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VARIATIONAL INEQUALITIES AND FIXED

POINTS THEOREMS IN THE EUCLIDEAN

SPACE FOR NON-CONTINUOUS

OPERATORS

Luc Barbet

Abstract. The existence of solutions of general variational inequalities is obtained for
some maps defined on a nonempty closed convex subset of the Euclidean space. The con-
vex subset is possibly unbounded, the operator is possibly neither continuous nor coercive,
the convex function is possibly non-lower semi-continuous. Two generalizations of the
fixed points theorem of Brouwer are deduced for some operators which are non-continuous
and defined on some unbounded closed convex subsets.
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§1. Introduction

Various phenomena which occur in physical and economical sciences are mathematically for-
mulated as variational inequalities or as optimization problems where some constraints have
to be taken into account. In this paper we consider general variational inequalities allowing
to include classical variational inequalities (find x0 ∈ K such that 〈Ax0 + b, z − x0〉 ≥ 0 for
all z ∈ K) and convex optimization problems (find x0 ∈ K such that f(x0) ≤ f(z) for all
z ∈ K). We consider problems which are formulated in finite dimensional spaces (i.e. Rn via
an isomorphism).

We present some new sufficient conditions for the existence of solutions of general vari-
ational inequa-lities. We generalize the classical hypotheses based on the continuity of the
operator and the function defining the problem. A more specific study of convex minimiza-
tion problems and classical variational inequalities follows our general theorem of existence of
solutions. Sufficient conditions for the minimization of a non-lower semi-continuous convex
function are proposed. Various results on the existence of solutions of variational inequali-
ties in finite dimensional spaces generalize the well-known theorems proved in [4]; the usual
hypotheses of continuity and coercivity are relaxed.
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We also study the question of existence of fixed points for a class of non-continuous oper-
ators defined on nonempty closed convex subsets (find x0 ∈ K such that T (x0) = x0). These
results on the existence of fixed points are obtained via the existence of solutions of variational
inequalities following the approach of Browder [2]. Generalizations of the fixed points theorem
of Brouwer are established for some classes of operators which are not necessarily continuous
and defined on closed convex subsets (nonempty in Rn) which are not necessarily bounded.

The main notations used in this paper are the following: ‖·‖ denotes the norm of the Eu-
clidean space Rn and 〈·, ·〉 denotes the scalar product. The relative interior of a subset K of
Rn is denoted by ri(K): it is the interior of K considered as a subset of the affine hull of
K. The interior of a subset K of Rn is denoted by int(K); the boundary of K is denoted by
∂K := K\int(K).

§2. General variational inequalities

2.1. Existence

First, we state the main result about the existence of solutions of general variational inequalities.

Theorem 1. Let K be a nonempty closed convex subset of Rn and K ′ a dense subset of K. Let
A : K → Rn and f : K → R be a convex function such that

(A1) ∀z ∈ K ′, {x ∈ K : 〈Ax, x− z〉 ≤ f(z)− f(x)} is closed,

(A2) ∃z ∈ K, {x ∈ K : 〈Ax, x− z〉 ≤ f(z)− f(x)} is bounded.

Then, (IV MIN) ∃x0 ∈ K, ∀z ∈ K, 〈Ax0, z − x0〉+ f(z)− f(x0) ≥ 0.

The proof of Theorem 1 uses Corollary 4 (of Proposition 2) which corresponds to the par-
ticular case where the convex subset K is compact ((A2) is then satisfied). The proof we give
in this paper follows the approach of Browder [2] (using the concept of partition of the unity)
and uses the fixed points theorem of Brouwer in a crucial way.

Proposition 2. Let K be a nonempty compact convex subset of Rn and K ′ be a nonempty
subset of K. Let A : K → Rn and f : K → R be a convex function satisfying (A1). Then
there exists x0 ∈ K such that 〈Ax0, z − x0〉+ f(z)− f(x0) ≥ 0 for all z ∈ K ′.

