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ON FEW SHELL MODELS

IN NONLINEAR ELASTICITY

AND EXISTENCE OF SOLUTIONS

Philippe Destuynder

Abstract. The existence of stable solutions for geometrically nonlinear theory of shells
has been widely discussed by mechanicians during the last century. But, certainly because
of the difficulty met in the classical three dimensional nonlinear elasticity, few mathemat-
ical results have been obtained. A possibility is to apply the polyconvexity introduced in
nonlinear elasticity by J. Ball [1] to ad’hoc shell theories. But unfortunately the positive
results are restricted to a special class of materials. Another approach consists in using
the so-called Γ-convergence. This theory has been suggested by the italian school (E. De
Giorgi and G. Dal Maso, [9]), and an application to shell models has been given by H.
Ledret and A. Raoult [19]. But the main drawback, in our opinion, is that the solution
transgresses the equilibrium equations and the difficulty is to make sense to the model ob-
tained. Therefore, it is not yet possible to use these results for the physical problem to be
solved.
In this paper, we suggest another theory based on some nonlinear mathematical tools which
have already been used for particular shell models in [12]. The first part gives a formu-
lation of a general geometrically nonlinear shell model based on a full description of the
large kinematical movement induced by a Kirchhoff-Love field. The objectivity property
is checked for a class of materials (energy invariance under the only effect of a nonlinear-
rigid body motion). Then the existence of stable solutions is proved using minimizing
sequences and some mathematical tricks based on compactness of few nonlinear terms.
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§1. Introduction

Following the ideas of W.T. Koiter [16], [17], in linear theory of elasic shells, we discuss the
opportunity to introduce new nonlinear shell models which satisfy the fundamental property of
energy invariance under the only effect of a rigid body motion. This has been widely discussed
in linear theory by W.T. Koiter [16]. It has also been pointed out as a basic point in shell
modelling by B. Budiansky and J.L. Sanders [6]. In particular they have suggested a model that
they claimed to be the best first order shell model in linear theory of elastic shell. These aspects
are discussed in a first part of this paper. They are essential before any discussion on linear or
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nonlinear shell modelling. This remark is specially true for the existence of solutions for shell
models. Therefore we recall few ideas of these fundamental contributions of W.T. Koiter which
enable to shunt some awfull complexities in several mathematical papers on shells. Then the
extension to nonlinear shell models is discussed and several remarks concerning the validity
of such models are given. A particular property of a shell model in non linear elasticity, is to
avoid inextensional movements (A.L. Goldenveizer [15], V. V. Novozhilov [21]). Therefore
such movements, which are membrane-energy free, are restricted to the linear modelling of
the inplane strain tensor of the medium surface of the shell. From the mathematical point
of view, they have been analyzed in former publications [10], and creates a soft behaviour
of the shell operator. Further analysis are contained in the books by P. G. Ciarlet [7]. In
particular he used Holmgrem Theorem (in a jointed work with V. Lods [7]), for getting rid
of a restriction on the Christoffel symbols which has been used in [10]. The importance in
mechanical engineering of inextensional theory is well known known for buckling phenomenon
which precisely occurs mainly with an inextensional movement of the shell. Then new branches
of solutions are driven by the bending energy at least in the vicinity of the buckling. The
point is that the bending is essentially a regularization of the shell models in order to avoid
energy free movements in the vicinity of an inextensional movement. Thus it can be suggested
to confine the nonlinear formulation of shell model on the extensional part. But nonlinear
modelling shows that this remark is no more necessarily true. A simplified explanation of this
very important property, is suggested in the preliminary section of this paper. Then we discuss
how it can be extended to several shell models. This aspect is not sufficient for the existence
of stable solutions. Therefore, a class of models which satisfy the energy invariance and some
compactness properties are introduced. Finally some weak semi-continuity are proved in order
to derive the existence of a stable solutions. The uniqueness is a local result which is not always
true in quasi-static formulations. For instance a buckling can occur. Finally we mention that the
polyconvexity can certainly be used for a larger class of models. Nevertheless the developments
will be in a further paper with P. G. Ciarlet [8].

§2. Preliminary remark and mathematical aims of the paper

Let us define few notations. First of all we consider an elastic body which occupies in space the
open set Ω. The unit outwards normal to the boundary Γ is ν. The points M of Ω are referred
to an orthonormal system of axis denoted by (O; x1, x2, x3). Let us now consider a vector field
u = (ui) defined on Ω and let us assume that the components ui are elements of the space
W 1,4(Ω), such that u = (ui) ∈ V where:

V = {v = (vi), vi ∈ W 1,4(Ω),

∫
Γ

v.ν = 0.}.

