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TURBULENCE MODELING CHALLENGES IN

AIRSHIP CFD STUDIES

Kamal El Omari, Eric Schall,
Bruno Koobus and Alain Dervieux

Abstract. Turbulent separated flows around an airship-like geometry (a prolate spheroid
6:1) are investigated using three turbulence modelings based on statistical and Large Eddy
Simulation (LES) approaches. The turbulence models used in the simulations are a stan-
dard high Reynolds k–ε model, a Smagorinsky LES model and a variational multiscale
LES one. The flow of interest is characterized by a relatively low Mach number (Mach =
0.15), an angle of attack set to 20◦ and a Reynolds number fixed to 4 × 104. The three-
dimensional compressible Navier-Stokes equations equipped with the previous turbulent
models are discretized by a mixed finite element/finite volume method. The simulations
show that the primary longitudinal vortex is predicted by the three models, but only the
VMS-LES model predicts a secondary vortical flow structure that is observed in experi-
mental studies.
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§1. Introduction

In the context of an airship development program, we consider the numerical study of the flow
around a flying generic airship. We are specially interested in flows involving rather large
angle of attack around three-dimensional smooth bodies and in the phenomena induced by
such flows, like separation-induced turbulent vortices. Problems involving flow separation in
three-dimensional configurations is a very challenging topic in fluid dynamics research.

The investigated geometry is a prolate spheroid. It represents the closest shape to an airship
geometry that can be found in the literature.

Two-equations statistical models are designed for providing steady mean flow fields. They
generally rely on a Boussinesq turbulent viscosity. But this viscosity may be too large and may
damp important steady and unsteady vortical flow structures. Non-equilibrium flows, as those
arising close to leading edge at high angle of attack, are generally not accurately modeled. Our
study starts with a set of results obtained with a standard two-equations model (k−ε) combined
with the Reichardt wall law.

In contrast to statistical models, LES ones are designed to the numerical simulation of the
smallest details with respect to the grid size. Two LES models are applied to the calculation
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of this low-Reynolds flow: a Smagorinsky model which has been already applied with the
same numerics in previous studies [1], and a variational multiscale model [2][3] which has the
advantage to bring modeling only to the finest resolvable scales.

§2. Turbulence modelings

2.1. The k − ε two-equations turbulence model

The compressible Reynolds averaged Navier-Stokes (RANS) equations are expressed as fol-
lows (in a two-dimensional form for sake of briefness, the three-dimensional expression is
straightforward):

∂W
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+∇.F(W ) = ∇.R(W ) where W = (ρ, ρv1, ρv2, E)T (1)
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The closure of system (1) is achieved here by a two-equation high Reynolds k − ε model

governed by the following equations
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P is the turbulent energy production. The turbulent Reynolds number Rt is obtained from the
eddy viscosity µt:

1

Rt

= µt = cµ
ρk2

ε
,

and the closure coefficients σk, σε, cε1, cε2 and cµ are set to their standard values:

σk = 1.0 ; σε = 1.3 ; cε1 = 1.44 ; cε2 = 1.92 ; cµ = 0.09 .

2.2. Large Eddy Simulation with Smagorinsky model

LES models are based on a spatial filtering of the Navier-stokes equations with respect to a
filter width ∆. Only the large scales corresponding to the filtered flow variables are directly
simulated, and modeling is introduced to take into account the effect of the unresolved subgrid
scales on these large scales. In this study, the well known Smagorinsky model is used.

