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AN ALGEBRAIC THEORY ABOUT
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MATRIX ORTHOGONAL POLYNOMIALS
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Abstract. In this paper we introduce an algebraic theory of classical matrix orthogonal
polynomials as a particular case of the semi-classical ones, defined by a distributional equa-
tion for the corresponding orthogonality functional. This leads to several properties that
characterize the classical matrix families, among them, a structure relation and a second
order differo-differential equation. In the particular case of Hermite type matrix polynomi-
als we obtain all the parameters associated with the family and we prove that they satisfy,
not only a differo-differential equation, but a second order differential one, as it can be
seen in the scalar case.
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§1. Introduction

It is known that the most important and useful families (Pn)n≥0 of orthogonal polynomials (O
P) satisfy a second order differential equation Φ(x)P ′′

n (x) + Ψ(x)P ′
n(x) = λPn(x) being the

polynomial coefficients Φ, Ψ of degree not greater than 2 and 1 respectively. In fact, all the
families that satisfy this property, called classical O P families, are known and have been ex-
haustively studied due to their numerous applications. Among other results, several equivalent
characterizations of these families have already been discovered, such as a structure relation
for the O P or a distributional equation D(uΦ) = uΨ for the corresponding orthogonality
functional u, called Pearson type equation.

As an immediate generalization of the classical families, Shohat started the study of the,
so called, semi-classical O P [12], defined by a Pearson type equation D(uΦ) = uΨ for the
corresponding orthogonality functional u, being Φ, Ψ now polynomials with arbitrary degree.
In [1, 7], it was given another approach to such polynomials, and Maroni presented in [9,
10] an algebraic theory of semi-classical O P which provide them with characterizations that
generalize the known ones for the classical case. In particular, the differential equation for the
classical O P becomes a differo-differential equation in the general semi-classical case.

In the last years, the study of matrix O P has attracted a great interest (see [4, 6, 8]). Durán
proved in [5] that the matrix O P which satisfy a symmetric second order differential equation
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with polynomial coefficients are diagonal (up to a factor) with classical scalar O P in the diag-
onal. In spite of the variety of applications of matrix polynomials [4, 5, 6], there are not too
many known families of matrix O P out of the diagonal case.

One way to study many families of matrix OP is to extend the analysis of differential prop-
erties of matrix O P started by Durán. A natural way to do this is to generalize the theory of
semi-classical scalar O P to the matricial case. In a previous paper (see [2]) we defined the
semi-classical matrix OP by a Pearson type equation for the related matrix functionals, ob-
taining analogous characterizations to the scalar case, among them, a structure relation and a
differo-differential equation (in general, non-symmetric) for the matrix O P.

The following natural step is to define the classical matrix OP as a particular case of the
semi-classical ones when restricting the degrees of the polynomials in the Pearson type equa-
tion. Then, we might obtain what would be the matrix generalizations of the known classical
families of OP: Hermite, Laguerre, Jacobi and Bessel. It would be desirable a deeper study
of the classical matrix families, obtaininig all the related elements for each family, such as the
coefficients of the recurrence relation and the strucutre relation.

Concerning the differo-differential equation and contrary to the scalar case, we will see
that for semi-classical matrix O P it does not trivially becomes a differential equation in the
classical case. Therefore, in spite of the general study of semi-classical matrix O P, it remains
open the problem of finding a characterization of classical matrix O P in terms of a second
order differential equation.

The pourpose of this paper is to study the classical matrix O P as a particular case of the
semi-classical ones. We will see how all the classical matrix families can be reduced to the
Hermite, Laguerre, Jacobi and Bessel type. A detailed analysis of the Hermite family will be
presented, obtaining all the related parameters and also a second order differential equation that
characterizes them. We let for future papers the study of the remaining classical families, (see
[3]).

The paper has been organized as follows: In Section 2 we introduce the basic definitions
and notations and some previous results (see [2]) about semi-classical matrix O P needed to
define and study the classical case. In Section 3 we introduce the classical matrix O P. In it, it
is included the specific study of the Hermite case.

§2. Semi-classical functionals

In the following we shall denote by P(m) the C(m,m)−left-module:

P(m) :=

{
n∑

k=0

αkx
k|αk ∈ C(m,m); n ≥ 0

}

and by means of P(m)′ the C(m,m)-right-module Hom
(
P(m), C(m,m)

)
.

