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LINEAR ELASTICITY MODELLING OF THE

BEHAVIOUR OF A PRE-STRESSED

MATERIAL

R. Luce, C. Poutous and J.M. Thomas

Abstract. In order to study the behavior of the outer envelop of an airship with great
payloads, we have to modelize the behaviour of an inflated material structure. Indeed, the
envelop is made of a succession of independant longitudinal lobes. Each lobe is made
of two rectangular pieces of material stuck on their lengths and widths to the metallic
armature of the airship. The inner volume thus obtained is inflated with a perfect gas so
as to pre-stress the whole structure. The expected result is to stabilize the geometry of the
airship in case of wind, shocks, impacts, turbulences ... and to protect the Helium envelops
which are inside. Assuming that the problem is stationnary, that the material is orthotropic,
that the outer disturbances are known and that the inner pressure is uniform, we modelize
in 3D this fluid-structure interaction problem and we prove the existence and uniqueness
of the solution. We explicitely calculate the pre-stress.

§1. Modelling

1.1. Description of one lobe

One lobe is made of two pieces of material. When required the upper layer has the exponent
+ and the lower layer the exponent −. Their length L is very large compared to the width 2l
which is also very large compared to the thickness e.
Let Ω+ be the connex bounded open set occupied by the upper material, Ω− the connex bounded
open set occupied by the lower material, and Ω = Ω+ ∪Ω−, let Γ be the outer free surface and
γ be the inner free surface, let Γ0 be the surface of the thickness in the length and γ0 the surface
of the thickness in the width.

1.2. Assumptions on the materials

The materials are supposed to be elastic and orthotropic. They are modelled in 3D even
though one dimension is very small compared to the other ones. The symmetric elasticity
tensor, expressed in the axes of orthotropy is A = (aijkl)1≤ijkl≤3 where aijkl = λikδijδkl +
µij (δikδjl + δilδjk) . From now on, the directions of orthotropy are indiced with s, r, z or 1, 2, 3
so that for example, λ23 = λrz. One necessary condition of isotherm stability [Salençon] is that
the quadratic form e �−→ A : e : e is positive definite when restricted to space of symmetric
tensors.
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Figure 1: Notations

1.3. Mechanical assumptions

1.3.1. Three states of equilibrium

First of all, we assume the existence of a quasi naturel state of equilibrium. This state is
physically obtained just before the material stretches when inflating the lobe. In this unstable
state, the stress tensor can be neglected compared to the constants of elasticity and the variables
have a q exponent.

When this unstable state is reached, the next step is to increase the inflating pressure so
as to get a stable state of equilibrium. Each state thus obtained is a pre-stressed state of
equilibrium where the inner forces depend on the inflating pressure. The variables of this state
have a p exponent. The displacement to get it from the quasi natural state is uq.

Then, the airship is subjected to an outer (known) perturbance. Its shape is deformed.
the corresponding displacement of the material is u. The variables of this deformed state of
equilibrium have no exponent.

1.3.2. Linearized elasticity

Because of the expected result of the pre-stress, we admit that the displacement and the dis-
placement gradient are small. Then, according to [Salençon], the Cauchy stress tensor and the
Piola-Kirchoff tensors can be taken one for the other in the equations of equilibrium, whereas,
in the behaviour law of an elastic orthotropic material, the linearized strain tensor can replaced
by the Green-Lagrange deformation tensor, [Duvaut]. So,

Σ = A :
1

2

(
∇u +∇uT

)
+ Σp and Σp = A :

1

2

(
∇uq +∇uqT

)
+ Σq (1)
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and⎧⎨⎩
−div (Σq) = ρg in Ωq

Σqn = −Pn on Γq

Σqn = −πqn on γq

⎧⎨⎩
−div (Σp) = ρg in Ωp (Ωq)
Σpn = −Pn on Γp (Γq)
Σpn = −πpn on γp (γq)

⎧⎨⎩
−div (Σ) = ρg in Ωp

Σn = −Pn + δF on Γp

Σn = −(πp + δπ)n on γp

(2)
where n is the outer normal unit vector, ρ the volumic mass of the material, P the outer

uniform pressure, πq the inner uniform pressure, πp the inflating uniform pressure, δF is an
outer perturbation and δπ the resulting variation of inner pressure.