It is equiped with the natural norm induced by the space W 1,4(Ω)3. Let us denote by Ω′ the
new open set obtained from Ω through the displacement field u. The condition on the boundary
of Ω traduces that globally the volume of Ω′ is the same as the one of Ω, at least in a first
order approximation with respect to the displacement magnitude. Let us now consider the the
nonlinear expression of the strain operator due to the displacement field u. It is defined on Ω
by:

ζ(u) =
1

2
(

∂u

∂M
+

∂u

∂M
+

∂u

∂M
.
∂u

∂M
),
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where ∂u
∂M

is the linear operator from R3 into itself, (the transpose in R3 of ∂u
∂M

is denoted
∂u
∂M

), defined as the partial derivative of u with respect to the points M . Its components in the
orthonormal basis are denoted by:

(
∂u

∂M
)i,j =

∂ui

∂xj

= ui,j.

The components of the matrix ζij which represents the endomorphism ζ(u) in the basis
(O; x1, x2, x3) are:

ζij =
1

2
(ui,j + uj,i + ui,kuk,j),

where ui,j denotes the partial derivative of ui with respect to the coordinates xj . Furthermore,
the implicit summation from zero to three is assumed over the repeated latin indices (it will be
assumed from one to two for greek indices). Let us now define the trace of an endomorphism
A = (Aij) from R3 into itself, by:

Tr3(A) = (Aii).

The trace of the endomorphism ζ(u) is therefore:

Tr3(ζ(u)) = div(u) +
1

2

∑
i=1,2,3

|∇ui|2,

where ∇. is the gradient operator. For instance one has (notations): (∇f)j =
∂f

∂xj

= f,j. Then

by integrating the preceding relation over Ω, using Stokes formula and because of the boundary
conditions contained in V, we deduce that (the regular notations are used for the norm and the
semi-norm in Wm,p, ie. ||.||m,p,ω, respectively: |.|m,p,ω):

∀u ∈ V,

∫
Ω

Tr3(γ(u)) =
1

2

∑
j=1,2,3

|ui|21,2,Ω, (1)

(the notation |.|1,2,Ω is the semi-norm of the first order derivative in L2(Ω)). If one has, for
instance, the inequality: ∫

Ω

Tr3(γ(u)) ≤ 0,

then we can conclude that:
u = 0.

This property is a little bit surprising because it is stronger (it requires less assumptions!), that
the classical rigid body motion Theorem [14]. In fact the linear version states that if u ∈ V,
such that: ∀(i, j) ∈ {1, 2, 3}, ui,j + uj,i = 0, then there exist two constant vectors a,b in R3,
such that: u = a + b ∧ OM, and the boundary conditions in V are not suficient to conclude
that u = 0. This property is underlying in the following analysis. Let us explain how from the
mathematical point of view. Let un be a weakly convergent sequences in V towards an element
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u∗. The quantity un
i,ku

n
k,j is also bounded and weakly convergent to an element h∗

ij = h∗
ji in the

space [L2(Ω)]4. Furthermore let us set (we use here the notation: γn
ij =

1

2
(un

i,j + un
j,i)):

fn = γn
ii +

1

2
un

i,ku
n
k,i = div(un) +

1

2

∑
i=1,2,3

|∇un
i |2.

If we assume that:
fn → 0 in L2(Ω) as n →∞,

then one has, because of the property mentioned above:⎧⎨⎩
u∗

i = 0 for i = 1, 2, 3,
and:
un → 0 in [W 1,4

0 (Ω)]3 strong.
(2)

This result was not obvious because the functional:

u ∈ V → ||div(u) +
1

2
|∇u|2||20,2,Ω,

is not convex. In fact one has three weak convergences in V (for the components un
i ) and one

strong convergence in L2(Ω) (concerning fn). A hidden compactness enabled us to get three
strong convergences. A similar property is used in the following for getting the lower limit of
a non convex functional with a minimizing sequence.