Forall P ∈ P(m) and u ∈ P(m)′ the duality bracket is defined by 〈P, u〉 := u(P ).

For k ≥ 0 and u ∈ P(m)′ the linear functional uxkI ∈ P(m′) is given by

〈P, uxkI〉 := 〈xkP, u〉,

where I denotes the m ×m identity matrix. A linear extension gives the right-product uP ∈
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P(m) for u ∈ P(m)′ , P ∈ P(m), with P (x) =
n∑

k=0

pkx
k, in the following way

〈Q, uP 〉 =
n∑

k=0

〈xkQ, u〉pk.

With this notation we have that if P ∈ P(m) and u ∈ P(m)′ , it is 〈αP, uβ〉 = α〈P, u〉β,
∀α, β ∈ C(m,m).

The inner product associated with u ∈ P(m)′ is defined by

〈P, Q〉u := 〈P, uQ∗〉
where Q∗ denotes the trasposed conjugated of Q. This inner product satisfies

〈αP, Qβ〉u = α〈P, Q〉uβ∗ ∀α, β ∈ C(m,m)

for P, Q ∈ P(m) and u ∈ P(m)′ .
We denote by Ck := 〈xkI, u〉 the k-th moment with respect to u ∈ P(m)′ .
Given u ∈ P(m)′ with moments (Ck)k≥0 , we say that u is quasi-definite (or non-singular)

if det [(Ck+j)
n
k,j=0] �= 0, ∀n ≥ 0, where (Ck+j)

n
k,j=0 is the Hankel-block matrix⎛⎜⎜⎝

C0 C1 . . . Cn

C1 C2 . . . Cn+1

. . . . . . . . . . . .
Cn Cn+1 . . . C2n

⎞⎟⎟⎠ .

Finally, we consider the derivative operator on the space P(m)′ as the linear operator D :
P(m)′ → P(m)′ such that

〈P, Du〉 = −〈P ′, u〉 .
From the latter and the definition of the right-product it is straightforward to prove that

D(uA) = (Du)A + uA′, for all u ∈ P(m)′ and A ∈ P(m). (See [2]).

Remark 1. Given the sequence (Ck)k≥0 ⊂ C(m,m), there exists a unique u ∈ P(m)′ such that
〈xkI, u〉 = Ck. This establishes an isomorphism between P(m)′ and the C(m,m)−right-module

of formal power series with coefficients in C(m,m),

n∑
k=0

Ckx
k.

Definition 1. A functional u ∈ P(m)′ is hermitian if C∗
k = Ck for all k ≥ 0.

Theorem 1. Let u ∈ P(m)′ be quasi-definite. Then there exists a unique (up to non-singular left
matrix factors) sequence of left orthogonal matrix polynomials (Pn)n≥0 with respect to u, that
is:

(i) Pn ∈ P(m), dgPn = n.
(ii) The leading coefficient of Pn is non-singular.
(iii) 〈Pn, Pm〉u = Knδnm, where Kn is non-singular.
This sequence verifies a recurrence relation:

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x)

with P0 ∈ C(m,m) non-singular, P−1 = θ (where θ denotes the zero matrix), and αn, βn,
γn ∈ C(m,m), αn, γn non-singular.
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Proof. See [4, 11]

The last result of this theorem has a converse (Favard’s Theorem): for any sequence (Pn)n≥0

verifying the above recurrence relation there exists a unique (up to factors) quasi-definite func-
tional u so that (Pn)n≥0 is its sequence of matrix orthogonal polynomials (see [4, 11]).

Now, we will introduce the semi-classical character for a functional u ∈ P(m)′ .

Definition 2. Let u ∈ P(m)′ be quasi-definite. We will say that u is semi-classical if there exist
A, B ∈ P(m), with det A �= 0, so that it is verified the distributional equation

D (uA) = uB (1)

called Pearson type equation. We will also say that the corresponding sequence of left orthog-
onal matrix polynomials (Pn)n≥0 is semi-classical.

