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CONSTRUCTION OF
QUASI-INTERPOLANTS

ON UNIFORM PARTITIONS
A. Abbadi, D. Barrera, M. J. Ibáñez and D. Sbibih

Abstract. We propose a new general method for constructing standard quasi-interpolation
operators into the space spanned by the integer translates of a B-spline defined on a uni-
form partition of Rs. The key tool is an appropriate error estimate with a leader term that
contains and expression measuring the quality of the approximation. It is a function on
the sequence defining the quasi-interpolating operator, and therefore, we define and solve
a minimization problem in such a way that their solutions are characterized in terms of
some splines that do not depend on the linear form defining the operator.
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§1. Introduction

We propose a new general method for constructing quasi-interpolation operators based on B-
splines defined on uniform partitions τ of Rs, s ≥ 1. Let φ be such a B-spline on τ, normalized
by

∑
i∈Zs φ (· − i) = 1. Let S := span(φ (· − i))i∈Zs be the cardinal spline space spanned by the

shifts of φ.
The classical structure for a quasi-interpolant is given by the expression

Q ( f ) :=
∑
i∈Zs

λ f (· + i) φ (· − i) ,

λ being a linear functional (see e.g. [3], [2], [5]). Usually, λ f is a linear combination of
values of f and some of its derivatives at some points in some open set containing the support
of φ; or a linear combination of values of f at some points in this set; or a linear combination
of weighted mean values of the function to be approximated, i.e. λ f is given by∑

j∈J

c j f (− j) ,
∑
|i|≤`

∑
j∈Ji

ci, jD(i) f (− j) , or
∑
j∈J

c j 〈 f , ψ (· − j)〉 ,

J and Ji, |i| ≤ ` for 0 ≤ ` ≤ degψ, being finite subsets of Zs, and 〈·, ·〉 and ψ standing for the
usual inner product and another B-spline.

That linear functional is defined to produce a quasi-interpolant Q exact on a polynomial
space included in S. We will restrict our attention to these cases. More precisely, we will
demand the exactness of Q on Pn, with n such that Pn ⊂ S and Pn+1 * S, i.e. Q realizes the
approximation power of S.
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§2. Estimating the quasi-interpolation error

For the scaled quasi-interpolant

Qh f :=
∑
i∈Zs

λ f (h (· + i)) φ
(
·

h
− i

)
considered here, we have the following result concerning the error Eh f := f − Qh f . The
notation mα is used for the normalized monomial of order α: mα(x) = xα/α!.
Proposition 1. Let f ∈ Cn+2 (Rs). For every triangle T in hτ, there exist both a neighborhood
V = V (T ), independent of f , and a constant C > 0, independent of h and T , such that

‖Eh f ‖∞,T ≤ Tn,Qhn+1 | f |∞,n+1,V + C hn+2 | f |∞,n+2,V ,

where
Tn,Q := max

α∈Ns
0, |α|=n+1

‖Qmα − mα‖∞,[0,1]s .

Proof. Suppose that Q is an integral quasi-interpolation operator. Then, we have

Q f =
∑
i∈Zs

λ f (· + i) φ (· − i)

with
λ f (· + i) =

∑
j∈J

c j 〈 f (· + i) , ψ (· − j)〉 =

∫
Rs

f (t) H (t − i) dt,

where
H :=

∑
j∈J

c jψ (· − j) .

Thus,

Q f =

∫
Rs

f (t) K (t, ·) dt,

with
K (t, ·) :=

∑
i∈Zs

H (t − i) φ (· − i) .

Taking into account that the scaled quasi-interpolant Qh in is equal to σhQσ1/h where the
scaling operator σh is defined as

σh f = f
(
·

h

)
,

we get

Qh f =

∫
Rs

f (t)
1
hs K

( t
h
,
·

h

)
dt.

The kernel in this integral representation of Qh is Pn−1-reproducing and shift-invariant, and
has sufficient decay. Then, the next error estimate for the integral quasi-interpolation operator
considered here follows from [4].

The proof for discrete quasi-interpolants is given in [1]. A similar method can be used to
prove the result in the differential case. �

The constant Tn,Q in the leading term of Eh f is determined by how well Qh approximates
the monomials of order n + 1.
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§3. Achieving the required exactness

The operator Q is exact on Pn if for all α ∈ Ns
0 such that |α| ≤ n one gets

λ (mα) = gα (0) ,

where the polynomials gα can be recursively computed as follows (see e.g. [3]):

g0 = m0, gα = mα −
∑
j∈Zs

φ ( j)
∑
β�α

mα−β (− j) gβ, |α| > 0.