§3. A brief on differential geometry for shells

3.1. The fundamental forms of a surface [23]

Let ω be a surface in R3 which is described by a smooth enough mapping -say ϕ- from a
two dimensional open set ω̂ into R3. The coordinates in the plan containing ω̂ are denoted by
(ξ1, ξ2). At each point m of the surface ω we define two tangent vectors by: aα = ∂ϕ

∂ξα
for

α = 1, 2. They are assumed to be linearly independent and the dual basis in this tangent plane
-say aα- is defined by the relation: ∀α, β ∈ {1, 2}, aα.aα = δα

β , which is the Kronecker
symbol and the dot stands for the scalar product in R3. The metric tensor on ω is defined by:
gαβ = aα.aβ . Its inverse is: gαβ = aα.aβ . Let us now consider the unit normal to ω at point m

defined by: N =
aα ∧ aβ

|aα ∧ aβ|
. The derivative of N with respect to the coordinates ξα are tangent

vectors (because N is unitary). Their components in the basis aα are denoted−bβ
α such that one

has: ∂N
∂ξα

= N,α = −bβ
αaβ, or else using the dual basis: ∂N

∂ξα
= N,α = −bαβa

β. The following

notation will be used for the curvature operator of the surface ω: ∂N
∂m

= −bβ
αaβ ⊗ aα where

the notation ⊗ denotes the tensor product between two vectors in R3. Let us now consider a
vector field defined on ω by: v = vαaα + v3N = vαa

α + v3N. We can associate to it a new
surface -say ω′- which is the image of ω under the effect of the vector field v. The new map
which describes ω′ is therefore: ϕ′(ξ1, ξ2) = ϕ(ξ1, ξ2)+v(ξ1, ξ2). The new tangent vectors are:
a′

α = aα + v,α. We can define a new metric tensor -say g′
αβ- and a new curvature tensor -say

b′αβ- which are linearized with respect to v = vαa
α + v3N, by:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g′
αβ = a′

α.a′
β = gαβ + 2γαβ + . . . ,

where γαβ =
1

2
(uα|β + uβ|α)− bαβu3,

b′αβ = a′
β.N′

,α = bαβ − �αβ + . . . ,

where �αβ =
1

2
(θα|β + θβ|α)− 1

2
(vα|λb

λ
β + vβ|λb

λ
α) + bλ

αbλβv3,

with the notations :
θα = −bλ

αvλ − v3,α and: vα|β = vα,β − Γλ
αβvλ, Γλ

αβ = aα,β.aλ.

(3)

Remark 1. Let us define a new surface in R3 which is parallel to ω and defined for a given
value x3, by: ωx3 = {M ∈ R3, M = m + x3N, m ∈ ω}. The metric tensor on ωx3 is easily
obtained by:

gx3
αβ = gαβ − 2x3bαβ + x2

3b
λ
αbλβ.

Let us call δgαβ (respectively δbαβ), the linearized variations of the metric tensor of the surface
ω (respectively of the curvature tensor), in a movement of a the surface ω defined by the vector
field v. The linear variations of gx3

αβ with respect to a displacement v are therefore perfectly
defined from the one of δgαβ and δbαβ . More precisely, one has:

δgx3
αβ = δgαβ − 2x3δbαβ + x2

3[b
λ
αδbλβ + δbλ

αbλβ].

Hence if δgαβ = δbαβ = 0 one has clearly δgx3
αβ = 0, ∀x3, because δbλ

α = gλµδbλα −
bξαgλµgξνδgµν . This is the fundamental remark of W.T. Koiter.

3.2. The plurality of the change of curvature tensor

It should be pointed out that there exist several expressions for the first order change of cur-
vature tensor. For instance there is another one, also suggested by W.T. Koiter and mainly B.
Budiansky-J.L. Sanders, which is also interesting. It is more accurate for describing the true
linear strain tensor for a surface parallel to ω (ie. for x3 �= 0). But this is not correct for the
change of metric of the surface ω×{x3}. The argument is the following. The change of metric
given previously by g′x3

αβ , is applied to tangent vectors to this surface such that dm = aαdξα.
But the two tangent planes respectively to ω and to ω × {x3} are parallel. Thus, one can use
two different basis for the tangent vectors: the first one is: {aα}. If we set: dm = aαdξα, the
relative change of length of dm is (after linearization) g′x3

αβ dξαdξβ . The second basis is the local
one: ax3

α = aα − x3b
β
αaβ . In this new basis the tangent vector is dm = ax3

α dυα. One can easily
prove check that the change of length of dm can be expressed with respect to the components
dυα, with the new change of metric:

G′x3
αβ = γαβ − 2x3�̄αβ + x2

3 . . .

where we have set:

�̄αβ =
1

2
(θα|β + θβ|α) +

1

2
(bλ

αvβ|λ + bλ
βvα|λ)− bλ

αbλβv3. (4)

A simple exercice enables one to prove the following relation between the two quantities:

�αβ = �̄αβ − bλ
αγβλ − bλ

βγαλ. (5)



524 Philippe Destuynder

But the expansion of G
′x3
αβ , is infinite with respect to x3. Nevertheless, it is true that for an

anisotropical material this last expression is certainly more appropriate for formulating the
constitutive relationships, because it is a local expression of the strain through the thickness of
the shell. This is one of the reasons evoked by B. Budiansky and J.L. Sanders who claimed
[6] that it was the best first order expression for the change of curvature. We refer to [13] for
further explanations with complementary arguments.

