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MULTIPHASE FLOW IMAGING BY

CAPACITANCE

TOMOGRAPHY USING SIMULATED

ANNEALING INVERSION

Roland Martin, Carlos Ortiz-Aleman and Carlos Gamio

Abstract. Electrical capacitance tomography (ECT) is a technique for obtaining cross-
sectional images of the electrical permittivity distribution inside an electrically non-conduc-
ting body. It can be used to map the composition of two-phase mixtures like gas-oil sys-
tems and provides a useful tool for multiphase flow visualization and measurement and
potential applications in petroleum industry. The ECT sensor collects the measured capac-
itances which are then inverted with a suitable reconstruction algorithm in order to produce
an image of the permittivity distribution. But the linear, iterative or regularizing inversion
techniques commonly used introduce unwanted smoothing effects in the reconstructed im-
ages, may become unstable or may not converge towards the desired solution.

In this work we apply the simulated annealing (SA) method to the reconstruction im-
ages from ECT measurements. The forward problem is calculated by using a finite volume
space discretization mehod to avoid geometrical singularities (as occurs with a classical
finite difference method), and to take advantage from its conservative formulation. We test
the SA inversion method using static physical models and simulate the typical distribu-
tion patterns of two-component flows. This inversion technique has some advantages over
approaches based on damping least-square inversions: they find good solutions starting
with poor initial models, implement more easily complex a priori information, and do not
introduce smoothing effects in the final permittivities.
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§1. Introduction

In the last two decades, Electrical Capacitance Tomography (ECT) has been developed for non
intrusive tomography purposes. This technique is used to obtain cross sectional images of the
permittivity distribution into the inner core or region of a non conductive body [10]. By this
mean, the composition of two-phase mixtures like gas-solid or gas-oil systems can be mapped
by this mean and many potential applications in visualization and measurement of multiphase
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flows for the oil industry have been performed to study oil-gas pipe flows, gas-solid distribu-
tions in pneumatic conveyors and fluidized beds, flame combustions, water hammers, water-
oil-gas separation processes and trickle bed reactors for measuring water contents [11]. In this
context, a ECT multisensor system is constituted by an insulating tube with a certain number
of electrodes in its outer wall surrounded by an external screen. The use of cylindrical guards
allows to model the multisensor as a two dimensional problem [9]. The sensor is connected to
a device which measures mutual capacitances between every possible pair of electrodes. The
data collected in this way are then inverted by an appropriate reconstruction algorithm and an
image of the permittivity distribution is produced in the sensor. The inversion solver assumes
the resolution of a forward problem for each electrode problem.

The first ECT system was developed by the US Department of energy to image gas-solid
distributions in fluidized beds and gas-oil pipe flow imaging [7]. The first real time ECT system
has been performed at UMIST at the beginning of the 1990s to visualize two-phase flow sys-
tems in pipelines [3, 10]. In those years and the following, different hardware process systems
have been developed using four to sixteen electrodes in this context thanks to the improvement
of the electronic transducers [4]. Since 1995, the needs of process applications have increased
and made possible due to the significant improvement of the design and the operation of the
process plants equipment [1]. The ECT technique has become the most powerful tool used to
reconstruct images of turbulent multiphase flows. Until now, the most complex reconstructed
flows have concerned two phase stratified flows issuing from wells, pneumatic conveyors and
gas-solid fluidizations [7], and trickle bed reactors for measuring water content [11].

During these last twenty years, many imaging reconstruction algorithms have been used
and are generally classified in iterative and non-iterative techniques [11]. Their main purpose
was to improve the yet available image reconstruction methods. However, so far simple di-
rect methods like linear back-projection (LBP) yield relatively poor images that only provide a
qualitative indication of the component distribution inside the sensor. LBP is based on making
a linear approximation to a problem that is essentially non-linear [6]. Therefore, this image re-
construction method causes considerable errors, which are particularly grave if there are large
permittivity differences in the image. So far, the main alternative to LBP has been the use of
iterative methods that seek to minimize some objective function, employing local optimiza-
tion techniques like the regularized Newton-Raphson method or other similar approaches [11].
These methods are based on minimizing, with respect to the permittivity distribution, a L2

functional involving the misfit function between computed and measured mutual capacitances,
and a regularization matrix function containing some type of a-priori smoothness information
about permittivities. Starting with an initial guess permittivity distribution, the minimization
is carried out by an iterative procedure (basically a Newton-type method with Tikhonov reg-
ularization). The main problems of these iterative local optimization techniques are that they
generally require one or more regularization parameters whose optimal value depends precisely
on the (unknown) image to be reconstructed, and that they smooth the image contour. If the
regularization is too strong the smoothing effects will appear, and it is too slight the technique.
Thus, better and more accurate image reconstruction methods are still being developed in the
context of this application.

