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INVISCID FLOW CALCULATION

AROUND A FLEXIBLE AIRSHIP

Kamal El Omari, Eric Schall,
Bruno Koobus and Alain Dervieux

Abstract. In the context of an airship development programme, inviscid flow behavior and
its coupling with structure flexibility are investigated. For this purpose, we have chosen
a nonlinear analysis tool relying on the unsteady Euler model for the flow part and the
classical elastodynamic equations for the structure. The numerical model for the flow
is based on a Mixed Element Volume discretization derived in an Arbitrary-Lagrangian-
Eulerian framework in order to cope with the structural deformations. The case of low-
Mach flows (natural flight regime for an airship) can be handled by a special dissipation
preconditioner which improves the accuracy of the flow simulation. The structural model,
coupled to the flow solver, is discretized by the finite element method in a Lagrangian
formulation. In this work we have performed a series of inviscid flow calculations with
the goal to evaluate accurately the global aerodynamical coefficients. We first compare the
influence of different stiffeners in the airship structural model for flows with zero and non-
zero (20◦) angle of attack. Then, we study the influence of the numerical dissipation and
of the low-Mach preconditioning. We observe –as expected– the stabilizing effect of the
stiffeners, specially longitudinal ones. The positive impact of low Mach preconditioning
and numerical dissipation on the results is also evaluated.

Keywords: Inviscid Flow, Arbitray-Lagrangian-Eulerian, Fluid-Structure Interaction, Un-
structured Deformable Mesh, Prolate Spheroid
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§1. Introduction

The existing projects for airships are generally characterized by two particular Computational
Fluid Dynamics (CFD) features:

• the necessity to be less heavy than air leads to some flexibility of the whole frame,

• this flexibility induces deformations that can be at term amplified by the very unequal
weight repartition (useful load versus lifting volume).
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In the context of an airship development programme, we need to simulate the complete
behavior of an airship in real flow conditions and to take into account the hull deformations
specially for flows with high angle of attack. In the scope of this first study we neglect, as a
first approximation, the effect of fluid viscosity and of the turbulent character of the flow. These
aspects are the subject of an independent study [1]. These simplifications make possible to use
coarser meshes and to run the many calculations required by a parametric study. Hence, we
have chosen a nonlinear analysis tool [2][3][4][5][6][7] relying on the unsteady inviscid Euler
model for the flow part and the classical elastodynamic equations for the structure. The flow
solver is based on a Mixed Element Volume discretization derived in an Arbitrary-Lagrangian-
Eulerian (ALE) framework in order to cope with the structural deformations. The accuracy
of low-Mach flows simulations (natural flight regime for an airship) can be enhanced by a
special dissipation preconditioner (Turkel preconditioner) [8]. The structural model, coupled
to the flow solver, is discretized by the finite element method in a Lagrangian formulation.
In order to perform a generic study at this early stage of our airship development project, we
have chosen to use a generic geometry. Hence, we choose to study a flow around a prolate
spheroid 6 : 1 structure. This geometry is quite close to an airship geometry and has been
widely experimentally studied [9]. The same geometry is also used for our previously cited
viscous turbulent study [1].

§2. Formulation of transient nonlinear aeroelastic problems

The problem of the motion of the fluid/structure interface that occurs in coupled aeroelastic
problems is addressed by solving the fluid equations on deformable dynamic meshes. An Arbi-
trary Lagrangian Eulerian (ALE) formulation is used in order to perform the integration of the
fluid equations on a moving mesh. The coupled aeroelastic problem to be solved can then be
viewed as a three-field problem [3]: the fluid, the structure and the dynamic mesh which is rep-
resented by a pseudo-structural system. The semi-discrete equations governing the three-way
coupled problem can be written as follows

∂

∂t
(V (x, t)w(t)) + F c(w(t), x, ẋ) = R(w(t), x)

M
∂2q

∂t2
+ f int(q) = f ext(w(t), x)