1.4. Relation between the inner pressure and the shape of a lobe

The inflating fluid is a perfect gas so πp = −nRT
V

np
ext in the pre-stressed configuration. A

perturbation causes the displacement u of the envelop and the variation δV of the inner volume.
Assuming it remains uniform, the inner pressure becomes πp + δπ = − nRT

V +δV
next. Since the

small perturbations assumptions are fulfilled we can suppose that the outer unit vectors np
ext

and next merge, so that δπ = −
(

nRT
V +δV

− nRT
V

)
np

ext.

After a first order Taylor’s development in
δV

V
we get δπ � − δV

V
πp. The variation of vol-

ume and the displacement are linked by δV = −
∫

γp
u.np

extdγ so, in the end,

δπ = −πp

V

(∫
γp

u.np
extdγ

)
np

ext

1.5. Formulation of the perturbed problem

We suppose that the pre-stressed state is known (shape and stress) and we choose it as the
reference state for the calculus. The outer perturbation δF is also supposed to be known and
we want to calculate the resulting shape and stress. They are determined by the displacement
u. To calculate it, we suppose that the small perturbation assumptions are fulfilled and that the
fixation of the material on the structure can be modeled by u = 0 on Γ0 ∪ γ0.

From (2) we deduce ⎧⎨⎩
−div (Σ−Σp) = 0 in Ωp

(Σ−Σp)n = δF on Γp

(Σ−Σp)n = −δπn on γp

Because of (1) and because of the boundary conditions we are led to study the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div
(
A :1

2

(
∇u +∇uT

))
= 0 in Ωp(

A :1
2

(
∇u +∇uT

))
n = δF on Γp(

A :1
2

(
∇u +∇uT

))
n = −πp

V

(∫
γp u.ndγ

)
n on γp

u = 0 on Γ0 ∪ γ0

(3)

§2. Existence and uniqueness

2.1. Variational formulation

Let V = {u ∈ H1 (Ωp) , u = 0 on Γ0 ∪ γ0}
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With the classical techniques, we can establish that the problem (3) is equivalent to the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ V , ∀v ∈ V∫

Ωp −div
(
A : 1

2

(
∇u +∇uT

))
vdΩp = 0∫

Γp

(
A : 1

2

(
∇u +∇uT

))
n.vdΓ =

∫
Γp δF.vdΓ∫

γp

(
A : 1

2

(
∇u +∇uT

))
n.vdγ = −

∫
γp

πp

V

(∫
γp u.ndγ

)
n.vdγ

At this stage we use a Green’s formula. Then, we let∫
Ωp

(
A :1

2

(
∇u +∇uT

)
: 1

2

(
∇v +∇vT

))
dΩp = b (u,v) . Because of the symmetry of the

tensor
A : 1

2

(
∇u +∇uT

)
we have b (u,v) =

∫
Ωp

(
A :1

2

(
∇u +∇uT

)
: ∇v
)
dΩp.

So, taking account of the boundary conditions the previous problem becomes{
u ∈ V , ∀v ∈ V
b (u,v) +

πp

V

(∫
γp v.ndγ

)(∫
γp u.ndγ

)
=
∫

Γp δF.vdΓ

2.2. Study of the solution

Theorem 1. The mapping from V into R thus defined

u �−→
(∫

Ωp

(
A :1

2

(
∇u +∇uT

)
: 1

2

(
∇u +∇uT

))
dΩp

) 1
2

is a norm on V , noted ‖ ‖A .

Proof. The positive symmetric bilinear form on V ×V b (u,v) verifies
b (u,u) = 0 =⇒ 1

2

(
∇u +∇uT

)
= 0. Moreover, because of the boundary condition u = 0 on

Γ0 ∪ γ0, we can prove that 1
2

(
∇u +∇uT

)
= 0 =⇒ u = 0.

Theorem 2. The norms ‖ ‖A and | |1,Ωp
are equivalent on V .