In the last decades, an important improvement of geophysical data processing and model-
ing techniques related to inversion theory and global optimization has been done. The inverse
problem starts from the data and an appropriate model in order to estimate the parameters of



Multiphase Flow Tomography 499

the model. The inversion methods use the direct modeling in an iterative process. When the
resolution of the direct problem is not too much time consuming, the problems can be treated
very efficiently using techniques of global optimization. These techniques are really attractive
because they can overwhelm many classical limitations of the local methods. The global opti-
mization technique explore the whole set of solutions during the iterative process. In spite of
the existence of partial solutions, the probability of a smaller and better misfit between synthetic
and observed data is higher. These methods do not require the use of the objective function gra-
dient because the problem do not need to be linearized. Global optimization algorithms need
stochastic criteria to explore simultaneously the whole space of solutions and find the optimal
model. The most famous global algorithm is the Monte Carlo method which performs the re-
search randomly. At each new generated model, the information obtained from the previously
evaluated models are not taken into account [2]. Among all the global optimization techniques,
the genetic algorithms (GA) and the simulated annealing (SA) algorithms have proved to be
efficient for many problems of interest in geophysics (exploration, magnetometry, gravimetry).
Both have been conceived as optimization systems occurring in nature.

In this study we have chosen the SA algorithm in order to obtain an accurate image of
complex flows. The convergence of SA is highly dependent of the resolution technique em-
ployed in the forward (or direct) problem. SA can be identified as a non-linear multi-parameter
optimization method and a stochastic search technique. SA is also a generalization of Monte
Carlo methods for examining the equations of state and frozen states of n-body systems [5]. A
description of SA is given in the second section of this paper. The forward problem involved
at each iteration of the SA algorithm uses here a finite volume method (FVM) formulated in
polar coordinates in order to earn CPU time and be more accurate than methods using finite
element and finite difference spatial schemes commonly introduced by many groups working
in this field of interest. The most important topic we point at in this paper is the feasibility
of such algorithms using a more suitable arrangement of permittivity distributions in the FVM
mesh than the one used in [6]. The parameters of the inverse problem are chosen this way so as
to converge faster. The mesh has an impact on the rate of convergence of the whole algorithm
and the accuracy of the solution, and the Bi-Conjugate Gradient linear solver is fully coupled
with the iterative process of the inverse problem in order to take in to account the solutions
computed in previous iterations. In the forward problem, usually the Finite Element Method
is used [10] and the commercial software OPERA seems to be the reference direct solver. It
uses a three step decomposition of the matrix by diagonalization. Its main problem is that the
whole system must be solved for each electrode combination problem. Here we propose a finite
volume approach in a polar configuration and an accelerated BICG linear solver that allows us
to decrease efficiently the time consuming of the linear system resolution.

§2. The Inversion Algorithm

2.1. The Forward Problem Solver

The forward problem is solved by using a finite volume method in a cylindrical configuration,
in order to avoid undefined solutions at the disk centre and make the mesh refinement more
flexible in comparison with finite element methods. We solve the following equations:

∇ · (ε∇φk) = 0 (1)
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where ε is a given permittivity distribution in the disk domain and φk is the potential field to
be computed when the electrode k is the potential source. Dirichlet boundary conditions are
applied on the source electrodes (φk = V ), and on the receiver electrodes and on the external
screen (φk = 0)

Defining the radius and angle coordinates as r and θ, and using the finite volume method,
the discretized equation is formulated in the conservative form on each cell Ωij:∫

Ωij

∇ · (ε∇φk)dΩij = 0 (2)

for i = 1, ..., Nr and j = 1, ..., Nθ, where i and j are related to the spatial discretization
along the directions r and θ respectively, and Nr and Nθ being the number of grid points in the
radial and angular directions.

