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NUMERICAL SIMULATION
OF LIQUID CRYSTALS

Roland Becker and Nour El Houda Seloula
Abstract. We consider the numerical simulation of nematic liquid crystal flows, modeled
by a simplified version of [2] the Ericksen-Leslie model, imposing a nonconvex constraint
on the director field. Computational experiments are used to compare the two approaches.
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§1. Introduction

In this paper, we consider a simplified version of the Ericksen- Leslie model, see for example
Lin and Liu [2]. This model is a modified Navier- Stokes system that takes into account the
liquid crystallinity, coupled with the Ginzburg-Landau equations.

vt − ν∆v + (v.∇)v + ∇p + λ∇ · (∇d � ∇d) = 0 in ΩT := (0,T ) ×Ω, (1)

dt + (v.∇)d − γ∆d = γ|∆d|2d in ΩT , (2)
∇ · v = 0 in ΩT , (3)

and the nonconvex constraint
|d(t, x)| = 1, (4)

and with the initial and boundary conditions

v(0, x) = v0(x), d(0, x) = d0(x), ∀x ∈ Ω. (5)
v(t, x) = 0, ∂nd(t, x) = 0, ∀(t, x) ∈ ∂ΩT . (6)

The unknowns are the time-dependent divergence-free velocity field v(t, x), the pressure
p(t, x) of the fluid and the director field d(t, x) representing the orientation of the liquid crys-
tal molecules. The fluid is confined in an open bounded domain Ω of R3 with a lipschitz
boundary ∂Ω. In the above, the vector n denotes the outward pointing unit normal and the
matrix product is defined as

(∇d � ∇d)i j =

2∑
k=1

∂dk

∂xi

∂dk

∂x j
.

The constraint (4) causes difficulties from both analytical and numerical points of view. A
widely used approach is to approximate this constraint by a penalty function such as the
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Ginzburg-Landau approximation fε(d) = ε−2(|d|2 − 1)d, for 0 < ε � 1. This penalisation
function exhibits a potential structure, i.e., there exists a potential function Fε(d) = ε−2

4 (|d|2 −
1)2 such that fε(d) = ∇d(Fε(d)).
Accordingly, the penalised model reads as

vt − ν∆v + (v.∇)v + ∇p + λ∇ · (∇d � ∇d) = 0 in ΩT := (0,T ) ×Ω, (7)
dt + (v.∇)d − γ(∆d − fε(d)) = 0 in ΩT , (8)

∇ · v = 0 in ΩT , (9)

subject to the initial and the boundary conditions (5) and (6).
Two fully discrete finite element methods for the system (1)-(3) and (7)-(9) have been

recently studied by R. Becker, X. Feng, and A. Prohl [1], where the convergence of finite
element approximations is established but the schemes do not satisfy the constraint (4). In
this note, we are interested in a modification satisfying this contraint.

The paper is organized as follows. In the next section, we recall the energy estimates
proven by Lin and Liu [2]. In section 3, we develop our modified scheme and in section 4,
we prove that this scheme satisfies the constraint (4). Computational examples are given to
prove the efficiency of the method.

§2. Energy estimates

It was observed in [2] that by using the differential identity∇·(∇z�∇z) = (∇z)T ∆z+ 1
2∇(|∇z|2),

the equation (7) can be rewritten as follows:

vt − ν∆v + (v.∇)v + ∇p +
λ

2
∇(|∇d|2) + λ(∇d)T ∆d = 0. (10)

Notice that the term λ
2 ∇(|∇d|2) can be absorbed into the definition of the pressure. Hence the

system (7)–(9) satisfies the following basic energy law:

d E
d t

= −
(
ν‖∇v‖2L2(Ω) + λγ‖∆d − fε(d)‖2L2(Ω)

)
, (11)

where

E =
1
2
‖v‖2L2(Ω) +

λ

2
‖∇d‖2L2(Ω) + λ

∫
Ω

Fε(d).