Proof. Same pattern as the proof of the Korn’s inequality given in [Duvaut-Lions].

Theorem 3. Existence and uniqueness of u ∈ V solution of ∀v ∈ V , a (u,v) = l (v) with

a (u,v) = b (u,v) +
πp

V

(∫
γp v.ndγ

)(∫
γp u.ndγ

)
and l (v) =

∫
Γp δF.vdΓ

Proof. We check the Lax-Milgram assumptions

-
(
V , | |1,Ωp

)
Hilbert

- l is a linear mapping continuous because of the continuity of partial trace operator on Γp

- a is a bilinear continuous positive V-elliptic mapping because the norms | |1,Ωp and ‖ ‖A are
equivalent on V .

2.3. Conclusion

As a conclusion, with a 3D elasticity modelling we have established the existence and unique-
ness of the displacement caused by an outer disturbance. But since the cost of a 3D mesh is
numerically very high, we want to mesh only the inner surface of the lobe. In order to do that
we choose to model the displacement so as to integrate it in the thickness. That way, we expect
to get rid of the thickness parameter. To have a reallistic model of displacement we solve ex-
plicitly the pre-stressed problem, and from the expression of explicit pre-stressed displacement
we make a conjecture on the displacement.
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§3. Study of the pre-stressed state

3.1. Curvilinear and differential calculus

3.1.1. Cartesian set of coordinates

We associate to each lobe the Cartesian orthonormal basis (O, e1, e2, e3) such as the Cartesian
representation of the lateral fixations are {−d} × {0} × {0 ≤ x3 ≤ L} and {+d} × {0} ×
{0 ≤ x3 ≤ L} where 2d is the distance between the two parallel axes of fixation.

3.1.2. Orthotropic set of coordinates

At a generic point of the material, we want the coefficients of the matrix representing the
elasticity tensor to be independent of the shape of the material. To manage that, we write the
matrix in a basis of orthotropy. That is, a basis with one vector in the width, one in the thickness
and one in the length.

Let M(xM1, xM2, xM3) be a generic point of Ω, let PM be the perpendicular plane to e3

going through M. Let CM = γ∩ PM and x2 = f(x1), x3 = xM3 be the equations of γ. Let
M⊥(x⊥

M1, x
⊥
M2, xM3) be the orthogonal projection of M onto CM and tM and nM be the tangent

and normal unit vectors to CM in M⊥. Let RM⊥ be the curvature radius in M⊥ of CM . Then,

tM =

⎛⎜⎜⎜⎜⎝
−f ′(x⊥

M1)√
1 + (f ′(x⊥

M1))
2

1√
1 + (f ′(x⊥

M1))
2

0

⎞⎟⎟⎟⎟⎠ and nM =

⎛⎜⎜⎜⎜⎝
1√

1 + (f ′(x⊥
M1))

2

f ′(x⊥
M1)√

1 + (f ′(x⊥
M1))

2

0

⎞⎟⎟⎟⎟⎠
The orthotropy basis in M is (tM ,nM , e3) .

The orthotropic set of coordinates of M is (s, r, z) thus defined, s =
∫ x⊥

M1

0
f(x1)dx1 is the

curvilinear abscissa of M⊥ along CM , r is the abscissa of M on the oriented axis (M⊥,nM) ,
that is M⊥M = rnM and rRM⊥ ≤ 0, and z is xM3.

3.1.3. Partial derivatives operators

Let u = ustM + urnM + uze3 , the displacement gradient tensor matrix in M , (∇u) (M) in
the orthotropy basis (tM ,nM , e3) is

(∇u) (M) =

⎡⎢⎢⎢⎢⎢⎣
RM⊥

RM⊥ − r

∂us

∂s
− 1

RM⊥ − r
ur

∂us

∂r

∂us

∂z
RM⊥

RM⊥ − r

∂ur

∂s
+

1

RM⊥ − r
us

∂ur

∂r

∂ur

∂z
RM⊥

RM⊥ − r

∂uz

∂s

∂uz

∂r

∂uz

∂z

⎤⎥⎥⎥⎥⎥⎦ . (4)
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Let Σ =

⎡⎣ Σss Σsr Σsz

Σrs Σrr Σrz

Σzs Σzr Σzz

⎤⎦ in (tM ,nM , e3) , then the orthotropic coordinates of the vector

div(Σ) in M are

⎛⎝ div(Σ)s

div(Σ)r

div(Σ)z

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
RM⊥

RM⊥ − r

∂Σss

∂s
+

∂Σsr

∂r
+

∂Σsz

∂z
− 1

RM⊥ − r
(Σsr + Σrs)