From Gauss-Bonnet Theorem [5], we can state that the new surface ω′ is fully described up
to a translation and a rotation by the only knowledge of g′

αβ and b′αβ but which are nonlinear
expressions with respect to the vector field v. This is why another idea, due to W. T. Koiter is
usefull as far as the linear formulation is used. Let us recall, in the next section, this fundamental
remark of W. T. Koiter [17] which is wellknown among mechanicians in shell structures much
less among mathematicians who have rediscovered it more recentlly [3]. I learned it from R.
Valid [24] in July 1976, at a summer course on shells organized by EDF-CEA-INRIA.

3.3. Thickening of a surface in R3

The basic idea is to define a thickening of the surface ω in order to consider a three dimensional
body on which it is possible to apply the classical linear rigid body Theorem and then to restrict
it to the surface ω. Then let us consider a vector field v defined on ω, and extended to a
three dimensional field vKL on Ωη = ω×] − η, η[, such that its restriction to ω is equal to v.
The transverse strain through the thickness of the volume Ωη, will be zero. Therefore all the
components of the linearized strain tensor are zero as soon as the inplane components will be
zero. Therefore, from the three dimensional rigid body Theorem, the displacement field v will
be a (linearized) rigid body motion.
Our goal is to define explicitely such a three dimensional extension of a surface vector field.
This is obtained as follows.

Definition 1. Let v(m) = vαa
α + v3N a displacement field defined on the surface ω. The

components vα and v3 are functions defined on ω. We set on Ωη = ω×]− η, η[:

vKL(m, x3) = v(m) + x3θ(m), (m, x3) ∈ Ωη, (6)

where at each point m = ϕ(ξ1, ξ2) ∈ ω one has:

θ = θαa
α, θα = −bβ

αvβ − v3,α.

The displacement field vKL is called a Kirchhoff-Love one. It has been obtained by solving on
Ωη the equations traducing the nullity of the transverse strains [24].

Theorem 1. Let v = vαa
α + v3N be a vector field defined on ω and vKL its extension to Ωη

by formulae 6. Then at each point M = m + x3N the linearized strain tensor ζ =
1

2
(
∂vKL

∂M
+

∂vKL

∂M
) is restricted to its inplane component such that:

ζ = ζαβa
α ⊗ aβ
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where we have set:

(δλ
α − x3b

λ
α)ζλµ(δµ

β − x3b
µ
β) = [γαβ + x3�αβ + x2

3καβ] = δgx3
αβ,

with the following notations:

γαβ =
1

2
(vα|β + vβ|α)− bαβv3, καβ = −1

2
(bλ

αθλ|β + bλ
βθλ|α),

and:

�αβ =
1

2
(θα|β + θβ|α) + bλ

αbλβv3 −
1

2
(vα|λb

λ
β + vβ|λb

λ
α).

A simple computation [13], already mentioned, gives the other expression suggested by B.
Budiansky and J. L. Sanders:

ζαβ = γαβ + x3�̄αβ + x2
3 . . .

Let us summarize the basic results of the Koiter shell theory in the following statement.

Theorem 2. Let v = vαa
α + v3N be a vector field defined on the surface ω. We extend this

vector field to a three dimensional one denoted vKL, on the open set: Ωη = ω×]− η, η[ by the
following formulae:

∀(m, x3) ∈ Ωη, vKL(m, x3) = v(m) + x3θ(m),
where:
θ(m) = θαa

α, with θα = −bλ
αvλ − v3,α.

Then there are several norms which can be used for such three dimensional vector fields. One
is the three dimensional one induced by the Korn inequality [14]:

v → ||ζL(vKL)||0,Ωη , where ζL is the linearized 3D strain,

the most important point is that the following quantity is also a norm on the space VKL:

v → [
∑

α, β∈{1,2}
||γαβ||20,ω + ||�αβ||20,ω]1/2.

another one is induced by the definition of vKL:

v → [
∑

α=1,2

||vα||21,ω + ||v3||22,ω]1/2.

