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STABLE MULTIQUADRIC APPROXIMATION
BY LOCAL THINNING

Mira Bozzini and Licia Lenarduzzi

Abstract. In this paper our concern is the recovery of a highly regular function by a
discrete set X of data with arbitrary distribution. We consider the case of a nonstationary
multiquadric interpolant that presents numerical breakdown. Therefore we propose a
global least squares multiquadric approximant with a center set T of maximal size and
obtained by a new thinning technique. The new thinning scheme removes the local bad
conditions in order to obtain AX,T well conditioned. The choice of working on local
subsets of the data set X provides an effective solution. Some numerical examples to
validate the goodness of our proposal are given.
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§1. Introduction

In this article we address the problem of recovering a function with high regularity by using
a set of data with arbitrary distribution.

It is well known that the radial basis functions (RBF) are a powerful tool for the multi-
variate approximation from scattered data. Nevertheless the arbitrary distribution of the data
can lead to an ill conditioned problem. In fact the standard methods involve the solution of
linear systems whose matrices can be ill conditioned also for moderate size.

In the literature we find various approaches to solve the problem of the ill conditioning
when RBFs are considered. A wide list of papers can be found in the recent article [2].
Anyway, the techniques developed take into account only the case of samples from quasi
uniform distributions.

In the present paper, the reconstruction of the unknown function is provided by a mul-
tiquadric (MQ) least squares approximant with the basis functions located at centers, deter-
mined such that the collocation matrix is well conditioned in the sense that Matlab does not
display a warning that it is close to singular. The procedure to select the centers is studied in
order to provide a solution with very good accuracy.

The note is organized as follows: the main result is presented in §4 and it concerns the
determination of the set of the centers; and before we give some notations in §2 and we
present the least squares approximant by radial basis functions in §3. Finally in §5 we provide
some numerical examples that simulate real applicative cases to show the effectiveness of the
proposed technique.
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§2. Notations

Given {(x j, f j), j = 1, . . . ,N} with data sites x j ∈ D ⊂ R2 and values f j = f (x j) ∈ R
measured from some unknown function f ∈ Cα(D), α > 2, we indicate with X the set of the
data sites x j, j = 1, . . . ,N, and with q(X) the minimal distance among the X sites. Similarly
we name T B {t1, . . . , tM} a set of distinct points tk ∈ D and q(T ) the minimal distance among
themselves.

We consider the multiquadric function with fixed parameter δ

φ((· − y), δ) B
(
‖ · − y‖22 + δ2)1/2

= φδ(·)

and we denote with AX,X the interpolation matrix with entries ai j = φ((xi − x j), δ), xi, x j ∈ X
and with AX,T a matrix whose entries are bi j = φ((xi − t j), δ), xi ∈ X, t j ∈ T . Let K2(AX,X) be
the spectral condition number.

Given two sets X and T , we define the covering radius according to the l2 measure of the
set T on X

rT X = max
x j∈X

dT (x j),

where
dT (x j) = min

tk∈T
‖tk − x j‖l2 . (1)

Another important parameter is the fill distance

hD(X) = max
x∈D

dX(x),

where
dX(x) = min

x j∈X
‖x − x j‖l2 .

We observe that, in the case where we consider the generic point x ∈ D in (1), the fill
distance is synonymous of covering radius.

§3. About least squares approximation

We are interested in providing a solution of the least squares problem when we sample a
function f on the set X = {x1, . . . xN} of data sites and consider a second set T B {t1, . . . , tM},
at which we center the multiquadric bases with fixed parameter δ. Let it be M < N.

Let the approximant be of the form

Q f (x) =

M∑
j=1

c jφ((x − t j), δ), x ∈ R2.

The coefficients {c j} are obtained as solution of the least squares problem

AXT c = f,

where f = { f1, . . . , fN}. The system has a unique solution if the matrix AX,T of entries {Ai j B
φ((xi − t j), δ)}, i = 1, . . .N, j = 1, . . .M, has full rank.
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Unfortunately it is not clear how to choose the set T ; in fact there is not much mathemat-
ical theory to guarantee that this approach is well posed. However, often the least squares
method is a valid tool to obtain a global approximation which takes into account the whole
information given by the problem. In this connection we want to show by a simple example
that it is very important not to discard any datum.