The filtered field of a quantity f in a given space domain D is obtained by convolution with
a filter function G∆(x) and is defined by

f(x, t) =

∫
D

f(y, t)G∆(x− y)dy (2)

This quantity can then be written as f = f + f ′ where f ′ is the fluctuations of this function at
scales smaller than the filter width ∆.
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In addition, for compressible flows, a density-weighted filter (Favre filter) is introduced as

f̃ =
ρf

ρ
. The filtered Navier-Stokes equations become after the application of Smagorinsky

modeling:
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∂(ρ̄ũiũj)

∂xj

= − ∂Π

∂xj

+
∂
[
(µ + µt)

(
2S̃ij − 2

3
S̃iiδij

)]
∂xj

(4)

∂(ρ̄ẽ)
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and the constitutive equations are
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where µt is the eddy viscosity introduced by the Smagorinsky model (Eq. 6). The complete
definition of µt needs the definition of the filter width ∆ and the Smagorinsky constant Cs. This
constant is set to 0.18 and the filter width associated to a tetrahedron Tj is defined by

∆j = 3

√
V ol(Tj). (7)

The details of the derivation of the previous equations can be found in [4].

2.3. The Variational Multiscale modeling of turbulence

Unlike the classical LES approach, the variational multiscale LES (VMS-LES) model is not
based on a spatial filtering of the Navier-Stokes equations but on a variational projection of
these equations on a coarse-scales space and a fine-scales space [2]. The VMS-LES method
separates the scales a priori, that is before the simulation is started. Furthermore, the VMS-
LES method models the effects of the unresolved scales only in the equations governing the
finest resolved scales and not on the equations governing the whole resolved scales as the LES
method does.

Let Ω be the flow domain discretized by a tetrahedral mesh, from which a dual finite-
volume mesh is derived [6]. Convective fluxes are treated here by a finite volume method in
which a variable w is approximated first by a constant in each control volume as w =

∑
i wiXi,

where Xi is the characteristic function corresponding to the control volume Ci associated with
node i, and wi denotes the constant value of w in this control volume. Next, this first-order
approximation is transformed into a higher-order spatial discretization by a MUSCL approach
[5]. The diffusive fluxes are treated by a finite-element method in which a flow variable w is
approximated by a continuous piecewise linear function. This can be written as w =

∑
i wiΦi,

where Φi is the P1 shape function associated with node i, and wi denotes the value of w at this
node.
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The semi-discretization of the compressible Navier-Stokes equations by the mixed element
volume method with mass lumping leads to the following system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where W = (ρ,u, T )T and ∂SupXi denotes the boundary of the support of Xi, and n is the
outward normal to this support.

Let VFV and VFE denote respectively the space spanned by the the characteristic functions
{Xk}, and that spanned by the P1 shape functions {Φk}. In order to separate a priori the coarse
and fine scales, these spaces are decomposed as follows

VFV = VFV ⊕ V ′
FV , VFE = VFE ⊕ V ′

FE. (9)

Here the overline refers to the coarse scales, and the ′ superscript to the fine scales. Hence,
consistently with Eqs. (9), W is decomposed into a coarse scale component W and a fine scale
part W′ as W = W + W′. This decomposition relies on coarse finite-volume cells which are
built by agglomeration of a small number of fine dual control volumes.
>From this decomposition, the problem (8) is transformed into the two following subproblems

⎧⎨⎩
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′
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(10)

Without giving the details of the model derivation – that the reader can find in [3] –, we
can say that this decomposition gives two sets of equations, one governing the coarse resolved
scales and the other one the fine resolved scales. These sets of equations are coupled. Some
terms that appear in the fine resolved scales equations require some modeling (unless all scales
are resolved by means of DNS). This is achieved through a compressible generalized Smagorin-
sky eddy viscosity model involving only the fine resolved scales. Then, the final form of these
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equations writes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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s = 0.1 and ∆′ denotes the local grid size. In this work, ∆′ has the same definition as in Eq.

(7).

2.4. Wall law

In all the simulations presented in this study, the flow domain is extended only up to a wall
boundary located at a distance δ from the surface of the prolate. In the evaluation of the vis-
cous fluxes, the wall shear stress is computed as τw = ρu2

f where the friction velocity uf is
determined from the non-linear Reichardt’s law

U+
|δ = 2.5 log(1 + 0.41δ+) + 7.8

(
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11
e−0.33δ+

)
(12)

in which
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ν
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.