Proof. This is straightforwards from Theorem 1.

The next point concerns the equivalence between the three previous norms. The first proof
of this result was given by P.G. Ciarlet and M. Bernadou [2]. They used exactly the same
method as the one suggested by G. Duvaut and J. L. Lions [14]. But another one, given for
shell [12] and in a joint paper with P.G. Ciarlet for plates [8], can be derived from the three
dimensional Korn inequality. The formulation is the following one.
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Theorem 3. The three norms on the space:

VKL = {vKL = v(m) + x3θ(m), v(m) = vαa
α, vα ∈ H1

0 (ω), θ(m) = θαa
α,

θα = −v3,α − bβ
αvβ, v3 ∈ H2

0 (ω)}
which are defined in Theorem 2 are equivalent.

Proof. Let us sketch how it is articulated. Let us introduce the linear mapping j from the space
(H1

0 (ω))2 ×H2
0 (ω) into VKL and such that :

∀v = (vα, v3) ∈ (H1
0 (ω))2 ×H2

0 (ω) → j(v) = vKL ∈ V KL.

One has clearly the following properties:
i) j is linear, ii) j is bijective, j is continuous.

Thus, from the Banach endomorphism Theorem [25, Theorem p. 205] one can ensure that
j−1 is also continuous. Therefore, the equivalence between the norms in (H1

0 (ω))2 × H2
0 (ω)

and the one in V KL is proved. In order to complete the proof it is sufficient to observe that
the three dimensional strain (in Ωη ) of a Kirchhoff-Love displacement field is restricted to its
inplane components. And because of the expression given by Budiansky-Sanders, the two first

norms given in Theorem 2 are clearly equivalent as soon as η < minm∈ω(
1

|R1(m)| ,
1

|R1(m)|)
and this is always possible because η can be chosen as small as one likes. In fact, one can notice
that the result is independent of η and only depends on the surface ω.

§4. Abstract formulation for a shell model

4.1. A semilinear formulation

Let us consider a vector field v ∈ VKL. Let f(γ(v), �(v)) be a scalar function which satisfies
the following properties:

i) f is convex and C1 with respect to γ and �, which are the change of metric and of cur-
vature tensors,

ii) if ||v||VKL →∞ then lim

∫
ω

f(γ(v), �(v)) = ∞, (coerciveness).

Let us define the elastic energy by:

v ∈ VKL → J(v) =

∫
ω

f(γ(v), �(v))− F (v),

where F (.) is a linear and continuous form on the space VKL. Then the following problem has
a solution in the space VKL.

min
v∈VKL

J(v) (7)

Furthermore it is unique as soon as J is stictly convex. Let us give an example. We set (Aαβµλ

and Bαβµλ are two positively definite tensors representing respectively the membrane and the
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bending stiffness of the shell):

f(γ(v), �(v)) =
1

2

∑
αβµλ∈{1,2}

Aαβµλγαβ(v)γµλ(v) + Bαβµλ�αβ(v)�µλ(v)

+a|∑µ γµ
µ(v)|+ b|∑µ �µ

µ(v)|+ c|∑µ κµ
µ(v)|.

For a = b = c = 0 one obtains the classical St Venant-Kirchhoff model [7]. But as soon as
one of the previous coefficient is different from zero, one obtains a nonlinear model similar to
what happens in material with a locking effect (non newtonian constitutive relationship). Let
us explain why. Let us consider the particular case where a �= 0 and b = c = 0. The optimality
condition traducing that J(u) is minimum is a variational inequality. It can be written:⎧⎪⎪⎨⎪⎪⎩

u ∈ VKL, ∀v ∈ VKL,

∫
ω

Aαβµλγαβ(u)γµλ(v − u) +

∫
ω

Bαβµλ�αβ(u)�µλ(v − u)

a

∫
ω

|
∑

α=1,2

γα
α(v)| − a

∫
ω

|
∑

α=1,2

γα
α(u)| ≥ F (v − u).

