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EQUATION COUPLED WITH HIGH-ORDER
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Abstract. In this paper, we study high-order absorbing boundary conditions (ABCs) for
the acoustic wave equation the Higdon’s one, which only take into account the prop-
agative waves and Hagstrom-Warburton’s one, which considers both the evanescent and
proagative ones. We discretize the problem by a Discontinuous Galerkin (DG) method.
Numerical results illustrate the instability of the method in particular cases.
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§1. Introduction

The numerical simulation of wave propagation generally involves boundary conditions which
both represent the behavior at infinity and provide a mathematical tool to define a bounded
computational domain in which a finite element method (FEM) can be applied. Most of
these conditions are derived from the approximation of the Dirichlet-to-Neumann operator
and when they both preserve the sparsity of the finite element matrix and enforce dissipation
into the system, they are called absorbing boundary conditions. Most of the approximation
procedures are justified into the hyperbolic region which implies that only the propagative
waves are absorbed. If the exterior boundary is localized far enough from the source field,
the approximation is accurate and the absorbing boundary condition is efficient. However,
the objective is to use a computational domain whose size is optimized since the solution of
wave problems requires to invert matrices whose order is very large and is proportional to
the distance between the source field and the exterior boundary. Hence, it is a big deal to
derive absorbing boundary conditions which are efficient when the exterior boundary is close
to the source field and it is necessary to construct conditions which are efficient not only for
propagative waves but both for evanescent and glancing waves. Recently, a new condition
has been derived from an approximation of the Dirichlet-to-Neumann operator which is valid
both for propagative and evanescent waves and extends the condition which was formerly
proposed by Higdon [8]. By using a classical finite element scheme, Hagstrom et al. [7] have
shown the improvements induced by the new condition. In this work, we intend to investigate
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whether the new condition can be introduced into a Interior Penalty Discontinuous Galerkin
method [4] which is more accurate to reproduce the propagation of waves into heterogeneous
media than standard FEMs. To analyze the impact of the new condition on the accuracy of
the numerical solution, we also consider the Higdon condition and we compare the efficiency
of the two conditions.

§2. Statement of the problem

In this section, we consider a model problem for the time-dependent wave equation in a two-
dimensional domain Ω with a general ABC and we focus on the description of the Interior
Penalty Discontinuous Galerkin (IPDG) method ([4]). We have:

(S)


∂2

t u − div
(
c2∇u

)
= f , in (0,T ) ×Ω,

u(0, x) = 0 ; ∂tu(0, x) = 0, in Ω,

∂nu = 0, on ΓN ,

∂nu = B(∂t,∇Γ)u, on Γabs,

where f is the source function, c the velocity of the wave, u the unknown field, T the fi-
nal time, n the unit outward normal vector, ΓN and Γabs respectively the boundary with the
Neumann condition and the ABC which is represented by the operator B. The operator B
is differential, for instance, it reads 1

c∂t which corresponds to the simplest ABC. We refer to
[1], where the well-posedness of problem (S) has been established for f ∈ L2(0,T ; L2(Ω))
by applying the semi-group theory. More precisely, if U = {u ∈ H1(Ω), ∂nu ∈ L2(Γabs)},
u ∈ C0(0,T ;U) ∩C1(0,T ; L2(Ω)).

We consider a partition Th of Ω composed of triangles K, we denote by Ωh the set of
triangles, by Σabs the set of the edges on the absorbing boundary, by ΣN the set of the edges on
the Neumann boundary and by Σi the set of the edges in the domain such that Σi∩(ΣN∪Σabs) =

∅. For each Σ ∈ Σi, we have to distinguish the two triangles that share Σ: we note them
arbitrarily K+ and K− . We introduce useful notations to define the jump and the average over
edges:

[[v]] := v+ν+ + v−ν− and {{v}} :=
v+ + v−

2
,

where v+ and v− respectively refers to the restriction of v in K+ and K− and ν± stands for the
unit outward normal vector to K±.