We consider the set X shown in Fig. 6. In this set the presence of two couples, where
the points are very close to each other, leads to an unstable interpolation matrix. A possible
choice is that of considering for each couple only one point and then to interpolate the data
of the new set X̃ whose matrix AX̃,X̃ is stable. In this way, considering Franke’s test function,
we obtain a maximum error

e∞ = 7.56 e(−2),

computed on a grid 61 × 61. Otherwise, considering the least squares method with full rank
matrix AX,T , we obtain a maximum error

e∞ = 3.80 e(−2).

We observe that to consider all the given functional values leads to an accuracy of one order
greater than that obtained by stable interpolation.

Therefore, having considered what we have said above, we have developed a wide exper-
imentation in order to find some information about the construction of a set T associated to a
full rank matrix AX,T , less hard than the theoretical properties given by Quak, Sivakumar and
Ward in [9]. On the basis of our experimentation, one can make the conjecture: “ the rank of
the matrix AX,T mainly depends on the parameter q(T )”. Such a statement was indicated also
by Buhmann in [1].

§4. Determination of the set T

We suppose that the interpolation matrix AX,X presents a numerical breakdown. Therefore, as
it is not possible to consider the interpolant, we want to individuate a set T of centers with
a size as large as possible such that the matrix AX,T has full rank to provide a least squares
approximant.

The first step in the construction of the set T deals with the determination of an upper
bound M0 for the size of T . For this aim, we recall that the numerical stability of the RBF-φ
interpolation depends on Gφ(q(X)), where Gφ : [0,∞)→ [0,∞) is a monotonically increasing
function. It follows that as the size N of the sample increases and q(X) decreases, the spectral
condition number K2(AX,X) grows.

But we observe that, for a given distribution of the sample, the value of N for which the
matrix AX,X presents numerical breakdown depends on the function φ or on the value assigned
to the parameter of those radial bases such as the Gaussian or the multiquadric for example.

For instance, considering the vertices of a regular hexagonal grid as point locations, we
note that a fit by Gaussians, with parameter ε = 1, quickly leads Matlab to display a warning
of matrix close to be singular, as soon as N > 46; whereas with the multiquadric basis with
parameter δ = 1 the warning is displayed with N ≥ 85.

The polyharmonic basis functions are more stable. Sizes of the sample of the order of one
thousand can be used to interpolate without instability.
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Having fixed the multiquadric basis, we must still define which set of points to choose
from which to determine the value M0 that bounds the size of T with the chosen basis. It is
natural to require the stability of the solution for the set T , but also an optimal accuracy. So
we recall that all the least squares estimates are based on interpolation error estimates.

In the interpolation problem the pointwise error bound depends on the fill distance of the
set of the data sites in D. It follows that, to determine the maximum bound of the size for
the set T , we have to search a set T0 of discrete points in D for which on one hand the value
q(T0) is as large as possible and on the other hand the value hD(T0) is as small as possible in
order to minimize the mesh ratio ρD(T0) = hD(T0)/q(T0). It is known that the optimal set in
R2 is given by the vertices of a regular hexagonal grid, [4].

4.1. Determination of the bound M0

Our goal is to consider a set T with parameter hD(T ) as small as possible; this is equivalent
to look for a set T of cardinality as large as possible, constrained so that ATT is numerically
stable.

Having fixed the multiquadric φδ, we consider a regular hexagonal grid Vl and compute
the spectral condition number K2(AVl,Vl ). Then we decrease the step of the grid Vl and we
obtain a new set of vertices Vl+1 and a new value K2(AVl+1,Vl+1 ). The process goes on, for a
value l = L of the index, until we meet the matrix AVL,VL numerically unstable.

The set VL is the one that corresponds to the value of minimal mesh ratio among all the
sets of same cardinality: ρD(VL) = min ρD(T ), |T | = |VL| . The value L is the upper bound
M0; it corresponds to the optimal distribution of centers, but it is not always suitable to take
them, when considering a set X of scattered points with arbitrary distribution. The value of
the size M of the set T will be the closer to M0 the more the distribution of the sample is
almost uniform.

4.2. Determination of T : sketch of the procedure

Once the basis φδ, for which the value M0 is known, is fixed, the individuation of the set T
is worked in two steps. At first we determine a proper subset of X and then we improve its
covering radius on X. To construct the proper subset of X we take into account that:

• Coalescent points determine instability and hence matrices of moderate size can be unsta-
ble.