M̃
∂2x

∂t2
+ D̃

∂x

∂t
+ K̃x = Kcq

(1)

where t designates time, x the position of a moving fluid grid point, w is the fluid state vector,
V results from the finite element/volume discretization of the fluid equations, F c is the vector
of convective ALE fluxes, R is the vector of diffusive fluxes, q is the structural displacement
vector, f int denotes the vector of internal forces in the structure, f ext the vector of external
forces, M is the finite element mass matrix of the structure, M̃ , D̃ and K̃ are fictitious mass,
damping and stiffness matrices associated with the moving fluid grid and Kc is a transfer matrix
that describes the action of the motion of the structural side of the fluid/structure interface on
the fluid dynamic mesh.
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§3. Numerical methodology for solving coupled nonlinear aeroelastic
problems

In this section, we give the main features of the numerical methods employed in this work for
solving the coupled nonlinear aeroelastic problem given by Eqs. (1). For more details, the
reader is invited to examine the references given in the text.

3.1. Discretization of transient nonlinear aeroelastic problems

• Spatial discretization

The spatial discretization of the fluid equations is based on a Mixed Element Volume
formulation on unstructured meshes. It combines a Roe’s upwind scheme for computing
the convective fluxes, and a Galerkin centered method for evaluating the viscous terms.
Second-order space accuracy is achieved through a piecewise linear interpolation method
based on the MUSCL (Monotonic Upwind Scheme for Conservation Laws) procedure
[10, 11]. Since we are considering subsonic flows, the shock capturing facilities are
inhibited in the flow solver (“no limiter”). Moreover, in order to obtain a low level of
numerical dissipation, a scalar coefficient γ is used to weight the numerical viscosity
introduced by the Roe’s approximate Riemann solver (L stands for left, and R for right):

Φ(WL, WR, n) = 0.5 (F c(WL) + F c(WR)) · n
− 0.5 γ |J |(WR −WL)

(2)

in which Φ denotes Roe’s numerical flux, n is the normal vector to cell boundary and J
the Jacobian of the ALE convective fluxes F c times the normal n. Usual option is γ = 1
for standard Roe’s solver, and for lower values of numerical viscosity, smaller values
of γ will be preferred. Since the global flow is characterized by a medium-small Mach
number, we found useful to compare Roe’scheme and its Turkel’s preconditioned variant
for low Mach flows. The description of this feature is out of the scope of this paper and
we refer for example to [8].

For addressing the problem of flow simulations on moving grids, an ALE formulation is
incorporated in the flow solver. The numerical algorithms used with this ALE formula-
tion satisfy the Geometric Conservation Laws (GCL) [12, 13] that govern flow computa-
tions on moving grids.

The structure is represented by a finite element model, and its dynamics behavior is pre-
dicted using the true displacement, velocity and acceleration degrees of freedom.

At selective time-steps of an aeroelastic simulation, the dynamic fluid mesh is updated
to conform the most recently computed configuration of the structure. The points lying
on the fluid/structure boundary are first adjusted to conform to the new position of the
surface of the structure, then the remainder of the fluid grid points are repositioned ac-
cordingly. In the methodology used in this work, the new position of the interior grid
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points is determined from the displacement solution of a discrete pseudo-structural prob-
lem representing the unstructured dynamic fluid mesh. The pseudo-structural system is
constructed by lumping a fictitious mass at each vertex of the fluid mesh and attaching
fictitious lineal springs to each edge connecting two vertices [3]. In order to enforce the
robustness of this method based on lineal springs, torsional springs can be added [6].
This discrete system is represented by the third of Eqs. (1) where M̃ = D̃ = 0.

Finally, in fluid/structure interaction problems the fluid and structure meshes have often
non-matching discrete interfaces. In that case, we use the load and motion transfer algo-
rithms described in [14] for evaluating properly the pressure forces on the surface of the
structure, and transferring correctly the structural motion to the fluid mesh. In particular,
the loads induced by the fluid on the structure are computed in a conservative way.