It is well-known the IPDG formulation of (S) reads as ([4]):
Find u ∈ U such that ∀v ∈ H1,∑

K

∫
K
∂2

t uv + a(u, v) −
∑

Σ∈Σabs

∫
Σ

c2∂nuv =
∑

K

∫
K

f v,

with

a(u, v) =
∑

K

∫
K

c2∇u∇v −
∑
Σ∈Σi

∫
Σ

(
{{v}}[[c∇u]] + {{u}}[[c∇v]] + α[[u]][[v]]

)
.
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We seek an approximation of the solution in the finite element space Vk
h defined as follows:

Vk
h =

{
v ∈ L2(Ω); v|K ∈ Pk,∀K

}
, k ∈ N

where Pk is the set of polynomials of degree at most k on K.

§3. The Higdon’s Condition

Here, we are going to study ABCs derived from a transparent boundary condition which only
take the propagative waves into account. We will also discuss the implementation of those
high-order conditions in the IPDG scheme.

We recall the Higdon’s condition of order p, (p ∈ N) (cf. [8]):
P∏

j=1

(cos a j ∂t + c ∂n) u = 0, on Γabs. (1)

Remark 1. The Engquist-Majda’s condition (cf. [2]), which was one of the first ABCs to be
designed, is a particular case of the Higdon one. Indeed, it is obtained by choosing all a j

equal to zero in (1).
To implement this condition in a numerical scheme, we define auxiliary functions u j, for

1 ≤ j ≤ P on the absorbing boundary (cf. [3]):
(cos a1∂t + c∂n)u = ∂tu1,

(cos a j∂t + c∂n)u j−1 = (cos a j∂t − c∂n)u j, j = 2, . . . , P,
u j(0, .) = 0, j = 1, . . . , P.

By this way, we avoid to use high-order differential operators into the variational formulation.
Indeed, it has been shown in [6] that

P∏
j=1

(cos a j ∂t + c ∂n) u = 0 ⇐⇒ uP = 0

and
(∂2

t − ∆)u j = 0, ∀ j = 1, . . . , P.

Then, thanks to these two properties, we can rewrite the problem including now P differential
equations on the boundary which can be easily included and we obtain the following system:

∂2
t u − c24u = f , in Ω,

∂nu = 0, on ΓN ,

(cos a1∂t + c∂n) = ∂tu1, on Γabs,

2 cos a2(1 − cos2 a1)∂2
t u + l1,1∂2

t u1 + (1 − cos2 a2)∂2
t u2

= c2(2 cos a2∂
2
τu + ∂2

τu1 + ∂2
τu2), on Γabs,

l j, j−1∂
2
t u j−1 + l j, j∂

2
t u j + l j, j+1∂

2
t u j+1

= c2(m j, j−1∂
2
τu j−1 + m j, j∂

2
τu j + m j, j+1∂

2
τu j+1), for j = 2, . . . , P − 1, on Γabs,

uP = 0, on Γabs,
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where τ is the tangential component such that (n, τ) is a direct basis and
l1,1 = 1 + 2 cos a2 cos a1 + cos2 a2,

l j, j−1 = cos a j+1(1 − cos2 a j),

l j, j = cos a j+1(1 + cos2 a j) + cos a j(1 + cos2 a j+1),

l j, j+1 = cos a j(1 − cos2 a j+1),

and 
m j, j−1 = cos a j+1,

m j, j = cos a j+1 + cos a j,

m j, j+1 = cos a j.

Now, let us introduce the approximation space to discretize the ABC. Let Wk
h be defined

as
Wk

h =
{
w ∈ L2(Γabs); w|Σ ∈ Pk(Σ),∀Σ ∈ Σabs

}
.

The equations on Γabs are discretized by a 1D IPDG approximation and we define similar
notations to the 2D case. Nabs is the set of the vertices of the edges of Σabs; for each point p in
Nabs, we arbitrarily denote by Σ+ and Σ− the two edges sharing p, and by ν± the unit tangent
vector to Σ± in p. The definition of the jumps and the averages are the same as in Section 2.

For a given j, consider the equation

l j, j−1∂
2
t u j−1 + l j, j∂

2
t u j + l j, j+1∂

2
t u j+1 = c2(m j, j−1∂

2
τu j−1 + m j, j∂

2
τu j + m j, j+1∂

2
τu j+1),

whose variational formulation reads as

∀w ∈ H1(Γabs),
∑

Σ∈Σabs

∫
Σ

(
l j, j−1∂

2
t u j−1 + l j, j∂

2
t u j + l j, j+1∂

2
t u j+1

)
w

= −m j, j−1a j, j−1(u j−1, w) − m j, ja j, j(u j, w) − m j, j+1a j, j+1(u j+1, w),

where

ai, j(u, w) =
∑

Σ∈Σabs

∫
Σ

c2∂τu∂τw −
∑

z∈Nabs

(
{{w}}[[u]] + {{u}}[[w]] − αi, j[[u]][[w]]

)
and αi, j is the penalization term depending on cos ai and cos a j.