If u ∈ P(m)′ is semiclassical, for every C ∈ P(m),

D (uAC) = u (AC ′ + BC)

holds. It is just a consequence of the rule for the derivation of the right product. This result
implies that, for every u ∈ P(m)′ , the set

Mu = {A ∈ P(m) | D(uA) = uB, B ∈ P(m)}

is a right-ideal of P(m). However, contrary to the scalar case, it is not necessarily principal
because the euclidian division algorithm is not valid in P(m)′ and, therefore, we cannot useMu

for the classification of semi-classical functionals.
We can solve the classification problem in the following way: If u ∈ P(m)′ is semi-classical

then there exists α ∈ P \ {0} so that αI ∈ Mu (i.e., if D(uA) = uB, just choosing αI =
A(adjA) = (detA)I). Moreover,

M̃u = {α ∈ P | D(uαI) = uB, B ∈ P(m)}

is a bilateral ideal of P that is principal. So, there exists an α ∈ P, unique up non-trivial factors
in C, that is generator of M̃u. We can use the essentially unique generator of this ideal to clasify
the semi-classical matrix functional similarly to the scalar case.

Definition 3. Let u ∈ P(m)′ be semi-classical and let α ∈ P\{0} be a polynomial with smallest
degree such that D(uαI) = uB, B ∈ P(m). Then, we say the class of u is s =max{dgα − 2,
dgB − 1}.

The following theorem provides with characterizations of semi-classical matrix functionals
in terms of structure relations and differo-differential equations of second order.

Theorem 2. Let u ∈ P(m)′ be quasi-definite and let (Pn)n≥0 be the associated sequence of left
orthogonal matrix polynomials. Then, the following statements are equivalent:

(i) u is semi-classical.
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(ii) (Structure relation) There exists a polynomial α ∈ P\{0}with dgα = p, s ≥max{0, p−
2} and Θ

(n)
j ∈ C(m,m) (n ≥ 0,−s ≤ j ≤ p), so that,

α(x)P ′
n+1(x) =

p∑
j=−s

Θ
(n)
j Pn+j(x),

where Θ
(n)
−s �= θ for some n ≥ s (we use the convention Pk = θ for k < 0).

(iii) (Differo-differential equation) There exist two polynomials α, β ∈ P with dgα = p ≥ 0,

dgβ = q and matrices Λ
(n)
k ∈ C(m,m) (n ≥ 0,−s ≤ k ≤ s) , such that,

α(x)P ′′
n (x) + β(x)P ′

n(x) =
s∑

k=−s

Λ
(n)
k Pn+k(x),

where s ≥max{p− 2, q − 1} (we use the convention Pk = θ for k < 0).

Proof. See [2].

§3. Classical Hermite type matrix polynomials

We will define the classical functionals anagously to the scalar case.

Definition 4. We will say that u ∈ P(m)′ is classical if it is semi-classical and its class is s = 0.

Let us suppose a classical functional u ∈ P(m)′ , that is, satisfying a Pearson type equation,

D (uαI) = uB, α ∈ P\{0}, B ∈ P(m), (2)

with dgα ≤ 2 and dgB ≤ 1. We will write

B(x) = B1x + B0, B0, B1 ∈ P(m).

Taking into account the different posibilities for the degree and the roots of α, we get that
every classical functional of P(m)′ belongs, up to afine transformations of x, to one of the
following “canonical” types:

� Hermite: α = 1
� Laguerre: α = x
� Bessel: α = x2

� Jacobi: α = x2 − 1
The study of classical matrix orthogonal polynomials implies the analysis of the functionals

and polynomials that belong to each canonical type, obtaining the related parameters like the
coefficients of the recurrence and the structure relations.

Notice that Theorem 2 does not ensure that the classical matrix orthogonal polynomials
satisfy a second order differential equation, since Λ

(n)
k can be different from zero for k �= 0

in the differo-differential equation. Thus, apart from the previous work, it remains open a
question: do the classical matrix orthogonal polynomials satisfy a second order differential
equation?

We will solve above problems for the Hermite case.
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In what follows (Pn)n≥0 will be the sequence of monic orthogonal matrix polynomials
related to the quasi-definite functional u. We will normalize this functional by means of <
I, u >= C0 = I . We will also use the notation

En = 〈Pn, Pn〉u

Pn(x) = xn + πnxn−1 + . . .