Applying the Gauss theorem, and using polar coordinates, the discretized equations can be
written as: ∫

Γij

ε∇φk · dΓij = 0 (3)

where Γij is the boundary of the finite volume cell Ωij . The boundary is defined by ΓW and
ΓE along the radial coordinates, and by ΓN and ΓS along the angular coordinates. Equation (3)
can be expressed as the sum of the fluxes through the faces ΓN , ΓS , ΓE and ΓW :∑

l

(
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From equation (4), the term corresponding to the fluxes at zero radius location vanishes
and the problem is equivalent to solve the equations close to the center on triangles having a
vertex at the center. Then, the discretized system of equations is well posed. The whole system
is similar to a Laplacian equation system and a band diagonal linear system must be solved
including the periodic boundary conditions imposed by the geometry of the problem. The
corresponding matrix is positive definite and non symmetric. The mutual capacitances on each
electrode are computed integrating the potential gradients along the electrode length according
to the following expression:

Cij =
Qi

Vj

= −εo

V

∫
Γi

(ε∇φj) · dl = −εo

V

∫
Γi

ε
∂φj

∂n
dl (5)

where n is the normal to the electrode contour, φj is the electrostatic potential created in the
sensor by a voltage V to the electrode j, εo is the vacuum permittivity (8.854×10−12 Farads/m),
Γi is a boundary enclosing the electrode i, dl is an infinitesimal element of the curve (in 2D)
or surface (in 3D) Γi. The integration is performed using a trapezoidal rule and the potential
gradients are computed to the fourth order.

To solve the twelve problems at each iteration of the inverse problem, commercial finite
element based solvers like OPERA [10]which use a matrix diagonalization take close to ten
seconds on a Pentium III computer to obtain all the 66 capacitances for a 3000 points grid.
In our case, we reach 5s with BiCG technique. This is due to the fact that in OPERA the
diagonal matrix, the upper triangular matrix and its transpose are stored before solving the
twelve forward problems but the three step resolution must be done for each problem. The
algorithm is of order θ(N3) while the BiCG solver used here is of order θ(N2) and can be easily
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parallelized on a PC cluster supercomputer. In order to accelerate the bi-conjugate gradient
linear solver, the twelve potentials computed at the previous iteration of the inversion problem
are set as first guesses of the twelve new forward problems of the present new inverse problem
iteration. The number of iterations per each forward problem is then quite random but always
remains lower than the number of iterations at the first step of the whole inversion process.

The errors between measured and calculated data can be really high with variations as
important as 20%. We have ponderated the computed capacitances by an amount error coming
from well known measured and computed data in the case of an empty sensor (only air). In the
empty sensor case, the errors between the FVM computed capacitances and the true data are
shown in figure 1 using a logarithmic scale. The worst errors between computed and measured
capacitances are related to the electrodes (here electrodes 1 and 11) adjacent to the source
electrode (here the electrode 12). The non-adjacent capacitances are really better computed.

2.2. Parameter calibration in the mesh

For a given number of points in a polar mesh configuration, different radial and angular incre-
ments ∆r and ∆θ are possible. The angular steps are very sensible parameters that influence
the calculation of the solution. We have then chosen a number of 240 equal angular steps. In
order to compute more accurately the capacitances and to have less contrasts in the areas of the
cells in the mesh, it is more convenient to refine the mesh from the center to the electrodes with
the non-unique configuration shown in figure 2. In this figure, the mesh with a constant radius
is oversampled near the center and the cells are too coarse to have a good solution near the
electrodes while the non constant radius cells have less oversampling in the center and provide
more accuracy close to the electrodes for a same number of points as in the other mesh. The
inversion algorithm convergence is extremely dependent on the mesh construction and how the
permittivity parameters to be inverted are arranged at the mesh points. For a given Nr by Nθ