Proof . Assume there is no point x0 in K such that 〈Ax0, z − x0〉 ≥ f(x0) − f(z) for
all z ∈ K ′. To each x ∈ K corresponds at least one point z ∈ K ′ such that 〈Ax, z − x〉 <
f(x) − f(z). Thus K =

⋃
z∈K′ Oz where Oz := {x ∈ K : 〈Ax, z − x〉 < f(x)− f(z)} is

an open subset of K by (A1). The family (Oz)z∈K′ being an open covering of the compact
subset K, there exists a finite number of points z1, . . . , zp ∈ K ′ such that K =

⋃
i=1,...,p Ozi

.
We consider a partition of unity associated with this open covering, composed of continuous
functions ϕi : K → [0, +∞[ whose support is included respectively in Ozi

and such that∑
i=1,...,p ϕi(x) = 1 for all x ∈ K. We define the map F by F (x) =

∑
i=1,...,p ϕi(x)zi

for all x ∈ K. Since F is continuous on the nonempty compact convex subset K into it-
self, the theorem of Brouwer gives the existence of a fixed point y ∈ K : F (y) = y.
We remark that for at least one index j ∈ {1, . . . , p} the real number ϕj(y) is positive (all
are nonnegative with a nonzero sum). If i ∈ {1, . . . , p} is such that ϕi(y) > 0 (otherwise
ϕi(y) = 0) then y ∈ Ozi

and thus 〈Ay, zi − y〉 < f(y) − f(zi). Consequently, 〈Ay, F (y) −
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y〉 =
∑

i=1,...,p ϕi(y)〈Ay, zi − y〉 <
∑

i=1,...,p ϕi(y) (f(y)− f(zi)) . However, by convex-
ity of f, we have

∑
i=1,...,p ϕi(y) (f(y)− f(zi)) = f(y) − ∑i=1,...,p ϕi(y)f(zi) ≤ f(y) −

f(
∑

i=1,...,p ϕi(y)zi) = f(y)− f(F (y)) = 0. We get a contradiction (〈Ay, F (y)− y〉 < 0 with
F (y) = y) which allows us to conclude. �

The following lemma proves that in finite dimensional spaces a general variational inequal-
ity is sa-tisfied on a convex subset as soon as it is satisfied on a dense subset. We remark that
we cannot use an upper semi-continuity argument since there exist convex functions defined on
a convex subset of R2 which are not upper semi-continuous (cf. [5]).

Lemma 3. Let K be a nonempty convex subset of Rn and K ′ a dense subset of K. Let A : K →
Rn and f : K → R be a convex function. If x0 ∈ K satisfies 〈Ax0, z−x0〉+ f(z)− f(x0) ≥ 0
for all z ∈ K ′ then x0 satisfies 〈Ax0, z − x0〉+ f(z)− f(x0) ≥ 0 for all z ∈ K.

Proof . Since f is a convex function on the convex subset K of the Euclidean space Rn,
f is continuous on ri(K), the relative interior of K (cf. [5]). By density of K ′ in K and by
continuity, we conclude that 〈Ax0, z− x0〉+ f(z) ≥ f(x0) for all z ∈ ri(K). We fix c ∈ ri(K)
(nonempty). For any z ∈ K, we have zt := (1 − t)z + tc ∈ ri(K) for all t ∈ (0, 1] . We have
f(x0) ≤ 〈Ax0, zt − x0〉 + f(zt) ≤ 〈Ax0, zt − x0〉 + (1 − t)f(z) + tf(c). Letting t → 0+ we
conclude that f(x0) ≤ 〈Ax0, z − x0〉+ f(z). �

Corollary 4. Let K be a nonempty compact convex subset of Rn and K ′ a dense subset of K.
Let A : K → Rn and f : K → R be a convex function satisfying (A1). Then there exists
x0 ∈ K such that 〈Ax0, z − x0〉+ f(z)− f(x0) ≥ 0 for all z ∈ K.