RM⊥

RM⊥ − r

∂Σrs

∂s
+

∂Σrr

∂r
+

∂Σrz

∂z
+

1

RM⊥ − r
(Σss − Σrr)

RM⊥

RM⊥ − r

∂Σzs

∂s
+

∂Σzr

∂r
+

∂Σzz

∂z
− 1

RM⊥ − r
Σzr

⎞⎟⎟⎟⎟⎟⎠ (5)

3.2. Description of the quasi natural state

We want to know the shape of an object made of two sheets of material, fixed along their lengths
to rigid metallic axes, when slowly inflated. Since the length is very large, we will suppose that
it is infinite. Then, we assume that the inner fluids tends to occupy the maximum volume. So
we have to solve a classical problem of optimization under constraint : find f such as{

∀g ∈ C1 [−d, +d] ,
∫ +d

−d
g(x1)dx1 ≤

∫ +d

−d
f(x1)dx1 = A(f)

L(f) =
∫ +d

−d

√
1 + (f ′(x1))2dx1 = 2l

This problem has two solutions (f+, λ) et (f−, λ) . Their representing curbs (two arcs of
circle) are symmetric in relation to (O, e1) . The radius of the circles is λ solution of

l = λArc sin(
d

λ
)

So, in the quasi natural state, each lobe is a cylinder. The generating surface is the intersec-
tion of two disks of radius R symmetrical in relation to (O, e1) .

3.3. Pre-stressed problem

We assume that

Σq << Σp and Σp (s, r, z) = Σp (r) , (6)

As established in the quasi natural state study, the curvature radius Rq is constant. Let R =
|Rq| .

From (2) written in the reference quasi natural state, and because of (6) we have to solve⎧⎨⎩
div (Σp) = 0 in Ωq

Σpn = 0 on Γq ie r = − R
Rq e

Σpn = (πq − πp)n on γq ie r = 0
.
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Let Π = πp − πq. We use (5) to transform these equations into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Σp
sr

∂r
− 2

Rq − r
Σp

sr = 0

∂Σp
rr

∂r
+

1

Rq − r
(Σp

ss − Σp
rr) = 0

∂Σp
zr

∂r
− 1

Rq − r
Σp

zr = 0

Σp
sr

(
− R

Rq e
)

= Σp
rr

(
− R

Rq e
)

= Σp
sr (0) = 0

Σp
rr (0) = −Π

From the first and the third equations and because of the fourth we can state

Σp
sr (r) = Σp

zr (r) = 0. (7)

Let’s now introduce the displacement uq. The problem to solve becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Σp (r) = A : 1
2

(
∇uq +∇uqT

)
∂Σp

rr

∂r
+

1

Rq − r
(Σp

ss − Σp
rr) = 0

Σp
rr

(
− R

Rq e
)

= 0
Σp

rr (0) = −Π
uq (l, 0, z) = uq (−l, 0, z) = 0

Taking account of (4) the first equation is equivalent to the three following ones

Σp
ss = λss

(
Rq

Rq − r

∂uq
s

∂s
− 1

Rq − r
uq

r

)
+ λsr

∂uq
r

∂r
(8)

Σp
rr = λsr

(
Rq

Rq − r

∂uq
s

∂s
− 1

Rq − r
uq

r

)
+ λrr

∂uq
r

∂r
(9)

Σp
sr = µsr

(
Rq

Rq − r

∂uq
r

∂s
+

1

Rq − r
uq

s +
∂uq

s

∂r

)
(10)