• Time discretization

For solving accurately and efficiently the flow equations given by the first of Eqs. (1) on
dynamic meshes, a second-order time-accurate implicit algorithm preserving the GCL
[7] is employed. The time discretization is based on a second-order backward difference
scheme. The nonlinear flow equations derived from the time-discretization are solved by
a defect-correction (Newton-like) method [15].

The structural equations of dynamic equilibrium given by the second of Eqs. (1) are
solved with a second-order time-accurate implicit scheme where the trapezoidal method
is used.

3.2. Staggered solution procedure

The solution of the coupled fluid/structure problem (1) is computed by a staggered solution
procedure in the time domain [16]. More precisely, we use the staggered algorithm given in
[17] which satisfies the GCL as well as the continuity of both the displacement and velocity
fields at the fluid/structure interface. This algorithm can be written as follows

1. Using the mesh position xn− 1
2 , and the mesh velocity ẋn that matches the structural

velocity q̇n on the fluid/structure interface , update the mesh coordinates as follows

xn+ 1
2 = xn− 1

2 + ∆tẋn

2. Using xn− 1
2 , xn+ 1

2 and ẋn, update the fluid state vector wn+ 1
2 in a manner that satisfies

the GCL

3. Using the pressure computed from wn+ 1
2 , compute qn+1 and q̇n+1 using the midpoint

rule.
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§4. Test-case

4.1. Structural characteristics

The geometry studied here is the prolate spheroid 6 : 1 of length L = 1.37 m. This structure
consists of a relatively flexible hull with two extremities made with a harder material; this is
the first investigated configuration of the structure. In a second structure, we add three annular
stiffeners to the flexible hull, formed by hard tubes (second studied configuration). Finally, a
third structure is defined by adding to the previous configuration four longitudinal stiffeners
made of the same material as the previous ones. We give in Tab. 1 the characteristics of the
different materials used in the structure. A sketch of the prolate with annular and longitudinal
stiffeners is shown in Fig. 1. The flexible hull and the hard extremities are modeled by triangular
shell elements, and are discretized by 2274 nodes and 4544 triangles (Fig. 2). The stiffeners
are modeled by beam elements with 2.76 × 10−4 m2 as sectional area, their three moments of
inertia are 2.36× 10−7, 1.18× 10−7 and 1.18× 10−7. The structure is fixed at its back.

e E ν ρ
Extremities 0.02 1× 1012 0.3 3500
Hull 0.005 1× 109 0.3 3500
Stiffeners 7× 1010 0.3 8800

Table 1: Characteristics of different materials used in the prolate structure, e: Thickness, E:
Young’s modulus, ν: Poisson’s coefficient, ρ: density, (IS units).
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Figure 1: Prolate structure and stiffeners position

The first four eigen-modes of each structural model is given by: a bending mode, a buckling
mode, a mix of two bending modes, and finally a stretching mode.

The first four eigenfrequencies of the previous structural models are given in Tab. 2.

4.2. Flow conditions and numerical issues

The free-stream flow conditions are: Mach number M∞ = 0.15, pressure P∞ = 1.013×105 Pa
and density ρ = 1.1 kg m−3. The angle of attack is set to 0◦ or 20◦.
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Struct. 1 Struct. 2 Struct. 3
freq. 1 11.2 14.7 32
freq. 2 61.2 88 131.1
freq. 3 70.5 94.2 191.4
freq. 4 109.5 161.9 394.7

Table 2: Eigenfrequencies associated to the three investigated structural models (Hz).

Figure 2: Fluid (left) and structure (right) meshes

The fluid mesh contains 50018 vertices and 264426 tetrahedra (Fig. 2) and does not match
with the structural one at the prolate surface.

The fluid model is the Euler equations. Unless mentioned otherwise, the calculations are
performed with a coefficient of numerical viscosity lowered to γ = 0.3 and Roe’s scheme with
Turkel’s preconditioning. The structure calculations are damped [5] for a faster convergence of
the coupled solution.

The fluid mesh is decomposed into 10 subdomains to achieve parallel computations, and
the coupled fluid-structure calculations are performed on 11 processors since one processor is
allocated for the structural solver.