mesh and taking an analogue strategy than in multigrid techniques, each permittivity parameter
is assigned to a block Bk of np volumes such that its area is equal to the area of the other blocks.
Each volume is related to a point of the mesh located at the center of this volume. The other
blocks can contain different number of volumes or mesh points. This arrangement allows an
equal area weighting of the different permittivities to be inverted and equivalent impacts of the
permittivity perturbations during the inversion process. For reasons of accuracy the number
of permittivity parameters must be increased and so must be the number of blocks during the
process. The number of blocks is refined in one direction and after many thousands iterations
the number of blocks is increased in the other direction. This allows to refine uniformly the
set of parameters in the mesh and to search other optima during the inversion process. The
whole process is equivalent to model first coarse structures with coarse blocks in the mesh until
a certain level accuracy of the capacitance misfit function is reached, then the finer structures
with finer blocks are computed according to the finding of new optima and so on. At the end a
uniform permittivity distribution related to the volume blocks is formed with a good accuracy
turning around 10−6 for a L2 norm choice of the misfit function. At the beginning of the pro-
cess, it is not necessary to choose a too low tolerance error in the BiCG linear solver because
the misfit is not good enough. Then we choose a 10−5 (not too low) starting error that we
impose to decrease by roughly an order of magnitude each 104 iterations approximately during
the inversion iterative process.
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2.3. The Simulated Annealing Algorithm

The simulated annealing method is based on an analogy with the thermodynamic process of
crystallization. A mineral fluid that cools slowly until it reaches a low energy state, gives rise
to the formation of well defined crystals. If, on the contrary, the substance leaves its thermal
equilibrium state with a sudden or partial cooling, the resulting crystal will have many defects,
or the substance may even form a ’glass’, characterized by its meta-stable molecular disorder.
This concept is used in the context of optimization methods to recognize potentially useful
models or configurations.

The atoms of each molecular configuration are equivalent to the model parameter in the
inverse problem (i.e., the permittivity of the various image pixels). The system energy for such
configuration is related to the cost (or misfit) function associated with the set of parameters
involved in the model. In our case, the system energy is associated with the following L2 norm:

E =

∑
j=1,m(c(j)obs − c(j)calc)

2∑
j=1,m(c(j)obs)2

(6)

where c(j)obs are the m measured capacitances and c(j)calc are the ones calculated by solv-
ing the forward problem for a given permittivity distribution ε. From an initial permittivity
distribution, the method generates a range of configurations or parameter combinations con-
sidering a certain temperature T for the process. For this purpose the Metropolis criterion is
employed, which consists in changing a parameter, in each iteration, by a small random amount.
This shift causes a change E in the system’s total energy. If ∆E is less than or equal to zero,
the change in the parameter is accepted and the resulting configuration is considered as the new
current configuration. When there is an increase in the system energy (E is greater than zero),
the probability of acceptance or rejection for the parameter change is determined as

P (∆E) = e−∆E/T (7)

In order to decide whether or not a change that produces an increase in the system energy is
accepted, a random number between zero and one is chosen, which is then compared with the
value of the probability corresponding to E. If said random number is smaller, the parameter
shift is accepted and the new configuration is considered as the current (updated) one. If said
random number is greater, the parameter shift is not accepted and the configuration that existed
before the shift is maintained. Repeating this procedure continuously, the thermal movement of
the atoms of a system in thermal equilibrium (at a fixed temperature T ) is simulated. In order
to reach the system’s base state, that is to say, the state of lowest energy and highest order, the
temperature must be reduced very slowly, simulating a quasi-static process. This means that,
during the cooling, the system must experience a series of states infinitesimally separated from
the state of thermal equilibrium.

The method of simulated annealing has three basic components [8]: an energy (or cost, or
misfit) function, an order function (the Metropolis criterion), and a parameter that controls the
system temperature. The process consists of three nested cycles. Figure 3 shows a diagram that
illustrates how the method works.