• A warning of ill conditioning depends on the value of q(X) but also on the geometry of the
points. With respect to this we show the following example to validate the statement. We
consider two different small configurations X, both of size 5 that are shown in Fig. 1 and
Fig. 2 respectively; we provide the values of q(X) and K2(AX,X), when interpolating with
the multiquadric with parameter (δ = 10).
In the first case it is K2(AX,X) = 8.62 e(15) and q1(X) = 10 e(−4); in the second case it
is K2(AX,X) = 1.77 e(16) even if the minimal distance q2(X) = 10 e(−3) is larger than
q1(X) = 10 e(−4).

• A bad local condition involves a bad global condition
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Figure 1: Figure 2:

In the following we sketch the procedure to determine the centers and we refer to [6] for
the whole description of the algorithm. For clearness of exposition, we assume that we are in
the presence of a sample of size N sampled from uniform distribution.

Using the Delaunay triangulationD(X), we sort the data sites in a vector Y = {y1, . . . , yN}

according to the increasing distance from the contiguous points within D(X). It follows that
the last M0 components of the vector Y correspond to points whose interpoint distances are
larger.

We indicate with Y0 B {yN−M0+1, . . . , yN} such a vector and we consider for each com-
ponent yk ∈ Y0 its Voronoi cell V(yk). We calculate the set Y?

0 = {y?N−M0+1, . . . , y
?
N} whose

components correspond to the barycenters of the sets X ∩V(yk), k = N −M0 + 1, . . . ,N. The
vector Y?

0 has covering radius rY?
0 X less than rY0X .

By this operation the value of q(Y?
0 ) is larger than q(X); nevertheless AY?

0 ,Y
?
0

can be unsta-
ble due to particular geometries of the data sites. In this last case we consider a subdivision
of Y?

0 in subsets {S j} worked in the following way.
We construct the Delaunay triangulationD(Y?

0 ) on Y?
0 and, for each y?k ∈ Y?

0 , we calculate
the average distance

τk = 1/nk

nk∑
1

dist2(y?k , y
?
j )

from its neighbouring centers. We construct the vector Z whose components zk ∈ Y?
0 are

sorted by increasing values of τk. The first components of Z correspond to regions of D with
largest density of Y?

0 points.
Let m be fixed and let us start with the first component z1 of Z to determine the (m − 1)

points y?i ∈ Y?
0 closest to z1 according to dist∞. Let us indicate with S 1 such a set. Suc-

cessively we determine the subsets S j in the same way by considering the component z j ∈

Z \∪ j−1
k=1S k and by individuating the (m−1) points y?j ∈ Y?

0 \∪
j−1
k=1S k closest to z j. The process

ends in a finite number of steps.
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For each subset S j we evaluate the condition K2(AS j,S j ). In the case of a bad condition
we discard those points that determine instability. We indicate with Y?

1 the set of the points
y?k ∈ Y?

0 not discarded.
The set Y?

1 has been determined on the basis of local interpolation matrices well condi-
tioned, but this does not ensure that the global matrix AY?

1 ,Y
?
1

is numerically stable. In fact it
could happen that, when subdividing the set Y?

0 into subsets, some geometry of points of the
global set have been split. When the matrix AY?

1 ,Y
?
1

is unstable, the step of the subdivision is
repeated on Y?

1 . The recursive process gets a set of centers well separated by few iterations.
Let MF be the cardinality of Y?. As before, we improve the covering radius by considering
for each point y j ∈ Y? its Voronoi cell V?

j and we construct the set T of the barycenters of
the points {xk ∈ X ∩ V?

j }, j = 1, . . .MF .
The procedure here described has low computational cost because it works on sets of

small sizes. The bigger cost is due to the thinning scheme described in [3] to determine the
initial set Y0 needed when N > M0. Such a cost is of the order of N log N. When N ≤ M0 the
procedure takes Y0 ≡ X.

The procedure, here described in short, can be suitably adapted to the case of arbitrary
distributions. In the already cited report [6] the cases of uniform distribution, clusters of data
and distributions dependent on the phenomenon are considered.

§5. Examples

We shall show three examples relevant to three different distributions that can be met in dif-
ferent applicative problems. For each one of the examples quoted, we provide: the maximum
error e∞ computed on a grid 61× 61, the cardinality of the set T and the value of the index of
spectral condition K2(AX,T ) provided by Matlab as well as the size N of the set X. In all the
examples we take the unitary square [0, 1]2 as D and we take the shifts of the multiquadric
with parameter δ = 0.35 as basis functions. For this basis the value of M0 is 314.