This estimate was used by Lin and Liu [2] to establish existence, uniqueness and regularity
of solutions to the coupled liquid crystal problem. The energy law (11) is obtained by mul-
tiplying the equation (10) by v and the director equation (8) by −(∆d − fε(d) and adding the
two. The crucial observation is that the main term from the momentum equation ∇dT (∆d) ·v,
cancels with the convective term (v · ∇)d · (−∆d) = −∇dT (∆d)v in the director equation. We
have also, by using the facts div v = 0 and v = 0 on ∂Ω, that∫

Ω

(v · ∇)v · v dx =

∫
Ω

v · ∇p dx =

∫
Ω

(v · ∇)d · fε(d) dx =

∫
Ω

v · ∇
( |d|2

2

)
dx = 0.
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§3. Fully discrete finite element methods for the Ericksen-Leslie model

We assume that Th is a quasi-uniform triangulation of a bounded polygonal domain Ω ⊂ R2

into triangles of diameter h > 0, i.e., Ω =
⋃

K∈Th
K. Let Nh denote the set of all nodes of Th.

We introduce the space

Yh =
{
ah ∈ C(Ω,R2) : ah|K ∈ P1(K,R2)

}
,

and Ih : C(Ω,R2) −→ Yh: the nodal interpolation operator such that IhΦ =
∑

z∈Nh
Φ(z)ϕz,

where {ϕz : z ∈ Nh} ⊂ Yh. Choose

Xh =
{
vh ∈ C0(Ω,R2) ∩ H1

0(Ω,R2); vh/K ∈ P2(K,R2)
}
,

Mh =
{
qh ∈ L2

0(Ω); qh/K ∈ P0(K)
}
,

and
Vh = {vh ∈ Xh : (div vh, qh) = 0 ∀qh ∈ Mh} .

In the following, we use the L2-orthogonal projections QYh
: L2(Ω,R2) −→ Yh, QVh

:
L2(Ω,R3) −→ Vh and the H1-orthogonal projection Rh : H1(Ω,R2) −→ Yh.

In [1], the authors study a first fully discrete finite element approximation for the regu-
larized problem (7)-(9), which uses the couple (Xh,Mh) of finite dimensional spaces for the
velocity and for a new pressure p̃ = p̂ + λFε(d), where p̂ = p + λ

2 |∇d|2.

Algorithm 1.

(1) Set v0
h := QVh v0

ε and d0
h := RYh dε0.

(2) For m = 1, ...,M, let fm
h :=

∣∣∣dm
h

∣∣∣2 dm
h − dm−1

h . Find (vm
h ,d

m
h , p̃m

h ,w
m
h ) ∈ Xh × Yh × Mh × Yh

such that, for all (uh, ah, qh,bh) ∈ Xh × Yh × Mh × Yh,

(dt vm
h ,uh) + ν(∇vm

h ,∇uh) +
(
(vm−1

h .∇) vm
h ,uh

)
+

1
2

(
(div vm−1

h ) vm
h ,uh

)
+ ( p̃m

h , div uh) − λ
(
(∇dm−1

h )T wm
h ,uh

)
= 〈g(tm, .),uh〉,

(dt dm
h , ah) +

(
(vm

h .∇) dm−1
h , ah

)
+ γ(wm

h , ah) = 0,

(div vm
h , qh) = 0,

(∇dm
h ,∇bh) + (fm

ε ,bh)h − (wm
h ,bh) = 0.

Moreover, they have proved that the solution of Algorithm 1 verifies a discrete energy law,
see [1] for more details. Next they study the following discrete scheme for the system (1)-
(3), where an implicit treatment of the coupling terms is used in contrast to the semi-implicit
discretization in Algorithm1. The discrete Laplacian ∆h : W1,2(Ω) → Yh and a temporal
discretisation using the implicit midpoint rule are used.

Algorithm 2.

(1) Let v0
h := QVh v0 and d0

h := Ih d0.
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(2) Let m = 1, ...,M. Find (vm
h ,d

m
h , p̂m

h ) ∈ Xh × Yh × Mh such that, for all (uh, ah, qh) ∈
Xh × Yh × Mh, there holds

(dt vm
h ,uh) + ν(∇vm

h ,∇uh) +
(
(vm−1

h .∇) vm
h ,uh

)
+

1
2

(
(div vm−1

h ) vm
h ,uh

)
− ( p̂m

h , div uh) − λ
(
(∇dm−1

h )T ∆hdm− 1
2 ,uh

)
= 〈g(tm, .),uh〉,

(div vm
h , qh) = 0,

(dt dm
h , ah) +

(
(vm

h .∇) dm−1
h , ah

)
+ γ

(
dm− 1

2
h × (dm− 1

2
h × ∆hdm− 1

2
h ), ah

)
= 0,

where dm− 1
2

h = 1
2 (dm−1

h + dm
h ).