Proof . Immediate consequence of Proposition 2 and Lemma 3. �

Proof of Theorem 1. From (A2), there exist z0 ∈ K and R > 0 such that {x ∈ K :
〈Ax, x− z0〉 ≤ f(z0)− f(x)} ⊂ B(0, R/2) (where B(0, ρ) denotes the closed ball with cen-
ter 0 and radius ρ > 0). The subset KR := K ∩B(0, R) is a nonempty compact convex subset
(contains z0). From (A1), for all z ∈ K ′

R := K ′ ∩ B(0, R) ⊂ KR, {x ∈ KR : 〈Ax, x− z〉
≤ f(z)− f(x)} is closed (intersection of closed subsets). Obviously K ′

R is dense in the
compact convex subset KR; we deduce from Corollary 4 there exists xR ∈ KR such that
〈AxR, z − xR〉 + f(z) − f(xR) ≥ 0 for all z ∈ KR. Let z ∈ K. For θ > 0 small enough,
zR := xR + θ(z − xR) ∈ KR; indeed ‖zR‖ ≤ R/2 + θ ‖z − xR‖: z0 ∈ KR and thus
〈AxR, z0 − xR〉 + f(z0) − f(xR) ≥ 0 so that (using xR ∈ K) xR ∈ B(0, R/2). We have
〈AxR, z−xR〉 = θ−1〈AxR, zR−xR〉 and, by convexity, f(z)− f(xR) ≥ θ−1(f(zR)− f(xR)).
By summing we get 〈AxR, z−xR〉+f(z)−f(xR) ≥ θ−1(〈AxR, zR−xR〉+f(zR)−f(xR)) ≥ 0
(for zR ∈ KR), which allows us to conclude that xR is a solution of (IVMIN). �

We remark that if (A1) holds and if K ′ is a dense subset of K, the following property

(A1+) ∀z ∈ K, {x ∈ K : 〈Ax, x− z〉 ≤ f(z)− f(x)} is closed,

is not necessarily satisfied. Consider for instance the case where A = 0 and where the convex
function f : K := [−1, 1] → R is defined by f(x) = x2 for x ∈ [−1, 1) and f(1) = 2 when
K ′ := (−1, 1] .
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2.2. Minimization

We deduce from Theorem 1 a result on the existence of a minimizer of a convex function (non-
lower semi-continuous and non-coercive in general cases) which is defined on a closed convex
subset (non-compact in general cases) of the Euclidean space. Conditions (B1) and (B2) used
in the next theorem of minimization are relative to subsets of the form {x ∈ K : f(x) ≤ f(z)}
depending on z ∈ K.

Theorem 5. Let K be a nonempty closed convex subset of Rn and f : K → R a convex
function such that

(B1) ∀z ∈ ri(K), f−1((−∞, f(z)]) is closed,

(B2) ∃z ∈ K, f−1((−∞, f(z)]) is bounded.

Then (MIN) ∃x0 ∈ K, f(x0) = inf
z∈K

f(z).

Proof . Consequence of Theorem 1 with A = 0 and K ′ = ri(K); the fact that ri(K) is dense
in K is a classical result. �

Obviously, when K is a compact subset, condition (B2) is satisfied and in fact we have

(B2+) ∀z ∈ K, f−1((−∞, f(z)]) is bounded.

It is also obvious that condition (B2+) is satisfied when K is unbounded provided the function
f is coercive: f(u) → +∞ if ‖u‖ → +∞ (u ∈ K).

For the convex function f : [−1, 1] → R defined by f(x) = x2 for x ∈ (−1, 1), f(−1) =
α ∈ [1, +∞) and f(1) = β ∈ (1, +∞), condition (B1) is satisfied whereas f is not lower
semi-continuous. We remark that for a lower semi-continuous function f on K (nonempty and
closed) the following property holds:

(B1+) ∀z ∈ K, f−1((−∞, f(z)]) is closed.

Nevertheless, condition (B1+) can be satisfied by a convex function which is not lower semi-
continuous (consider α = 2, β = 2 in the previous example). We remark that property (B1+)
is not always satisfied in the previous example (consider α = 1, β = 2 and z = −1).

The following corollary generalizes the classical theorem of minimization of a lower semi-
continuous convex function defined on a nonempty closed convex subset of Rn when the subset
is bounded or when the function is coercive.

Corollary 6. If f : K → R is a convex function defined on a nonempty closed convex subset
K of Rn such that f−1((−∞, f(z)]) is a compact subset for all z ∈ ri(K) then (MIN).

More general results about minimization of some particular non-lower semi-continuous
functions are established in [1].

2.3. Variational inequalities

The results of this section are various corollaries of Theorem 1 when K ′ = K and f = 0.

An important class of maps A satisfying property

(C1) ∀z ∈ K, {x ∈ K : 〈Ax + b, x− z〉 ≤ 0} is closed,
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is composed of the continuous maps from K into Rn (b ∈ Rn is given for the sequel).