Finally the results have been compared with some known methods in the literature, in
particular with techniques of knot removal to construct the set of the centers, [4], and with
the approximated interpolation, [10].

The last method has a solution given by a linear combination of shifts of a RBF−φ

P f (x) =

N∑
1

ĉ jφ(x − x j)

whose coefficients {ĉ j}
N
1 solve the system

(AXX + λI)c = f,

where the parameter λ is chosen in a theoretical way based on the smoothness of the unknown
function f .

5.1. Example 1

Let us consider a sample of size N = 198 from a distribution with variable densities depend-
ing on the behaviour of Franke’s function. This way of collecting the information, relevant to
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Figure 3: X dotted, T circled
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Figure 4: The approximant sX,T

the phenomenon to be recovered at hand, is used, for example, in problems of clinical survey
or in geophysical problems. In this case it is N < M0 and it is K2(AX,X) = 2.38 e(16) with a
warning of not full rank from Matlab:

• According to the current sketched procedure the set T selected, by just one iteration, is the
one shown in Fig. 3 of size 189 and with K2(AX,T ) = 1.60 e(13). The graphic is shown in
Fig. 4 and the error is

e∞(X,T ) = 1.94 e(−3).

The running time was 0.88 sec., excluding the computation of Y0, on a AMD 64 working
as a monoprocessor.

• By using the thinning technique presented in [3] to construct the set of the centers, a set X̃
of 183 centers is selected.
The set of the centers X̃?, obtained by improving the covering radius, determines a stable
matrix AX,X̃? with error

e∞(X,T ) = 2.30 e(−3),

and the total running time was 1.20 sec, excluding the computation of Y0.

• When constructing the approximated interpolation with the good value λ = 10−10 we obtain

e∞(X, X) = 2.17 e(−3).

5.2. Example 2

We assign a sample of mildly scattered data of size N = 1600 from the valley test function,
[7]. The sample is oversized to simulate the case of laser measures of a smooth feature
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Figure 5: The approximant sX,T

as in industrial applications. Moreover the coefficients and the centers of sX,T provide a
compressed information for the data set.

• Our algorithm selects T of size M = M0 = 314. The index of condition is K2(AX,T ) =

2.92 e(12) and the number of iterations is 3 . The graphical output is shown in Fig. 5 and
the error is

e∞(X,T ) = 1.88 e(−3).

• By approximated interpolation with λ = 10−9 the corresponding error is

e∞(X, X) = 8.59 e(−3).

Besides, for N � M0, the approximated interpolation is expensive, because it is necessary
to work with a full matrix N × N for each value of λ.

• By using the modified Shepard’s method run with our radial basis and with the same pa-
rameters of locality as described in [5], we obtain an error

e∞(X, X) = 3.20 e(−3).

If we want a maximum error as small as the one obtained with our procedure, we have to
consider a sample of size N > 3000.

5.3. Example 3

Here we consider the case of a configuration of clusters of points. Cluster sampling has
many analogies to real-world sampling. It is a set of densely sampled areas with large gaps
where no samples are taken, [8]. N = 131 data from Franke’s test function are taken with
X = ∪n=25

r=1 S r where with {S r} we have named the clusters, as shown in Fig. 6. The value of
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Figure 6: X locations
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Figure 7: The approximant sX,T

M0 for this configuration is 260; so we put Y0 ≡ X. The algorithm, working locally, by one
iteration, determines the set T by discarding one point only belonging to the 25-th cluster
located in the top right hand corner. It turns out that M = 130 and K2(AX,T ) = 4.11 e(13).

The graphical output of sX,T is shown in Fig. 7 and the error is

e∞(X,T ) = 3.80 e(−2).

There are cases where there are some points very near each other, as happens in the
case of real-world sampling. We could use an adaptive technique that exchanges the data of
locations, that are very near each other, with the average of their functional values, placed at
their barycenter. By using such a technique in our case, the associated interpolation matrix
AX̃,X̃ presents K2(AX̃,X̃) = 4.04 e(13) and the errors of the interpolant are

e∞(X̃, X̃) = 7.56 e(−2).
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