§5. Results

We have first performed inviscid steady solutions around the prolate with the flow solver alone.
Figs. 3 show the Mach number isolines for 0 and 20◦ angle of attack. In a second step, we
have performed the computations of static fluid-structure coupling with the different structural
models of the generic airship described in Section 4. Structure deformations that result from
the interaction with these inviscid low speed flows are given in Figs. 4. These pictures represent
the shape of the structure when the stationary solution of the coupled problem is reached. We
compare in this figure the effect of the angle of attack and the influence of the three different
configurations of stiffeners on the static coupling. The structure deformations are graphically
amplified 100 times for better visibility. We notice first that a flow with zero angle of attack
results in less important deformations, so that the effect of the stiffeners remains minor com-
pared to the 20◦ angle of attack case. For this last case, we observe two main deformations:
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Figure 3: Contours of Mach number for 0 (left) and 20◦ (right) angle of attack

a flexion of the structure in the flow direction and a flattening of the flexible part of the struc-
ture. The latter deformation is avoided by adding annular stiffeners, and the former one by
the longitudinal stiffeners. As mentioned before, we are looking for the stationary solution of

Figure 4: Structure deformation obtained for a static coupling with 0 (left) and 20◦ (right)
angle of attack. The stiffeners are added from top to bottom of the figures. The deformations
are amplified 100 times. Colours indicate the intensity of the cross-deformations (m).

the coupled problem by adequately damping the structure. So, to give an idea of the solution
evolution with time, we plot in Figs. 5 the vertical displacement (on y direction, see Fig. 1) of
the nose of the prolate as well as the lift coefficient for the three investigated structural models.
We notice in these pictures the important acceleration role of the stiffeners in the stabilization
of the structure: the harder the structure is, the faster the static coupled solution is reached.

We give in Tab. 3 the stabilized aerodynamic coefficients Cx and Cy obtained with the dif-
ferent angles of attack and structural models. We also present the results obtained by changing
the amount of numerical viscosity through the scalar coefficient γ and by removing low Mach
Turkel’s preconditioning. The reference surfaces used for the evaluation of Cx and Cy are re-
spectively Sx = π(L/12)2 and Sy = πL2/24. In this table we can notice that the stiffeners
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Figure 5: Evolution of vertical displacements and lift coefficient versus time for the three struc-
tural models with a flow at 20◦ angle of attack.

does not change the values of the computed aerodynamical coefficients: the displacement of
the structure was not so important. On the other hand, we observe that increasing the numer-
ical viscosity modifies noticeably the aerodynamic results as well as removing the low Mach
preconditioning. We confirm here the positive impact of Turkel’s preconditioning for such low
Mach number flow simulations.

Angle of attack Cx Cy

Structure 1

0◦, γ = 0.3, Turkel 0.001332 0.0000025
20◦, γ = 0.3, Turkel 0.002189 0.0047615
20◦, γ = 1, Turkel 0.004003 0.0128703
20◦, no Turkel 0.004867 0.0138653

Structure 2, γ = 0.3, Turkel

0◦ 0.001332 0.0000024
20◦ 0.002175 0.0047580

Structure 3, γ = 0.3, Turkel

0◦ 0.001236 0.000003
20◦ 0.002178 0.004751

Table 3: Aerodynamic coefficients

§6. Conclusion

In this work, we have investigated in an ALE framework the fluid-structure interaction of a
flexible prolate spheroid in inviscid flows with and without angle of attack. We have studied
the effect of two types of stiffeners: annular and longitudinal ones. According to the static
fluid-structure coupled simulations performed, we notice, as expected, that the longitudinal
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stiffeners limit the flexion of the prolate, and annular ones prevent the prolate from flattening.
We have also investigated the influence of some numerical aspects: large numerical viscosity
alters considerably the aerodynamical results, and low Mach preconditioning of the numerical
viscosity improves the simulation accuracy for relatively low speed flows as those encountered
around airships in flight. This study is a first step in a global investigation concerning flows
around flexible airship hulls, and it introduces the next investigations based on finer grids and
viscous turbulent models.
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