We obtain then,

M
d2U
dt2 + C

dU
dt

+ KU = F + G
dU1

dt
, in Ω,

B1
d2U
dt2 + l1,1B2

d2U1

dt2 + (1 − cos2 a2)B2
d2U2

dt2 + EU + DU1 + DU2 = 0, on Γabs,

l j, j−1B2
d2U j−1

dt2 + l j, jB2
d2U j

dt2 + l j, j+1B2
d2U j+1

dt2

+ m j, j−1DU j−1 + m j, jDU j + m j, j+1DU j+1 = 0, for j = 2, . . . , P − 1, on Γabs,

UP = 0, on Γabs,
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where U is the solution vector, U j the auxiliary functions, M the mass matrix, K the stiffness
matrix, F the source vector and all the other matrices come from the ABC.

To simplify, we rewrite this system. We have:

R
d2X
dt2 + S

dX
dt

+ T X =


F
0
...
0

 ,
where X is the vector of all the unknowns (U and U j).

Next, we apply a time-discretization using a second-order finite difference scheme:

(
R +

∆t
2

S
)

Xn+1 = ∆t2


F(n∆t, .)

0
...
0

 − ∆t2T Xn + 2RXn − RXn−1 +
∆t
2

S Xn−1,

with Xn = X(n∆t) and ∆t is the time step. Note that, since M, B1, B2, C and G are block-
diagonal matrices,

(
R + ∆t

2 S
)

is easily invertible.

§4. The Hagstrom-Warburton’s condition

In this section, we study a new condition proposed by T. Hagstrom and T. Warburton [7]
which takes into account not only propagative waves but also evanescent waves. More accu-
racy is then expected.

The Hagstrom-Warburton’s ABC (H-W ABC) of order P + Q, (P,Q ∈ N) is given by Q∏
j=1

(σ j + ∂n)


 P∏

j=1

(cos a j ∂t + c∂n)

 u = 0. (2)

For the same reasons as for the Higdon’s ABC, we introduce auxiliary functions defined
on the absorbing boundary:

(cos a1∂t + c∂n)u = cos a1∂tu1,

(cos a j∂t + c∂n)u j−1 = (cos a j∂t − c∂n)u j, for 2 ≤ j ≤ P,

(σ j + ∂n)uP+ j−1 = (σ j − ∂n)uP+ j, for 1 ≤ j ≤ Q,

u j((x, y), 0) = 0, for 1 ≤ j ≤ P + Q.

As for the Higdon’s ABC, we have (cf. [6]): Q∏
j=1

(σ j + ∂n)


 P∏

j=1

(cos a j ∂t + c∂n)

 u = 0 ⇐⇒ uP+Q = 0

and
∀ j ∈ 1, . . . , P + Q, (∂2

t − ∆)u j = 0.
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Hence, the system can be rewritten in a more convenient way (cf. [5]). The approach is
the same as before except when j is equal to P. For j < P or j > P, we get:

2 cos a2(1 − cos2 a1)∂2
t u + l1,1 cos a1∂

2
t u1 + cos a1(1 − cos2 a2)∂2

t u2

= 2c2 cos a2∂
2
τu + c2(cos a1∂

2
τu1 + cos a1∂

2
τu2), on Γabs,

l j, j−1∂
2
t u j−1 + l j, j∂

2
t u j + l j, j+1∂

2
t u j+1

= c2(m j, j−1∂
2
τu j−1 + m j, j∂

2
τu j + m j, j+1∂

2
τu j+1), for j = 2, . . . , P − 1, on Γabs,

l̄ j, j−1∂
2
t uP+ j−1 + l̄ j, j∂

2
t uP+ j + l̄ j, j+1∂

2
t uP+ j+1

= c2(m̄ j, j−1∂
2
τuP+ j−1 + m̄ j, j∂

2
τuP+ j + m̄ j, j+1∂

2
τuP+ j+1)

+ c2(s̄ j, j−1uP+ j−1 + s̄ j, juP+ j + s̄ j, j+1uP+ j+1), for j = 2, . . . , P − 1, on Γabs,

where l,m are the coefficients defined in Section 3 and l̄, m̄ and s̄ are given by:

l̄ j, j−1 = m̄ j, j−1 =
1
σ j
,

l̄ j, j = m̄ j, j =
1
σ j

+
1

σ j+1
,

l̄ j, j+1 = m̄ j, j+1 =
1

σ j+1
,

and


s̄ j, j−1 = σ j,

s̄ j, j = −(σ j + σ j+1),
s̄ j, j+1 = σ j+1.