The external cycle (3) regulates the system temperature. Every time a cycle is completed,
the temperature decreases as it is multiplied by a factor RT that is normally very close to one
(0 < RT < 1). In this way the desired slow and gradual cooling is carried out. The intermediate
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cycle (2) updates the values, independent of each other, of a series of constants Ki associated
with each parameter. Said constants determine the maximum change that each parameter may
experience when it is perturbed in the innermost cycle (1). The value of said constants depends
on the number of times that the current model has been accepted (according to the Metropolis
criterion) at the end of every sequence of internal cycles (1). In the internal cycle (1) the
parameter values are perturbed using the factors Ki , defined in the intermediate cycle (2). The
perturbation is done multiplying each parameter by the product of its corresponding Ki times
a randomly chosen number between minus one and one. After this, the synthetic response of
the current model is calculated and the change in the system’s energy associated with the new
parameter configuration is evaluated. Said energy change corresponds to the misfit between
the synthetic data curve and the observed or measured one. If the misfit decreases, then the
new configuration will be accepted as the current one and in turn perturbed in the same way.
If, on the contrary, the random perturbation causes an increase in the misfit, associated with
an increment in the energy E, then a probability of acceptance according to the Metropolis
criterion is assigned to that configuration.

The cycles (1), (2) and (3) are repeated, while the temperature of the process decreases
progressively. As the temperature diminishes, the parameter variations are smaller and smaller.
In this way, the search in the solutions domain tends to confine itself towards the models asso-
ciated with the absolute minimum of the misfit function E. The end result is a set of values for
the parameters (i.e., the permittivity in the various pixels that make an image) whose synthetic
response reproduces the observed (capacitance) data, with a sufficiently small error.

§3. Results

In order to test the feasibility of our SA inversion method, we compute sets of ECT synthetic
data for four typical permittivity distributions by solving the forward problem. We simulate
a twelve-electrode ECT sensor and compute the capacitance values for all single-electrode
combinations. We consider two-component distributions with a lower permittivity material of
1.0 (air) and a higher permittivity material of 2.5 (oil). We restrict our numerical test to the
reconstruction of noise free ECT data in three first cases and we include noisy data for the
fourth case. SA algorithm is implemented in Fortran 90 on a Pentium IV personal computer
with a 1.7 MHz CPU and 512 Mbytes memory. We experimented with a 120 by 60 grid to
reduce inversion times but results are valid for any larger dimensions.

After an appropriate parametrization, SA produces satisfactory results for all four study
cases. In figure 4, we present image reconstructions for a simplified annular flow, a stratified
and a bubble flow after 30,000 and 60,000 forward problem computations. Our application
of SA to the inversion of synthetic ECT data provides us very encouraging results. One crit-
icism of SA is its relatively high computation time. An interesting possibility which we are
now exploring is the use of high performance parallel computation and spline regularization
techniques.

In the fourth case (four gas bubbles in an oil matrix), the sensor geometrical configuration
is close to the one of our laboratory sensor and the permittivity distribution is a bubbly flow.
We compute the 132 synthetic capacitances Cij for the 12 problems. These data are perturbed
with a 10% random noise function. The true calculated data and the data with noise are inverted
using the permittivity arrangement process described in the previous section. The images are
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very close one from the other as can be seen in last snapshot of figure 5. The algorithm seems
to converge towards an equivalent permittivity distribution and is a good candidate for image
reconstruction with random noise.

The process has been stopped at 60,000 forward problem calculations for all cases in order
to compare the image reconstruction achievements.The L2 norm for the objective misfit func-
tion between data and computed capacitances has been chosen. The computational costs are
approximately the same around 25 minutes. Convergence is relatively fast in the first 10,000
iterations, then crosses a slow phase till 30,000 steps and accelerates until the process ends.

§4. Conclusions

The application of SA to the inversion of measured ECT data has provided us encouraging
results. One significant disadvantage of SA relative to linear methods is its high computational
time as several thousands of forward problem computations are required. This method does not
require a good initial model and is successful to invert synthetic data with noise and without
noise. In order to have good results in inverting real data, an acceleration procedure will be
explored by using a spline regularization in space which can allow a reduction of the number
of parameters by an order of magnitude.
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Figure 3: Schematic explanation of the Simulated Annealing algorithm

Figure 4: Reconstructed images at 30000 and 60000 iterations for annular (left), strati-
fied(middle) and bubbly flows(right). The reference models are the first images of each series
of three snapshots.

Figure 5: Reconstructed images at 10, 20, 30, 50 and 60000 iterations for bubbly flows in the
case of a reallistic sensor configuration and data with noise
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