(8)

Then choosing v = 0 in (8), we obtain, because of the equivalence between the various norm
on the space VKL:

c0||u||2VKL + a

∫
ω

|
∑

α=1,2

γα
α(u)| ≤ F (u). (9)

Let us assume that for instance the force applied can be written as follows:

F (v) =

∫
ω

pγα
α(v) + Fs(v), (10)

where p is the surface pressure and Fs the shearing component of the applied force. We set :
Fs(v) ≤ cs||v||VKL . A simple upper bounding of the right handside of (9) leads to:

[c0||u||VKL − cs]||u||VKL + (a− ||p||0,∞,ω)||
∑

α=1,2

γα
α(u)||0,1,ω ≤ 0. (11)

Therefore if cs = 0 (there is no shear force) and ||p||0,∞,ω ≤ a, one has u = 0. It means that the
shell is not sensitive to a pure -small enough- pressure. It is possible to get rid of this locking
by replacing the term |∑α=1,2 γα

α(u)| by |∑α=1,2 γα
α(u)|q where q > 1. But the mechanical

interest of the initial expresssion is also important.

Remark 2. There can exist displacement fields v such that γ(v) = γαβa
α⊗aβ = 0 and �(v) �=

0. They are called inextensional. For instance the bending movement of a plate is inextensional.
There are also inextensional movements for shells with negative Gaussian curvature [15], [21],
[10]. In fact the energy introduced above is not sufficient for eliminating such inextensional
displacements. This suggests to use a nonlinear expression of the strain following the ideas of
the first section.

4.2. The nonlinear metric for a shell model

Let us consider the exact expression of the new tangent vectors -say a
x′
3

α - to the deformed
surface ω × {x3} by the mapping (m,x3) → (m + vKL(m,x3)) where vKL is a Kirchhoff-
Love vector field defined in (6). The new expression of the full change of metric is now:

g
x′
3

αβ = gx3
αβ + 2χαβ + 2x3ψαβ + 2x2

3∆αβ, (12)
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where we used the following notations (see Theorem 1 for the definition of �, γ and κ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

χαβ = γαβ +
1

2
θαθβ +

1

2
(vλ

|α − v3b
λ
α)(vλ|β − v3bλβ),

ψαβ = �αβ +
1

2
(θλ

|α(vλ|β − v3bλβ) + θλ
|β(vλ|α − bλαv3)− θλ(θαbλβ + θβbλα))

∆αβ = καβ +
1

2
θλ
|αθλ|β +

1

2
θλθµbλαbµβ .

(13)

We set: χ = χβ
αaβ ⊗ aα, ψ = ψβ

αaβ ⊗ aα, ∆ = ∆β
αaβ ⊗ aα. It is worth noting that one

has the following identity (− 1
R1

and − 1
R2

are the two eigenvalues of the curvature operator
∂N
∂m

= bβ
αaβ.aα such that: Tr2(

∂N
∂m

) = −( 1
R1

+ 1
R2

) and vt = vαaα):

Tr2(χ) = χµ
µ = div(vt) + Tr2(

∂N

∂m
)v3 +

1

2
|θ|2 +

1

2
|Ω|2, (14)

where Ω = Ωα
βaα ⊗ aβ, and: Ωα

β = vα
|β − v3b

α
β . One has also:

Tr2(∆) = ∆µ
µ = Tr2(κ) +

1

2
|∇cθ|2 +

1

2
(Cθ.θ), (15)

where C is the gaussian curvature operator which can be explicited, in a matrix form in the
principal axis of curvature, by [23]:

C =

⎛⎜⎝
1

R2
1

0

0
1

R2
2

⎞⎟⎠ ≥ 0 (16)

and the notation ∇c. is the covariant gradient operator [23] such that:

|∇cθ|2 = gαβθλ
|αθλ|β (17)

Let us now consider the principal change of volume -say δ(v)- through the thickness of the
shell. It is defined as the trace of the change of metric tensor through the thickness of the shell
stucture. Therefore, one introduces the following definition:

δv(v) = Tr2(χα
α + x3ψ

α
α + x2

3∆
α
α)

or else:

δv(v) = div(vt)− bα
αv3 +

|θ|2 + |Ω|2
2

+ x3(�α
α + θµ

|αΩα
µ − θαθµbαµ) + x2

3(κ
α
α +

|∇cθ|2 + (Cθ.θ)
2

).
(18)

A very important point is that the last term (in x2
3) contains some compactness facilities on θ

due to the first order derivative of that term. Nevertheless, the term Ω is much more difficult
to handle. It corresponds -for the symmetrical part- to the membrane strain and to the rotation
around the normal N for the unsymmetrical component. From a mechanical point of view it
can be suggested to cancel these terms compared to the rotation θ because of the flexibility of
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thin shells and therefore it is suggested to approximate the principal change of volume by the
next one:

δv(v) = div(vt)+Tr2(
∂N
∂m

)v3+
1
2
|θ|2+x3(Tr2(�)+(

∂N
∂m

θ.θ))+x2
3(Tr2(κ)+

1
2
(|∇cθ|2+(Cθ.θ))).