The next result generalizes [4, Cor. 4.3] in which the following coercivity condition is used
(when K is unbounded):

(C0) ∃z ∈ K, lim
x∈K,‖x‖→+∞

〈Ax− Az, x− z〉
‖x− z‖ = +∞.

In fact, (C0) implies

(C2) ∃z ∈ K, {x ∈ K : 〈Ax + b, x− z〉 ≤ 0} is bounded.

Indeed, there exists R > 0 such that 〈Ax + b, x − z〉 > 0 for ‖x‖ > R (where x ∈ K) and
thus {x ∈ K : 〈Ax + b, x− z〉 ≤ 0} ⊆ B(0, R) (choose L > ‖Az + b‖ and R > ‖z‖ such
that 〈Ax−Az,x−z〉

‖x−z‖ ≥ L for ‖x‖ > R).

Corollary 7. If A : K → Rn is a continuous map on a nonempty closed convex subset K of
Rn and if (C2) holds then (IV ) ∃x0 ∈ K, ∀z ∈ K, 〈Ax0 + b, z − x0〉 ≥ 0.

The following example shows that Corollary 7 can be applied if K is unbounded and if the
operator A is non-coercive: K = [0, +∞), b = 0, Ax = 1 + x if x ∈ [0, 1), Ax = 2 if x ∈
[1, +∞). It is immediate that {x ∈ [0, +∞) : Ax(x− z) ≤ 0} = [0, z] for all z ∈ [0, +∞) .

Obviously, property (C2) holds when K is bounded. The next result (as the previous one)
generalizes a result of Hartman and Stampacchia (cf. [4, Th. 3.1]).

Corollary 8. If K is a nonempty compact convex subset of Rn and if A : K → Rn satisfies
(C1) then (IV ).

We give an elementary example of a discontinuous operator for which Corollary 8 can be
applied: K = [0, 1], b = 0, A0 = 1, Ax = x/2 + α if x ∈ (0, 1], with α ∈ (0, 1/2) be
fixed. The subset {x ∈ [0, 1] : Ax(x− z) ≤ 0} is the closed line segment with extremities 2α
and z ∈ [0, 1].

We can also state (since (C0)⇒(C2)):

Corollary 9. If K is a nonempty closed convex subset of Rn and if A : K → Rn satisfies (C0)
and (C1) then (IV ).

This result is another generalization of [4, Cor. 4.3]. Finally we formulate a particular case
of Theorem 1 (which generalizes Corollary 8 but not Corollary 7).

Corollary 10. If K is a nonempty closed convex subset of Rn and if A : K → Rn satisfies

(C3) ∀z ∈ K, {x ∈ K : 〈Ax + b, x− z〉 ≤ 0} is compact,

then (IV ).

This result can be applied when the subset K is unbounded and when the operator A is
not continuous nor coercive: K = [0, +∞), b = 0, Ax = 1 + x if x ∈ [0, 1), Ax = α if
x ∈ [1, +∞) where α > 2.
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§3. Fixed points

Following the approach of Browder in [2], we deduce some fixed points theorems from results
about the existence of solutions of variational inequalities, particularly from Theorem 1.

Theorem 11. Let K be a nonempty closed convex subset of Rn and T : K → Rn such that

(D1) ∀z ∈ K, {x ∈ K : 〈x− Tx, x− z〉 ≤ 0} is closed,

(D2) ∃z ∈ K, {x ∈ K : 〈x− Tx, x− z〉 ≤ 0} is bounded,

(D3) ∀z ∈ ∂K,∃y ∈ K, [∃r > 0, T z = z + r(y − z) ] or [ 〈z − Tz, z − y〉 > 0 ] .

Then ∃x0 ∈ K, Tx0 = x0.

