A(1) B A, z(1) B z. By (6) for t = 1, the first index i1 such that

zi1

ai1i1
= max

t≤i≤n

zi

aii

determines the pivot row i1 and the permutation matrix P1 such that Ã(1) = PT
1 AP1. The

solution of the augmented matrix (Ã(1); PT
1 b, PT

1 z) is (PT
1 x, e). If we perform one step of Gauss

elimination we arrive at the augmented matrix (A(2); b(2), z(2)) and we have that A(2)e = z(2).
Then, by (6) for t = 2, the first index i2 ∈ {2, . . . , n} such that

z(2)
i2

a(2)
i2i2

= max
2≤i≤n

z(2)
i

a(2)
ii

determines the pivot row i2. Iterating this procedure, we conclude that the computational cost
of the pivoting strategy corresponds to the extra calculations for obtaining the right side z
(given by the row sums of A), for transforming it by Gauss elimination into

z(2)[2, . . . , n], . . . , z(n−1)[n − 1, n],

for calculating the quotients z(k)
i /a(k)

ii (k = 1, . . . , n−1) and for choosing the largest component

z(k)
ik

a(k)
ik ik

= max
k≤i≤n

z(k)
i

a(k)
ii

in each step k. �

Let us observe that, in many applications (as shown in [1]), the row sums (that is, the
vector z of the proof of the previous theorem) are natural parameters. In this case, we even
can reduce the computational cost of the pivoting strategy in n2 − n sums.
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