(19)
The integration of this relation on the open set Ωη occupied by the shell, leads to the following
expression (using Stokes formulae [23] and (22)):

δV = 2η

∫
ω

[Tr2(
∂N

∂m
)v3 +

1

2
|θ|2] +

η3

3

∫
ω

|∇cθ|2 + (Cθ, θ) + 2Tr2(κ). (20)

Consequently, the other fundamental forms of the surface ω are also modified in order to take
into account this approximation (Ωβ

α � 0). We set (∆ is unchanged!):

χ(v) � γ(v) +
1

2
θ ⊗ θ, ψ � � +

1

2
[
∂N

∂m
θ ⊗ θ + θ ⊗ ∂N

∂m
θ], (21)

These approximate expressions will be used in the following of the paper. For instance one has
with these new definitions:

Tr2(∆) = Tr2(
∂N

∂m
ψ) +

1

2
|∇cθ|2 − Tr2(

∂N

∂m
χ

∂N

∂m
). (22)

4.3. A nonlinear shell model in elasticity

The first point is to observe the energetical characterization of the movement.

Theorem 4. Let us consider a vector field v ∈ V0 = (H1
0 (ω))2×H2

0 (ω) ≡ VKL which is such
that on the surface ω one has:

χ(v) = ψ(v) = δV (v) = 0.

Furthermore we assume that the surface ω is smooth enough; for instance C3, which enables
one to make sense to the expressions which appear in the shell models.Then: v = 0.

Proof. From the relation (22), and because χ = ψ = 0, we deduce that:

∇cθ = 0 and therefore that ∀α, β ∈ {1, 2}, θα|β = 0 on ω.

The trace of θ can be defined along each coordinate line (trace Theorem in H1(ω)). Thus one

has for instance [23]:
d||θ||2
dξα

= 2θ.
dθ

dξα
= 0. This implies that θ has a constant length on the

surface ω, and because of the boundary conditions: θ = 0 inside ω. Finally we can ensure
that γ = � = 0 (which are the linearized expressions of the change of metric and of curvature
operators). From Theorem 1, we can conclude the proof of the Theorem 4.
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Remark 3. Theorem 4 can be seen as a nonlinear version of the Koiter and Budiansky-Sanders
result. A nonlinear membrane tensor and also a non linear expression of the change of curvature
has been considered. Only the nonlinear contribution of Ωα

β = vα
β −bα

βv3, has been omitted here
compared to the full expressions. In this theorem, it has been necessary to take into account
the term representing the change of volume of the shell. But many other equivalent conditions
could have been introduced. The one used represents a mechanical quantity and therefore it is
justified to introduce it in an elastic energy functional.

Let us give an example of a nonlinear elastic energy (we use notations introduced previ-
ously).

J(v) =
1

2

∫
ω

Aαβµλχαβ(v)χµλ(v) + Bαβµλψαβ(v)ψµλ(v) + aδV (v)− F (v). (23)

Such a functional is not convex and furthermore it is not even obvious that it is bounded from
below (because of the term δV ). The coerciveness is not clear. Hence the existence of a stable
solution must overcome these difficulties.

§5. Existence of a stable solution to a nonlinear shell model

The method that we discuss hereafter is based on a minimizing sequence of the elastic energy
in the functional space W ≡ VKL defined by:

W = {v = (vi), such that vα ∈ H1
0 (ω), v3 ∈ H2

0 (ω)}.

The norm is the one induced by the definition:

v ∈W → ||v||W =
∑

α=1,2

||vα||1,2,ω + ||v3||2,2,ω.

The elastic energy is for instance defined by:

J(v) =
1

2

∫
ω

Aαβλµχαβχλµ + Bαβλµψαβψλµ + 2ηa

∫
ω

[χα
α +

η2

3
∆α

α]− F (v). (24)

In a first step we prove that a minimizing sequence is upper bounded in W and then, (after ex-
tracting a weakly convergent sub-sequence), we prove the semi-continuity of the elastic energy.
Finally the existence of a minimizer is established. But the uniqueness is generally false.