They are only sufficient conditions to guarantee the exactness of Q on Pn.

§4. A minimization problem

It is natural to construct Q by solving this minimization problem:

Problem 1. Minimize Tn,Q subject to the exactness conditions λ (mα) = gα (0) , |α| ≤ n.

The solutions of this problem (and the corresponding quasi-interpolants Q) can be easily
characterized using the well-known Schoenberg operator

S f :=
∑

i∈Zs f (i) φ (· − i) .

Proposition 2. Let Q be one of the quasi-interpolants considered here defined from the linear
functional λ. Let us suppose that Q is exact on Pn. If

λmα = gα (0) +
1
2

(
max
[0,1]s

Gα + min
[0,1]s

Gα

)
for all α ∈ Ns

0 such that |α| = n + 1, where

Gα := mα − S gα,

then Tn,Q attains its minimum value.

Note that Gα does not depend on λ.

§5. A differential example

Let φ be the quadratic box-spline on the criss-cross triangulation τ2, centered at the origin
(see e.g. [3]). Then n = 2, i.e. we can construct differential quasi-interpolants exact on P2 by
minimizing the errors associated with the cubic monomials. We will restrict our attention to
the case ` = 1, i.e. we will suppose that the values of f and its first order partial derivatives
at the grid points are known.

We have

λµ f = f (0) +
1

16

(
D(1,0) f (1, 0) − D(1,0) f (−1, 0)

)
− µ

(
D(1,0) f (0, 1) − D(1,0) f (0,−1)

)
− µ

(
D(0,1) f (1, 0) − D(1,0) f (−1, 0)

)
+

1
16

(
D(0,1) f (0,−1) − D(0,1) f (0, 1)

)
.
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The exactness of Q on P2 is guaranteed by the conditions

λmα = gα (0) , |α| ≤ 2.

Since max[0,1]2 Gα = −min[0,1]2 Gα when |α| = 3, the new linear equations yielding the mini-
mum of T2,Q are given by

λmα = gα (0) , |α| = 3.

When J0,0 = {(0, 0)} and J1,0 = J0,1 = {(0, 0) , (±1, 0) , (0,±1)}, the solution of this linear
system depends on a parameter µ, and provides the linear functional

λµ f = f (0) +
1

16

(
D(1,0) f (1, 0) − D(1,0) f (−1, 0)

)
− µ

(
D(1,0) f (0, 1) − D(1,0) f (0,−1)

)
− µ

(
D(0,1) f (1, 0) − D(1,0) f (−1, 0)

)
+

1
16

(
D(0,1) f (0,−1) − D(0,1) f (0, 1)

)
.

The value µ = 0 gives a differential quasi-interpolant Q∗ having minimally supported funda-
mental functions. We have the following result concerning its associated error.

Proposition 3. Let f ∈ C3
(
R2

)
. For every triangle T in hτ2, there exist both a neighborhood

VT , independent of f , and constants Cα > 0, independent of h and T , such that∥∥∥∥Dα
(
Q∗h f − f

)∥∥∥∥
∞,T
≤ Cαh3−|α|

∥∥∥D3 f
∥∥∥
∞,VT

.

Moreover,

C0,0 =
153 + 15

√
10 + 13

√
13

648
' 0.381646,

C1,0 = C0,1 =
198 + 10

√
10 + 13

√
13

324
' 0.853379.

We consider the test function, whose graphic is given in Figure 1.

f (x, y) = 3 (1 − x)2 e−x2−(y+1)2
− 10

( x
5
− x3 − y5

)
e−x2−y2

−
1
3

e−(x+1)2−y2
.

Figure 2 shows the errors associated with the new differential quasi-interpolation operator
Q∗h for some different values of the steplength h.

In order to show the performance of Q∗h, we also give in Figure 3 the plots of the errors
associated with the classical differential quasi-interpolant Q̃h that uses the partial derivatives
up to the order two, for the same values of h:

Q̃h f =
∑
i∈Z2

(
f (ih) −

h2

8

(
D(2,0) f (ih) + D(0,2) f (ih)

))
φ
(
·

h
− i

)
.

