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Abstract. The aim of this work is to show that, when projection techniques are used in
connection with Runge–Kutta (RK) methods to preserve first integrals of some periodic
differential systems, the global error of the numerical solution presents a linear growth,
even though the integration advances with a variable stepsize strategy.
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§1. Introduction

In this paper, autonomous initial value problems of the form

x′(t) = f (x(t)), (1)
x(t0) = x0 ∈ R

m, (2)

which possess a unique periodic solution x = ϕ(t; x0) with period T0 > 0, are considered.
The function f is supposed as smooth as necessary.

Let ϕt be the t-flow map of (1), and ψh the function that defines a smooth one-step method
to solve numerically (1)–(2). Thus, we obtain approximations xn to the exact solution of this
initial value problem at the gridpoints tn = tn−1 + hn−1:

xn = ψhn−1 (xn−1) = ψhn−1 ◦ · · · ◦ ψh0 (x0) ' ϕtn (x0), n = 1, 2, 3, . . . ,

where h0, h1, h2, . . . is a sequence of positive stepsizes.
B. Cano and J. M. Sanz-Serna have considered in [5] one-step methods ψh for the nu-

merical integration of (1)–(2) satisfying the following conditions:

(i) ψh is defined in Rm for |h| ≤ |h0| for some h0 > 0.

(ii) ψh(x) depends smoothly on h and x.

(iii) The method ψh is consistent of order r ≥ 1, r integer:

ψh(x) − ϕh(x) = O(hr+1), h→ 0.

(iv) The Jacobian matrices satisfy

ψ′h(x) − ϕ′h(x) = O(hr+1), h→ 0.
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(v) The stepsizes are determined by

hn = h s(xn, h), h > 0, n = 0, 1, 2, . . . ,

where s(x, h) is a smooth real-valued function such that

smin ≤ s(x, h) ≤ smax,

for suitable positive constants smin and smax.
Under these five assumptions, the authors prove in [5] the following asymptotic expansion

in powers of h for the global error:

xn − ϕ(tn; x0) = hrer(tn) + · · · + h2r−1e2r−1(tn) + h2r−1R(tn, h), h→ 0,

where the error functions ek(t) satisfy non-homogeneous variational equations of (1) with
respect to ϕ(t; x0), and R(t, h) → 0 as h → 0 in bounded time intervals. The authors also
prove in [5] that these error functions at integer multiples of the period, e(N)

k = ek(NT0),
r ≤ k ≤ 2r − 1, satisfy:

e(N)
k =

N−1∑
i=0

Mi
t0

 e(1)
k , N = 1, 2, . . . ,

where Mt0 = M(t0 + T0, t0) is the monodromy matrix associated to the T0-periodic solution
ϕ(t; x0).

In particular, M. P. Calvo and J. M. Sanz-Serna had shown in [4] that integrating elliptic
orbits in the two-body problem with a symplectic method using a constant stepsize policy,
the global error grows linearly with the number of periods. They point out that such study is
extensible to periodic Hamiltonian problems whose period depends only on the energy.

In this article we present a study of the growth of the global error integrating periodic
differential systems (not necessarily Hamiltonian) so that the periodic orbit is embedded into a
family of periodic orbits. We present some numerical experiments over this kind of problems
with projection Runge–Kutta (RK) methods.

§2. Error behaviour

We assume the following hypothesis (H) for the differential system (1):∣∣∣∣∣∣∣∣
For all x̃0 in some neighbourhood of x0, the solution of (1) with initial value x̃0 at
time t0, ϕ(t; x̃0), is periodic with period T = T (x̃0) where the function T is as smooth
as required

(H)

To integrate this kind of differential problems we consider one step methods satisfying
the above assumptions (i)–(v). In [3], we show that the matrix M0 can be written as

M0 = I − f (x0)∇T (x0)T .

This expression for M0 allows to simplify the powers of this matrix, and we obtain that the
global error coefficients after N periods satisfy

e(N)
k = Ne(1)

k −
N(N − 1)

2
f (x0)∇T (x0)T e(1)

k , r ≤ k ≤ 2r − 1
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Furthermore, in [3] we show that the global error of the numerical method after N periods
can be written as:

ge(N) = Nge(1) −
N(N − 1)

2
f (x0)∇T (x0)Tge(1) − h2r−1NR(T0, h)

+ h2r−1 N(N − 1)
2

f (x0)∇T (x0)T R(T0, h) + h2r−1R(NT0, h).
(3)

As a consequence, we prove the following result:

Theorem 1. Let us consider a differential system (1), (2) satisfying the hypothesis (H), and
an one-step method satisfying the conditions (i)–(v). Then, if the method preserves the period
T up to order O(h2r), the global error grows linearly on t, provided that Nhr is small.

Let us see now how the error of first integrals of the differential system behaves. Let G(x)
be an scalar first integral of (1). We denote by

∆(N)G = G(x0 + ge(N)) −G(x0), N = 1, 2, . . . ,

the error in the invariant G for the method ψh after N periods. Since

∆(N)G = ∇G(x0)Tge(N) + O
(
‖ge(N)‖2

)
,

taking into account (3) we obtain:

Theorem 2. ∆(N)G = N ∆(1)G + O(Nh2r−1) + h2r−1∇G(x0)T R(NT0, h) + O
(
‖ge(N)‖2

)
.