5.1. Definition of a minimizing sequence

Let us consider a minimizing sequence of elements vn ∈W which is such that:

J(vn+1) ≤ J(vn), and lim
n→∞

= inf
v∈W

J(v).
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5.2. The minimizing sequence is upper bounded

First of all, let us point out that the result is not obvious because the energy is not coercive
(one can not ensure directly that: lim||v||W→∞, J(v) → ∞). Therefore let us assume that the
minimizing sequence could be such that:

||vn||W =
√

λn →∞, when n →∞.

Let us set:

ṽn =
vn

√
λn

.

The sequence ṽn is clearly bounded in the space W and thus one can extract a subsequence
denoted by: ṽn′

and such that:
ṽn′

⇀ ṽ∗ in W weak.

Let us now divide the energy J by
√

λn. From the expression of the membrane strain χ,
we deduce that (λn′

)1/4θ(ṽn′
) is bounded in the space L4(ω), but also, from the last term, in

(H1
0 (ω))2. Thus: (λn′

)1/4θ(ṽn′
) ⇀ h∗ in H1

0 (ω) weak and in L4(ω) strong. From the last term
in the energy J which has been divided by λn′

, and because |∇cθ|1,ω + |θ|0,ω is a norm on θ
equivalent to the one of the space (H1

0 (ω))2, (see Theorem 4 and (22)), one obtains that (one
has Cθ(ṽn′

).θ(ṽn′
) ≥ 0):

lim
n′→∞

θ(ṽn′
) → θ(ṽ∗) = 0 in (H1

0 (ω))2 strong when n′ →∞. (25)

Therefore, from the previous results, one obtains:⎧⎪⎨⎪⎩ limn′→∞ χ(ṽn′
) = limn′→∞ γ(ṽn′

) +

√
λn′

2
θ(ṽn′

)⊗ θ(ṽn′
) = γ(ṽ∗) +

1

2
h∗ ⊗ h∗ = 0,

limn′→∞ ψ(ṽn′
) = �(ṽ∗) +

1

2
(h∗ ⊗ ∂N

∂m
h∗ +

∂N

∂m
h∗ ⊗ h∗) = 0.

In fact, one can check that the second relation is a consequence of the first one and (25).
Assuming that there is no generalized Monge-Ampère displacement field on the surface ω, one
can conclude that h∗ = 0. Finally from Theorem 2 one obtains v∗ = 0. Therefore, we proved
that: limn′→∞ ||ṽn′||W = 0 which is a contradiction with ||ṽn′||W = 1. Thus, the sequence vn

is bounded in the space W. �

5.3. The semi-continuity of the energy

Because the minimizing sequence is bounded in the space W, one can extract a subsequence
denoted by vn′

such that:
vn′

⇀ v∗ in W weak.

But the component of θ(vn′
) are also bounded in the space H1

0 (ω). From the compact embed-
ding from H1

0 (ω) into L4(ω), one can state that (for α = 1, 2):

lim
n′→∞

θα(vn′
) = θ(v∗) in L4(ω) strong.

Thus the term:

v ∈W → 1

2

∫
ω

Aαβλµχαβχλµ +
1

2

∫
ω

Aαβλµψαβψλµ
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is clearly weakly lower semi-continuous. The other terms being convex the weakly lower semi-
continuity is true. Finally it has been proved that:

J(v∗) ≤ inf
v∈W

J(v) ≤ J(w) ∀w ∈W.

One can conclude that the energy J admits at least one stable minimum in the space W as soon
as the following generalized Monge-Ampère condition is satisfied [12]:

If ∃(h,v) ∈ L4(ω)2 ×W, s.t. γ(v) +
1

2
h⊗ h = 0 and θ(v) = 0 thenh = 0.

There are simple examples of shells for which this property is not satisfied and other, for which
it is satisfied.

§6. Conclusion

It has been proved in this paper, that the existence of solution for a nonlinear shell model is
mainly dependant on two basic properties:

i) The dominant component of the elastic energy should satisfy an energy invariance under
nonlinear rigid body motions and there should no generalized Monge-Ampère displacement
field on the medium surface ω. This property enables one to bound a minimizing sequence.
ii) The elastic energy should be lower semi-continuous in an ad’hoc functional space.
A large class of functionals satisfying these properties can be handled by the method described
here. It appears to have a more realistic mechanical interpretation than the two other stategies
met in the litterature (but which have their own advantages): the one of J. Ball [1] which can’t
ensure that the equilibrium is satisfied by a stable solution because of a restriction on the deter-
minant of the Gramm matrix and the Γ convergence which is a relaxation method and which is
still far from the mechanical models.
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