Hermite Matrix Polynomials

The corresponding distributional equation is

Du = u (B1x + B0) , B = B1x + B0,

which means that
< (xk)′, u >= − < xk, uB >, k ≥ 0.

This condition is equivalent to the following relation between the moments

Ck+1B1 + CkB0 + kCk−1 = 0, k ≥ 1 (3)

C1B1 + B0 = 0, k = 0. (4)

Hence, C1 = −B0B
−1
1 because B1 is a non-singular matrix since

E1B1 =< P1, uB >= − < P ′
1, u >= −I.

Taking into account that 〈P1, u〉 = 〈P1, P0〉u = 0, we get for P1(x) = xI + π1 that

π1 = −C1 = B0B
−1
1 .

As a consequence, π1 is non-singular too.
Notice that, for 0 ≤ k ≤ n− 2

0 = 〈Pn(x)xk, uB(x)〉 = −k〈Pn(x)xk−1, u〉 − 〈P ′
n(x)xk, u〉 = −〈P ′

n(x), xk〉u

and thus, the structure relation for these polynomials is

P ′
n = nPn−1.

Therefore, identifiying coefficients we get that nπn−1 = (n− 1)πn.
The recurrence relation is

xPn(x) = γnPn−1(x) + βnPn(x) + Pn+1(x).

So, we have the relations

γn = EnE−1
n−1, βn = πn − πn+1.

By substituting the expresion for the polynomial P ′
n given by the structure relation in the

recurrence relation we obtain,

xPn(x) =
γn

n
P ′

n(x) + βnPn(x) + Pn+1(x)
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and, derivating,

xP ′
n(x) + Pn(x) =

γn

n
P ′′

n (x) + βnP ′
n(x) + (n + 1)Pn(x).

Therefore,
γn

n
P ′′

n (x)− (xI − βn)P ′
n(x) + nPn(x) = 0

is the second order differential equation for the Hermite type polynomials. We can obtain the
coefficientes γn, using the structure relation to get that

EnB1 = 〈Pn(x)xn−1, uB(x)〉 = −(n− 1)〈Pn(x)xn−2, u〉 − 〈P ′
n(x)xn−1, u〉 = −nEn−1

which implies En = −nEn−1B
−1
1 and, together with E0 = I, gives

En = (−1)nn!B−n
1 .

So,
γn = −nB−1

1 .

Besides, from the relations, (n− 1)πn = nπn−1 and π1 = B0B
−1
1 we find that

πn = nπ1 = nB0B
−1
1

and, as a consequence,
βn = −B0B

−1
1 .

Finally, the differential equation is

P ′′
n (x) +

(
B1x + B1B0B

−1
1

)
P ′

n(x)− nB1Pn(x) = 0.

Using the orthogonal polynomials Qn := B−1
1 Pn, we can write the differential equation

and recurrence relation in the following way

Q′′
n(x) + (B1x + B0) Q′

n(x)− nB1Qn(x) = 0,

B1Qn+1(x) = (B1x + B0)Qn(x) + nQn−1(x).

Concerning the inverse problem, notice that, for any B0, B1 ∈ C(m,m) with B1 non-singular,
relations (3) and (4) define the moments of a functional u satisfying a Pearson type equation
Du = u(B1x + B0). It can be also proved that the non-singularity of B1 ensures that the
functional u is quasi-definite. Therefore, each choice of B0, B1 ∈ C(m,m), B1 non-singular,
determines a unique sequence (up to non-singular left factors) of Hermite matrix polynomials.
This sequence provides a matrix solution Qn of the recurrence relation

B1yn+1 = (B1x + B0)yn + nyn−1, n ≥ 0, (5)

y−1 = θ,

being the rest of them yn = QnKn, Kn ∈ C(m,m). The polynomial solutions of the differential
equations

y′′
n + (B1x + B0)y

′
n − nB1yn = 0, n ≥ 0, (6)

have the same form because they have a unique matrix polynomial solution of degree n up
to right factors. Hence, the Hermite polynomials Qn are the essentially unique polynomial
solutions of (5) and (6) and, thus, any of them characterizes the Hermite matrix polynomials.
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