This asymptotic relation implies a linear error growth in the invariant with the number of
periods provided that ‖ge(N)‖ is not too large.

A Runge–Kutta method with a projection technique applied to (1) with x(t0) = u, provides
a numerical approximation ψ̂h(u) given by

ψ̂h(u) = ψh(u) + λ(u, h)w(u, h),

where:

• ψh is an s-stage RK method of order r:
ψh(u) = u + h

s∑
j=1

b j f (U j),

U j = u + h
s∑

k=1

a jk f (Uk), ( j = 1, . . . , s),

• The coefficient λ(u, h) ∈ R is computed so that ψ̂h(u) preserves the invariant G of (1):
G(ψ̂h(u)) = G(u).

• The vector w(u, h) ∈ Rm depends on the type of projection used. In this article, we will
use directional projection [2], which takes w = ψh − ψ̃h, where ψ̃h is a RK method of
order q < r embedded in ψh.
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Figure 1: Solution of Euler’s equations obtained with the projection dopri54 method

The results of the previous section on the growth of the errors are stated on the assumption
that the one-step method ψh commutes with respect to differentiations with respect to the
initial conditions, i.e. assumption (iv) is satisfied. It is known [1] that this relation holds for
all the RK methods. We have proved in [3] that it is also satisfied for projection methods.

Next, we present some numerical experiments to corroborate the theoretical results pre-
sented in this article. The numerical method considered is the Runge–Kutta embedded pair
of order 5(4) constructed by Dormand and Prince (see e.g. [7, p. 178]). We denote this pair
“standard dopri54", whereas “projection dopri54” refers to that pair combined with the di-
rectional projection technique (see [2]) which makes the resulting method to preserve certain
first integrals of the problem. Integrations have been carried out with a local error tolerance
of 10−6.

Our first test problem describes the motion of a free rigid body represented by the Euler’s
equations (see e.g. [6, p. 95]): y′1

y′2
y′3

 =

 0 c3y3 −c2y2
−c3y3 0 c1y1
c2y2 −c1y1 0


 y1
y2
y3

 .
The vector y = (y1, y2, y3)T is the angular momentum, and c−1

j > 0, j = 1, 2, 3, are the
principal momenta of inertia. This Poisson differential system has the two first integrals:

2H = c1y
2
1 + c2y

2
2 + c3y

2
3,

L2 = y2
1 + y2

2 + y2
3,

where H and L represent the kinetic energy and the modulus of the angular momentum,
respectively.

We have taken c1 = 1, c2 = 1 − 0.51/
√

1.51, c3 = 1 + 1/
√

1.51, with initial conditions:

y1(0) = 0, y2(0) = y3(0) = 1.

The solution of this initial value problem is periodic, and its period T = T (H, L) depends
only on those two quadratic invariants. In Figure 1 we have plotted the numerical solution of
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this problem obtained with the projection dopri54 method. It lies on the intersection of the
sphere L2(y1, y2, y3) = 2 with the ellipsoid 2H(y1, y2, y3) = c2 + c3.

In Figure 2, the Euclidean norm of the global error against the number of periods is
shown in a log-log scale for the Euler’s equations. The integration has been carried out up to
8000 periods. The projection dopri54 method has been designed so that it preserves the two
invariants of the problem (see [2]) and, in consequence, it preserves its period. As it can be
seen, the global error grows linearly with the number of periods for this projection method
which is in agreement with Theorem 1. As expected, this growth is quadratic for the standard
dopri54. Dashed straight lines with slopes m = 1 and m = 2 have been drawed in order to
show up clearly the type of growth. In Figure 3, the preservation of the invariants is clear for
the projected RK method, whereas the error of the invariant grows linearly for the standard
one, which agrees with Theorem 2. Here the dashed reference line has slope 1.

The second test problem is the well known planar two body problem, also called Kepler’s
problem, given by the equations:

p′i = −
qi

(q2
1 + q2

2)3/2
, q′i = pi, i = 1, 2.

This is a Hamiltonian system with Hamiltonian function given by

H =
1
2

(p2
1 + p2

2) −
1√

q2
1 + q2

2

.

We have considered the initial conditions

p1 = 0, p2 =

√
1 + e
1 − e

, q1 = 1 − e, q2 = 0,

which correspond to a 2π-periodic elliptic orbit with eccentricity e, 0 ≤ e < 1. For these
numerical experiments we have taken e = 0.3, and we have integrated along 8000 periods.

In Figure 4, the evolution of the global error against the number of periods is shown. In
this case, the projection has been made so that the resulting projection method preserves the
Hamiltonian H. Therefore, it also preserves the period since the period only depends on the
energy H. According to Theorem 1, the growth of the global error must be linear in this case,
and it is just what happens for the projection dopri54. Once again, the global error grows
quadratically for the standard method. Figure 5 shows up the preservation of the first integral
H for the projection method and the linear growth of H with the number of periods for the
standard one.
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Figure 2: Euler’s equations: global error vs. periods, tol=10−6
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Figure 3: Euler’s equations: invariants’ error vs. periods, tol=10−6
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Figure 4: Kepler’s problem: global error vs. periods, e = 0.3, tol=10−6
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Figure 5: Kepler’s problem: error in H vs. periods, e = 0.3, tol=10−6
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