§3. Numerical issues

As stated before, the spatial discretization of the Navier-Stokes equation is achieved on un-
structured tetrahedral meshes by a mixed element volume formulation (see [9, 8] for details).

• Convective terms are discretized by a finite volume method. Roe’s scheme [7] is used
together with a MUSCL approach [5, 6] to obtain a higher order of spatial accuracy
(second-order was used in the scope of this paper).

• Diffusive fluxes are approximated by a Galerkin method using P1 shape functions.

• Temporal scheme is implicit, second-order accurate.

The computer code is parallelized using a non-overlapping domain decomposition.



Turbulence modeling challenges in airship CFD studies 551

§4. Description of the test-case

Figure 1: View of the mesh in the vertical symmetry plane (left) and zoom of the prolate (right)

We are interested in a flow around a 6:1 prolate spheroid of length L = 1.37 m, at 20o angle
of attack. The flow has the following farfield characteristics

• Mach number M∞ = 0.15 ;

• Reynolds number Re =
V∞L

ν
= 4× 104 ;

• density ρ∞ = 1.1 kg m−3 ;

• pressure p∞ = 101300 Pa ;

The laminar-turbulent transition is fixed at x/L = 0.2.
The three-dimensional unstructured mesh used in the simulations is displayed in Fig. 1.

It contains approximately 160000 nodes and 950000 tetrahedra. The computational domain
dimensions are 7.2 m × 4.8 m × 4.8 m. These dimensions were judged sufficient in previous
numerical studies [10]. The mesh contains, close to the prolate, a pseudo-structured part for
which the first elements height at the prolate surface is less than 7 10−3m. This value corre-
sponds to a y+ that lies between 4 and 23.

§5. Results

Three runs are performed corresponding to the turbulence models presented in this paper. Fig.
2 displays the isovalues of the streamwise velocity obtained with these models in cross-planes
located on the rear part of the prolate. We can notice that the vortices predicted by LES and
VMS-LES models are better captured, and that the VMS-LES calculation shows more flow
details than the LES and RANS models. Indeed, these two last models tend to introduce a too
large amount of turbulent viscosity which damps the turbulent structures.

Fig. 3 depicts the fluid velocity vectors and streamlines in the cross-plane located at x =
1.2 m. It confirms the previous observations, and we also notice that the VMS-LES model
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x = 1.2 m

x = 1 m

RANS LES VMS-LES

Uxmax = 49 ms−1

Figure 2: Streamwise velocity isovalues on cross-planes at x = 1 m and x = 1.2 m

is able to capture a secondary vortex that is not predicted by the two others models. Such
a vortical flow structure is effectively observed by experimental and numerical studies with
higher Reynolds [11, 10].

We have seen that the three models exhibit perceptible differences concerning the longitu-
dinal vortices, but the comparison of the behaviour of pressure at the prolate surface shows that
this quantity remains almost the same, specially on the symmetry line as shown in Fig. 4.

§6. Conclusion

We have investigated the simulation of a low Mach compressible flow around a geometry close
to an airship using three turbulent models based on statistical and LES approaches. With this
geometry, the flow separation is due to adverse pressure gradients in the azimuthal direction
and not to geometry singularities, in contrast to many vortex shedding simulations achieved
with the VMS-LES model in previous works. The study shows that, for flows with high angle
of attack and strong boundary layer separation, low viscosity models like the VMS-LES model,
are more suitable for capturing the main vortical flow structures. With this low Reynolds case,
the three models are not very CPU consuming and of about the same cost. But the use of LES
based models may be prohibitive for high Reynolds number flow calculations. Then a good
compromise would be a blend of VMS-LES and classical RANS models.
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Figure 3: Velocity vectors and streamlines on cross-plane at x = 1.2 m : RANS (top left), LES
(top right), VMS-LES(bottom)

Figure 4: Pressure Coefficient Cp on the prolate surface at z = 0 (left) and at x = 1.2 m (right)
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