Proof . From Theorem 1 (by (D1)-(D2)) there exists x0 ∈ K such that 〈x0−Tx0, x0−z〉 ≤
0, for all z ∈ K. If x0 ∈ int(K) there exists r > 0 such that x0 + u ∈ K as soon as ‖u‖ ≤ r.
Choose any nonzero z in Rn; x0 + θz ∈ K for |θ| ≤ r ‖z‖−1 and then 〈x0 − Tx0, z〉 = 0. We
conclude that x0 = Tx0. If x0 ∈ ∂K there exists (by (D3)) y ∈ K such that Tx0 = x0 + r(y−
x0) for some r > 0 or else 〈x0−Tx0, x0−y〉 > 0. In the first case, r−1〈x0−Tx0, Tx0−x0〉 =
〈x0 − Tx0, y − x0〉 ≥ 0 and then 〈x0 − Tx0, Tx0 − x0〉 ≥ 0, thus Tx0 = x0. The second case
is impossible: y ∈ K and then 〈x0 − Tx0, x0 − y〉 ≤ 0 < 〈x0 − Tx0, x0 − y〉 which leads to a
contradiction. �

Remark 1. (i) A particular version of (D3) used in [2] is:

(D3+) ∀z ∈ ∂K,∃y ∈ K, ∃r > 0, T z = z + r(y − z).

Initially, Halpern introduced the notion of ”inward map”: Tz ∈ z + R+(K − z) for all z ∈ K
(cf. [3]).

(ii) Recall that property (D3+) holds in particular if T (∂K) ⊆ K (take r = 1 and y = Tz
for z ∈ ∂K).

Remark 2. Condition (D2) is satisfied when T (K) is bounded. In fact, in this case we have

(D2+) ∀z ∈ K, {x ∈ K : 〈x− Tx, x− z〉 ≤ 0} is bounded .

Indeed, if x ∈ K satisfies 〈x− Tx, x− z〉 ≤ 0 then ‖x‖2 ≤ 〈x, z〉+ 〈Tx, x− z〉 ≤ α ‖x‖+ β
for some positive constants α and β which allows us to conclude immediately.

Formally replacing the operator T by x �→ 2x−T (x) we obtain from Theorem 11 its ”dual”
version:

Theorem 12. Let K be a nonempty closed convex subset of Rn and T : K → Rn such that

(E1) ∀z ∈ K, {x ∈ K : 〈x− Tx, x− z〉 ≥ 0} is closed,

(E2) ∃z ∈ K, {x ∈ K : 〈x− Tx, x− z〉 ≥ 0} is bounded,

(E3) ∀z ∈ ∂K,∃y ∈ K, [∃r > 0, T z = z − r(y − z) ] or [ 〈z − Tz, z − y〉 < 0 ] .

Then ∃x0 ∈ K, Tx0 = x0.

Remark 3. (i) A particular version of (E3) used in [2] is:

(E3+) ∀z ∈ ∂K,∃y ∈ K, ∃r > 0, T z = z − r(y − z).

The notion of ”outward map” is defined by: Tz ∈ z + R−(K − z) for all z ∈ K (cf. [3]).
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Concerning the case of continuous operators:

Corollary 13. If T : K → Rn is continuous on the nonempty closed convex subset K of Rn

and if (D2) and (D3) hold then T admits a fixed point in K.

And its dual version:

Corollary 14. If T : K → Rn is continuous on the nonempty closed convex subset K of Rn

and if (E2) and (E3) hold then T admits a fixed point in K.

Properties (D2) and (E2) are satisfied in particular when K is bounded. This allows us to
state:

Corollary 15. If K is a nonempty compact convex subset of Rn and if T : K → Rn satisfies
(D1) and (D3) then T admits a fixed point in K.

And also its dual version:

Corollary 16. If K is a nonempty compact convex subset of Rn and if T : K → Rn satisfies
(E1) and (E3) then T admits a fixed point in K.

We achieve this section by two particular cases where compactness is used.

Corollary 17. Let K be a nonempty closed convex subset of Rn and T : K → Rn satisfying
(D3) and

(D4) ∀z ∈ K, {x ∈ K : 〈x− Tx, x− z〉 ≤ 0} is compact.

Then T admits a fixed point in K.

It is obvious that (D4) ⇒ (D1)-(D2) and [ K compact and (D1) ] ⇒ (D4). Moreover
[ T (K) compact and (D1) ] ⇒ (D4) since (D4) ⇔ (D1)-(D2+). For the dual version below:
(E4) ⇒ (E1)-(E2) and [ K compact and (E1) ] ⇒ (E4).