We first solve the linear system of 2 equations with 2 variables formed by (8) and (9) . Then
we introduce the auxiliary parameter Ψ (r) = (r −Rq) Σp

rr, which verifies Ψ′ (r) = Σp
ss, and

we let Λ = λssλrr − λ2
sr, so that

∂uq
r

∂r
= − 1

Λ

(
λsrΨ

′ + λss
1

Rq − r
Ψ

)
(11)

Rq

Rq − r

∂uq
s

∂s
− 1

Rq − r
uq

r =
1

Λ

(
λrrΨ

′ + λsr
1

Rq − r
Ψ

)
(12)

Taking in account (7) and dividing (10) by Rq − r, we get

∂

∂r

(
1

Rq − r
uq

s

)
= − Rq

(Rq − r)2

∂uq
r

∂s
(13)

We derivate (11) to get
∂2uq

r

∂r∂s
= 0. So, we can deduce the existence of 2 mappings f and g

such as
uq

r = f (s) + g (r) . (14)
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and, replacing into (13), the existence of a mapping h such as

uq
s = −Rqf ′ (s) + (Rq − r) h (s) (15)

so, with (12) we get

− (Rq)2 f ′′ (s)−f (s)+Rq (Rq − r) h′ (s)−g (r) =
1

Λ
(λrr (Rq − r) Ψ′ (r) + λsrΨ (r)) (16)

so, we can state the existence of two constants F and H such as R2f ′′ (s) + f (s) = F and
h′ (s) = H. The solutions of these differential equations are f (s) = a cos

(
s
R

)
+F and h (s) =

Hs. The next step is to derivate (16) . We obtain

−RqH − g′ (r) =
1

Λ
((λsr − λrr) Ψ′ (r) + λrr (Rq − r) Ψ′′ (r))

but, since, according to (11) , g′ (r) = − 1

Λ

(
λsrΨ

′ (r) + λss
1

Rq − r
Ψ (r)

)
, we are led to solve

the following second order differential equation

−λrr (Rq − r) Ψ′′ (r) + λrrΨ
′ (r) + λss

1

Rq − r
Ψ (r) = RqHΛ

Let α− and α+ be two undetermined constants. Let λ =
√

λss

λrr
and H1 = − RqHΛ

λss − λrr

. The

general solution of the previous equation is

Ψ (r) = α− |Rq − r|−λ + α+ |Rq − r|+λ −H1 (Rq − r) .

We can now calculate g :

Since, according to (16) ,−g (r) =
1

Λ
(λrr (Rq − r) Ψ′ (r) + λsrΨ (r))+F−Rq (Rq − r) H,

then, if we let Λ− =
√

λssλrr − λsr and Λ+ =
√

λssλrr + λsr (so that Λ = Λ+Λ−) we have

g (r) = −α−

Λ− |R
q − r|−λ +

α+

Λ+
|Rq − r|+λ −

(
λss−λsr

Λ

)
H1 (Rq − r)− F.

Replacing into (14) and (15) , we get the radial and the tangential displacement⎧⎨⎩ uq
r = a cos

( s

R

)
−
(

λss−λsr

Λ

)
H1 (Rq − r)− α−

Λ− |R
q − r|−λ +

α+

Λ+
|Rq − r|+λ

uq
s = a sin

( s

Rq

)
+ (Rq − r) Hs

(17)

3.3.1. Calculus of the constants

We can explicitly calculate the constants α−, α+, a and H with the boundary conditions

Σp
rr

(
− R

Rq e
)

=
1(

− R
Rq e−Rq

)Ψ (− R
Rq e
)

= 0

Σq
rr (0) =

1

(−Rq)
Ψ (0) = (πq − πp)

uq (l, 0, z) = uq (−l, 0, z) = 0
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3.3.2. Taylor’s developments in O
( e

R

)
of the constants

H1 �
−Π(

1− l
R

cot
(

l
R

))
(λ2 − 1)

(
R

e
+

λsr

λrr

− 1

)
H � Πλrr

RqΛ
(
1− l

R
cot
(

l
R

)) (R

e
+

λsr

λrr

− 1

)
a � − lΠλrr

Λ
(
sin
(

l
Rq

)
− l

Rq cos
(

l
R

)) (R

e
+

λsr

λrr

− 1

)
α− � −ΠR+λRq

2λ

(
−
(

R

e
+ λ

)
+

R
e

+ λsr

λrr
− 1(

1− l
R

cot
(

l
R

))
(λ + 1)