A discrete energy law is also proved for the solutions of this scheme. The main contribu-

tion in this note is to change the term
(
(vm

h .∇) dm−1
h , ah

)
in Algorithm 2 by 1

2

(
(vm

h .∇) dm− 1
2

h , ah

)
−

1
2 (dm− 1

2 , vm
h .∇ah).

Then, the new Algorithm reads as follows:

Algorithm 3.

(1) Let v0
h := QVh v0 and d0

h := Ih d0.

(2) Let m = 1, ...,M. Find (vm
h ,d

m
h , p̂m

h ) ∈ Xh × Yh × Mh such that, for all (uh, ah, qh) ∈
Xh × Yh × Mh, there holds

(dt vm
h ,uh) + ν(∇vm

h ,∇uh) +
(
(vm−1

h .∇) vm
h ,uh

)
+

1
2

(
(div vm−1

h ) vm
h ,uh

)
− ( p̂m

h , div uh) − λ
(
(∇dm−1

h )T ∆hdm− 1
2 ,uh

)
= 〈g(tm, .),uh〉,

(div vm
h , qh) = 0,

(dt dm
h , ah) +

1
2

(
(vm

h .∇) dm− 1
2

h , ah

)
−

1
2

(dm− 1
2 , vm

h .∇ah)

+ γ
(
dm− 1

2
h × (dm− 1

2
h × ∆hdm− 1

2
h ), ah

)
= 0,

and with a judicious choice of the test function ah = dm− 1
2

h , and by supposing that d0
h ∈ Yh

satisfies |d0
h| = 1, the director field d satisfies the constraint (4).

§4. Numerical examples

In this section, we present and we compare numerical results using the algorithms 2 and 3.
We use Newton’s method for the solution of the nonlinear system at each time step. For this
purpose, three Newton iterations are sufficient in our computations.

The following example is taken from [1] to approximate smooth solutions of (1)–(3).

Example 1. We consider Ω = (−1, 1)2, and v0 ≡ 0, d0 = (sin (a), cos (a))>, where a =

2.0 π(cos (x) − sin (y)). The parameters are taken as follows: λ = γ = 1, ν = 0.1. The initial
condition d0 and the final state are shown in Figure 1.
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Figure 1: Algorithm 2: Initial (left) and final (right) director fields.

Figure 2: (Example 2) Using Algorithm 1. Snapshots at times t = 0, 0.3, 0.9 of {dm
h } (left)

and {um
h } (right).
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Figure 3: (Example 2) Jtotal with Algorithm 2 and Algorithm 3 for k = 0.02, h = 0.05 and
η = 0.1.

Figure 4: Comparison of Algorithm 2 and Algorithm 3 with Example 2 for k = 0.02, h = 0.05
and η = 0.001 (left), for k = 0.02, h = 0.05 and η = 0.00001 (right).
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A uniform crisscross triangulation of Ω is used with uniform mesh size h = 1/20, 1/40
and 1/80. Next, we present the results for Algorithm 1.

Example 2. We consider Ω = (−1, 1)2, v0 ≡ 0 and d0 = d̂
/ (∣∣∣d̂∣∣∣2 + η2)1/2, with d̂(x, y) =

(x2 + y2 − 0.25, y)T . The parameters are taken as follows: λ = γ = 1, ν = 0.1, η = 0.05,
ε = 0.05, k = 0.01 and h = 0.1. The evolution of this solution is shown in Figure 2.

In order to compare the solutions of Algorithm 2 with those of Algorithm 3, we give some
notations. Let Jkin(vh) = 1

2

∫
Ω
|vh|

2 be the kinetic energy, Jela(dh) = λ
2

∫
Ω
|∇dh|

2, the elastic
energy and finally Jtotal(vh,dh) = Jkin(vh) +Jela(dh), the total energy.

We then compare the total energy for the two algorithms on the same mesh with the same
time step. As can be seen from Figure 3, we have exactly the same solutions with the two
algorithms.

We define now, the sphere energy Jsphere(dh) = 1 − |dh|. The results presented in Figure
4 show that the sphere energy for the Algorithm 3 is zero and the constraint (4) is satisfied in
contrast to Algorithm 2.
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