The operator Q∗h f obtained solving the minimization problem gives good results when
compared with Q̃h f , although the latter uses second order partial derivatives.
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Figure 1: The test function f .
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Figure 2: Quasi-interpolation errors Q∗h f for the test functions for h = 1
2n , 0 ≤ n ≤ 5.
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Figure 3: Quasi-interpolation errors Q̃h f for the test functions for h = 1
2n , 0 ≤ n ≤ 5.
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§6. An integral example

Let τ be the uniform mesh of the plane generated by the directions d1 := (1, 0), d2 := (0, 1),
d3 := d1 + d2 and d4 := −d1 + d2. Let φ be the box spline associated to the direction set
X = {d1, d1, d2, d2, d3, d4}, centered at the origin (cf. [3]). It is one of the two box splines in
P2

4 (τ2). It is well known (cf. [2]) that P3 is the space of maximal total degree included in
S (φ), that is the construction we have given runs with n = 3. It can be easily verified that the
unique nonzero values of φ at the integers are

φ (0, 0) =
5

12
,

φ (1, 0) = φ (−1, 0) = φ (0, 1) = φ (0,−1) =
1
8
,

φ (1, 1) = φ (−1, 1) = φ (−1,−1) = φ (1,−1) =
1
48
.

From these values we obtain the following expressions for the polynomials in the Appell
sequence associated to φ:

g0,0 = 1, g1,0 = m1,0, g0,1 = m0,1, g2,0 = m2,0 −
1
6
, g1,1 = m1,1, g0,2 = m0,2 −

1
6
,

g3,0 = m3,0 −
1
6

m1,0, g2,1 = m2,1 −
1
6

m0,1, g1,2 = m1,2 −
1
6

m1,0, g0,3 = m0,3 −
1
6

m0,1,

g4,0 = m4,0 −
1
6 m2,0 +

1
72
, g3,1 = m3,1 −

1
6

m1,1, g2,2 = m2,2 −
1
6

m2,0 −
1
6 m0,2 +

5
144

,

g1,3 = m1,3 −
1
6

m1,1, g0,4 = m0,4 −
1
6

m0,2 +
1

72
.

After some computations, we get G3,1 = G1,3 = 0, and

max
[0,1]2

G4,0 = G4,0

(
1
2
, 0

)
=

1
384

, min
[0,1]2

G4,0 = G4,0 (0, 0) = 0,

max
[0,1]2

G2,2 = G2,2 (0, 0) = 0, min
[0,1]2

G2,2 = G2,2

(
1
2
,

1
2

)
= −

1
192

,

max
[0,1]2

G0,4 = G0,4

(
0,

1
2

)
=

1
384

, min
[0,1]2

G0,4 = G0,0 (0, 0) = 0.

Thus, given a discrete, differential or integral linear form λ, we obtain the following
equations that characterize the solutions of the minimization problem:

λm0,0 = 1, λm1,0 = λm0,1 = 0,

λm2,0 = λm0,2 = −
1
6
, λm1,1 = 0, λm3,0 = λm2,1 = λm1,2 = λm0,3 = 0,

λm4,0 = λm0,4 =
35

2304
, λm2,2 =

37
1159

, λm3,1 = λm1,3 = 0.
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As a integral linear functional uses a B-spline ψ as weight function in the inner products, we
choose ψ = φ. Moreover, let J be the set of the integer i = (i1, i2) such that |i1|+ |i2| ≤ 2.Taking
into account that the nonzero moments of ψ are

µ0,0 = 1, µ2,0 = µ0,2 =
1
3
, µ4,0 = µ0,4 =

3
10
, µ2,2 =

17
180

,

the expansion of λmα, |a| ≤ 4, results in a linear system on c = (c j)| j1 |+| j2 |≤2 whose unique
solution is

c0,0 =
11071
2880

, c1,0 = c0,1 = c−1,0 = c0,−1 = −
11
12
,

c2,0 = c0,2 = c−2,0 = c0,−2 =
991

11520
,

c1,1 = c−1,1 = c−1,−1 = c1,−1 =
689

5760
.

Note that c is a lozenge sequence and so the fundamental function of the associated quasi-
interpolant has the same symmetries than the box spline φ.
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