When j = P, we have to introduce a seam function ψ which makes the link between the
two kinds of auxiliary functions: those defined for the propagative waves (using cos) and
those for the evanescent ones (using σ). Hence, we get two equations for j = P which are: (1 − cos2 aP)∂2

t uP−1 + (cos2 aP + 1)∂2
t uP + cos2 aP∂

2
t ψ = c2(∂2

τuP−1 + ∂2
τuP), on Γabs,

∂2
t uP + ∂2

t uP+1 − cos aPσ1c∂tψ = σ2
1c2(uP + uP+1) + c2(∂2

τuP + ∂2
τuP+1), on Γabs.

For the space-discretization, we use a similar method to the one described in Section 3 and
we finally get:

(
R2 +

∆t
2

S 2

)
Xn+1 = ∆t2


F(n∆t, .)

0
...
0

 − ∆t2T2Xn + 2R2Xn − R2Xn−1 +
∆t
2

S 2Xn−1,

where X is the vector of all the unknowns: u, u j and ψ.

§5. Numerical results

We have considered the square [−2; 2] × [−2; 2] and the following Ricker-type source:

f (x, y, t) = δ(x − x0, y − y0)2λ(2λ(t − t0)2 − 1)e−λ(t−t0)2
,
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(xr, yr) Higdon H-W
a1 = 0 a1 = π

6 a1 = a2 = 0 a1 = 0, a2 = π
6 a1 = a2 = 0

σ1 = 10
(0,−1.8) 1.98 9.14 0.54 0.54 0.54

(0.7,−1.8) 7.3 4.06 0.61 0.60 0.60
(1.8, 1.8) 18.0 12.0 1.02 0.82 0.90

Table 1: Relative L2 error for Higdon’s and H-W conditions

where λ = (5π)2, t0 = 0.2, (x0, y0) = (0,−1) and δ denotes the Dirac distribution. The
penalization coefficient in the domain is α = 8. We have computed the solution Uapp near
the absorbing boundary at three different points (xr, yr) equal to (0,−1.8), (0.7,−1.8) and
(1.3,−1.8) for different values of the coefficients a j and σ j and we have compared it to the
exact solution U (i.e. the solution of the wave equation in R2). On Tab.1, we represent the
relative L2([0,T ]) error, err =

‖Uapp−U‖L2([0,T ])

‖U‖L2([0,T ])
∗ 100 for four Higdon’s conditions (a1 = 0,

a1 = π/6, a1 = 0 and a2 = 0,a1 = 0 and a2 = π/6) and one H-W condition (a1 = a2 = 0 and
σ = 10).

For the first two tests, we have no auxiliary functions since we consider first-order condi-
tions. For the three other tests we have imposed the same penalization coefficient α j = 16 for
all the auxiliary equations on Γ. We remark that, as expected, the second-order Higdon’s con-
dition performs better than the first-order one. However, the third-order H-W condition does
not improve the error as compared to the second-order Higdon’s condition. This is due to
the discretization method, since the accuracy of the ABC can be improved by decreasing the
penalization coefficient but if this coefficient is too small the scheme becomes unstable. We
have observed the same problem with thethird-order Higdon’s condition and for higher-order
conditions too. Moreover, for some particular coefficients, for instance a1 = 0, a2 = π/6
and a3 = π/4, the scheme is unconditionnaly unstable (i.e. there is no penalization param-
eters that stabilize the scheme). In Fig. 1, we have represented the solution Uapp for these
coefficients at point (0,−1.8).

Therefore, the method of auxiliary functions proposed in [3] to implement Higdon’s and
H-W conditions is not adapted to an IPDG approximation and we are now considering other
type of ABC compatible with the IPDG method. In the same time, we are looking for an
enriched IPDG scheme which is able to use the ABCs we consider in this work.

.
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