Corollary 18. Let K be a nonempty closed convex subset of Rn and T : K → Rn satisfying
(E3) and

(E4) ∀z ∈ K, {x ∈ K : 〈x− Tx, x− z〉 ≥ 0} is compact.

Then T admits a fixed point in K.

We now present some various applications of our results on variational inequalities and
fixed points. The main object is to analyze and compare the different assumptions in concrete
cases and thus we study simple operators (with discontinuities except for the first one).

Example 1. We consider the operator T defined by

Tx =
√

x if x ∈ K := [1/2, +∞).

Property (D2) (and in fact (D2+)) holds; nevertheless K and T (K) are unbounded. Indeed,
for all z ∈ [1/2, +∞) , the subset Dz := {x ∈ [1/2, +∞) : (x−Tx)(x− z) ≤ 0} is the closed
line segment with extremities 1 and z. Property (D1) also holds (by continuity of T or by the
closeness of each Dz). Property (D3) (and in fact (D3+)) holds for T (∂K) = T ({1/2}) ⊂ K.
Theorem 11 proves the existence of a fixed point which cannot be directly obtained by the
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classical Brouwer’s theorem nor by its extension given in [2] without more information (for K
is not a compact subset).

Property (E1) holds by continuity of T. Property (E2) does not hold: the subset Ez := {x ∈
[1/2, +∞) : (x − √x)(x − z) ≥ 0} contains all real number greater than max(1, z) for any
z ∈ [1/2, +∞) . We also remark that (E3) does not hold. For this example, Theorem 12 cannot
be used.

Example 2. We define the operator T by

Tx = x + x−1 if x ∈ (0, 1] and T0 = −α where α is a real parameter.

Property (E2) holds since K := [0, 1] is bounded. If α ≤ 0 then Ez := {x ∈ [0, 1] :
(x − Tx)(x − z) ≥ 0} is closed (Ez = [0, z]) for all z ∈ [0, 1] ; if α > 0 then Ez = (0, z]
is not closed for z ∈ (0, 1] . Thus (E1) holds if and only if α ≤ 0. When α ≤ 0 we get from
Theorem 1 the existence of a solution for the variational inequality associated with the operator
A : x �→ x− Tx on [0, 1] . Moreover (E3+) holds if and only if α ≥ 0. Consequently, Theorem
12 can be applied when α = 0.

Property (D2) always holds (K is bounded). If α ≥ 0 then Dz := {x ∈ [0, 1] : (x −
Tx)(x − z) ≤ 0} is closed (Dz = {0} ∪ [z, 1]) for all z ∈ [0, 1] ; if α < 0 then Dz = [z, 1] is
closed for all z ∈ (0, 1] but D0 = (0, 1] is not closed. Thus (D1) holds if and only if α ≥ 0.
When α ≥ 0 we get from Theorem 1 the existence of a solution for the variational inequality
associated with the operator A : x �→ Tx − x on [0, 1] . Since (D3) never holds, Theorem 11
cannot be used even when α = 0.
Example 3. We define on K := R× R the operator T by

T (0, 0) = (0, 0) and T (x, y) = (xy/(x2 + y2), xy/(x2 + y2)) if (x, y) �= (0, 0).

Property (D2) (and in fact (D2+)) holds since T (R×R) is contained in the closed unit ball.
Property (D1) also holds (but T is not continuous at the origin). Property (D3) is obvious. The
existence of a fixed point can be obtained by Theorem 11 (and Corollary 17) but not by the
Brouwer’s theorem as if T is defined on the closed unit ball because T is discontinuous at the
origin.

Example 4. We define on K := R× R the operator T by

T (0, 0) = (0, 0) and T (x, y) = (x/(x2 + y2), x/(x2 + y2)) if (x, y) �= (0, 0).

We easily verify that properties (D1) and (D2) hold (and in fact (D2+) since Dz := {u ∈
R× R : 〈u− Tu, u− z〉 ≤ 0} is contained in the closed ball with center the origin and radius
max(1, ‖z‖)). Property (D3) is obvious. The Brouwer’s theorem cannot be applied: T is
discontinuous at the origin. We remark that property (D2) can be satisfied for some operators
which are not locally bounded at a point. Theorem 11 (and Corollary 17) can be applied to get
the existence of a fixed point.
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