)

α+ � −R−λRqΠ

2λ

((
R

e
− λ

)
+

R
e

+ λsr

λrr
− 1(

1− l
R

cot
(

l
R

))
(λ− 1)

)

3.3.3. Taylor’s development in O
( r

Rq

)
of Σq

ss

From the development of Σp
ss (r) = Ψ′ (r) we obtain Σp

ss (r) =
ΠR

e
+ O
( r

Rq

)
.

3.3.4. Geometry of the pre-stressed state

We want to calculate an approximation of the equations of γp. In order to do that, we write
that a generic point M q (s, 0, z) of γq becomes, after the deformation, Mp, such as MqMp =
uq (s, 0, z) . First of all, let’s evaluate uq (s, 0, z) . When r = 0, (17) becomes⎧⎨⎩ uq

r (s, 0, z) = a cos
( s

R

)
−
(

λss−λsr

Λ

)
H1R

q − α−

Λ−R−λ +
α+

Λ+
R+λ

uq
s (s, 0, z) = a sin

( s

Rq

)
+ RqHs

and at the extremities we have⎧⎪⎪⎨⎪⎪⎩
uq

r (l, 0, z) = a cos

(
l

R

)
−
(

λss−λsr

Λ

)
H1R

q − α−

Λ−R−λ +
α+

Λ+
R+λ = 0

uq
s (l, 0, z) = a sin

(
l

Rq

)
+ RqHl = 0

so the displacement at a generic point of γq is⎧⎪⎪⎨⎪⎪⎩
uq

r (s, 0, z) = a cos
( s

R

)
− a cos

(
l

R

)
uq

s (s, 0, z) = a sin
( s

Rq

)
− a

s

l
sin

(
l

Rq

)
The Cartesian coordinates of M q ∈ γq+ are⎧⎨⎩ xq = R sin

( s

R

)
yq = R cos

( s

R

)
+ y+

0

and those of Mp are⎧⎨⎩ xp = R sin
( s

R

)
+ uq

s (s, 0, z) cos
( s

R

)
+ uq

r (s, 0, z) sin
( s

R

)
yp = R cos

( s

R

)
− uq

s (s, 0, z) sin
( s

R

)
+ uq

r (s, 0, z) cos
( s

R

)
+ y+

0

.

Since on γq+, Rq = −R, then,
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⎧⎪⎪⎨⎪⎪⎩
xp = a

s

l
sin

(
l

R

)
cos
( s

R

)
+

(
R− a cos

(
l

R

))
sin
( s

R

)
yp = R cos

( s

R

)
+ a− a

s

l
sin

(
l

R

)
sin
( s

R

)
− a cos

(
l

R

)
cos
( s

R

)
+ y+

0

.

We notice that (xp)2 +
(
yp − y+

0 − a
)2

= a2
(s

l

)2
sin2

(
l

R

)
+

(
R− a cos

(
l

R

))2

.

Identifying sin2

(
l

R

)
�
(

l

R

)2

we get

(xp)2 +
(
yp − y+

0 − a
)2

=

(
R− a cos

(
l

R

))2

+ O

(( s

R

)2)
So, we can admit that the pre-stressed inner surface is also constituted by two arcs of circle.

The new radius is (Rp)2 =

(
R− a cos

(
l

R

))2

which is smaller than Rq.

§4. Conclusion

From the explicit displacement obtained in (17) , we can conjecture that the general displace-
ment of a generic point is⎧⎨⎩

us (s, r, z) = u0
s (s, z) + (Rq − r) u1

s (s, z)

ur (s, r, z) = u0
r (s, z) + (Rq − r) u1

r (s, z) + |Rq − r|−λ u−
r (s, z) + |Rq − r|+λ u+

r (s, z)
uz (s, r, z) = u0

z (s, z)

then, in order to solve a 2D problem, we can replace u in the variationnal formulation and
integrate in the thickness.
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